CHAPTER 17

Sobolev Spaces

1. Absolutely Continuous Functions

In this setion we review absolute continuous functions.

DEFINITION 17.1. Let $I \subseteq \mathbb{R}$ be an interval and (Y, d) be a metric space. A function $u: I \to Y$ is said to be absolutely continuous on I if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

(17.1)
$$\sum_{i=1}^{n} d(u(b_i), u(a_i)) \le \varepsilon$$

for every finite number of nonoverlapping intervals (a_i, b_i) , i = 1, ..., n, with $[a_i, b_i] \subseteq I$ and

$$\sum_{i=1}^{n} (b_i - a_i) \le \delta.$$

The space of all absolutely continuous functions $u: I \to Y$ is denoted by AC(I; Y).

When $Y = \mathbb{R}$ we write AC(I) for $AC(I; \mathbb{R})$..

Let $I \subseteq \mathbb{R}$ be an interval and (Y, d) a metric space. A function $u : I \to Y$ is locally absolutely continuous if it is absolutely continuous in [a, b] for every interval $[a, b] \subseteq I$. The space of all locally absolutely continuous functions $u : I \to Y$ is denoted by $AC_{loc}(I;Y)$. As before, when $Y = \mathbb{R}$ we write $AC_{loc}(I)$ for $AC_{loc}(I;\mathbb{R})$. Note that $AC_{loc}([a, b];Y) = AC([a, b];Y)$.

EXERCISE 17.2. Let $u, v \in AC([a, b])$. Prove the following.

- (i) $u \pm v \in AC([a, b])$.
- (ii) $uv \in AC([a, b])$.
- (iii) If v(x) > 0 for all $x \in [a, b]$, then $u/v \in AC([a, b])$.
- (iv) $\max\{u, v\}, \min\{u, v\} \in AC([a, b]).$

PROPOSITION 17.3. Let $I \subseteq \mathbb{R}$ be an interval and $u \in AC_{loc}(I)$. Then u is differentiable \mathcal{L}^1 -a.e. in I and u' is locally Lebesgue integrable.

THEOREM 17.4. Let $I \subseteq \mathbb{R}$ be an open interval and $u \in AC_{loc}(I)$ be such that there exists u'(x) = 0 for \mathcal{L}^1 -a.e. $x \in I$. Then u is constant.

The next theorem shows the primitive of an integrable function is absolutely continuous.

THEOREM 17.5. Let $I \subseteq \mathbb{R}$ be an interval and $v : I \to \mathbb{R}$ a Lebesgue integrable function. Fix $x_0 \in I$ and let

$$u(x) := \int_{x_0}^x v(t) \, dt, \quad x \in I.$$

Then the function u is absolutely continuous in I and u'(x) = v(x) for \mathcal{L}^1 -a.e. $x \in I$.

Using the previous theorem we have.

THEOREM 17.6 (Fundamental theorem of calculus). Let $I \subseteq \mathbb{R}$ be an interval. A function $u: I \to \mathbb{R}^M$ belongs to $AC_{loc}(I)$ if and only if

- (i) u is continuous in I,
- (ii) u is differentiable \mathcal{L}^1 -a.e. in I, and u' belongs to $L^1_{\text{loc}}(I)$,
- (iii) the fundamental theorem of calculus is valid; that is, for all $x, x_0 \in I$,

$$u(x) = u(x_0) + \int_{x_0}^x u'(t) dt$$

As a corollary of Theorem ?? we recover the formula for integration by parts.

COROLLARY 17.7 (Integration by parts). Let $I \subseteq \mathbb{R}$ be an interval and $u, v \in AC_{loc}(I)$. Then for all $x, x_0 \in I$,

$$\int_{x_0}^x uv' \, dt = u(x)v(x) - u(x_0)v(x_0) - \int_{x_0}^x u'v \, dt.$$

We recall the following definition.

DEFINITION 17.8. If $E \subseteq \mathbb{R}$ is a Lebesgue measurable set and $v : E \to \mathbb{R}$ is a Lebesgue measurable function, then v is equi-integrable if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\int_{F} |v(x)| \, dx \le \varepsilon$$

for every Lebesgue measurable set $F \subseteq E$, with $\mathcal{L}^1(F) \leq \delta$.

EXERCISE 17.9. Let $E \subseteq \mathbb{R}$ be a Lebesgue measurable set, $1 \leq p \leq \infty$, and $v \in L^p(E)$. Prove that v is equi-integrable. Prove that if we only assume that $v \in L^1_{loc}(E)$, then the result may no longer be true.

EXERCISE 17.10. Let $E \subseteq \mathbb{R}$ be a Lebesgue measurable set with finite measure and $v: E \to \mathbb{R}^M$ equi-integrable. Prove that $v \in L^1(E)$.

THEOREM 17.11 (Fundamental theorem of calculus, II). Let $I \subseteq \mathbb{R}$ be an interval. A function $u: I \to \mathbb{R}^M$ belongs to AC(I) if and only if

- (i) u is continuous in I,
- (ii) u is differentiable \mathcal{L}^1 -a.e. in I, and u' belongs to $L^1_{\text{loc}}(I)$ and is equiintegrable,
- (iii) the fundamental theorem of calculus is valid; that is, for all $x, x_0 \in I$,

$$u(x) = u(x_0) + \int_{x_0}^x u'(t) dt.$$

COROLLARY 17.12. Let $I \subseteq \mathbb{R}$ be an interval and $u: I \to \mathbb{R}$ be such that

- (i) *u* is continuous on *I*,
- (ii) u is differentiable \mathcal{L}^1 -a.e. in I, and $u' \in L^p(I)$ for some $1 \leq p \leq \infty$,
- (iii) the fundamental theorem of calculus is valid; that is, for all $x, x_0 \in I$,

$$u(x) = u(x_0) + \int_{x_0}^x u'(t) dt$$

Then u belongs to AC(I).

2. Sobolev Functions of One Variable

DEFINITION 17.13. Given an open interval $I \subseteq \mathbb{R}$, $n \in \mathbb{N}$, and $1 \leq p \leq \infty$, we say that a function $u \in L^1_{loc}(I)$ admits a weak or distributional derivative of order n in $L^p(I)$ if there exists a function $v \in L^p(I)$ such that

$$\int_{I} u\varphi^{(n)} dx = (-1)^n \int_{I} v\varphi \, dx$$

for all $\varphi \in C_c^{\infty}(I)$. The function v is denoted $u^{(n)}$.

A similar definition can be given when $L^p(I)$ is replaced by $L^p_{loc}(I)$.

DEFINITION 17.14. Given an open interval $I \subseteq \mathbb{R}$, $m \in \mathbb{N}$, and $1 \leq p \leq \infty$, the Sobolev space $W^{m,p}(I)$ is the space of all functions $u \in L^p(I)$ which admit weak derivatives of order n in $L^p(I)$ for every $n = 1, \ldots, m$. The space $W^{m,p}(I)$ is endowed with the norm

$$||u||_{W^{m,p}(I)} := ||u||_{L^p(I)} + \sum_{n=1}^m ||u^{(n)}||_{L^p(I)}.$$

The space $W_{\text{loc}}^{m,p}(I)$ is defined as the space of all functions $u \in L_{\text{loc}}^{p}(I)$ which admit weak derivatives of order n in $L_{\text{loc}}^{p}(I)$ for every $n = 1, \ldots, m$.

The connection between Sobolev functions and absolutely continuous functions is explained in the following theorem.

THEOREM 17.15. Let $I \subseteq \mathbb{R}$ be an open interval and $1 \leq p \leq \infty$. Then a function $u : I \to \mathbb{R}$ belongs to $W^{1,p}(I)$ if and only if it admits an absolutely continuous representative $\bar{u} : I \to \mathbb{R}$ such that \bar{u} and its classical derivative \bar{u}' belong to $L^p(I)$. Moreover, if p > 1, then \bar{u} is Hölder continuous of exponent 1/p'.

THEOREM 17.16. Let $I \subseteq \mathbb{R}$ be an open interval, $m \in \mathbb{N}$, and $1 \leq p < \infty$. Then functions in $C^{\infty}(I) \cap W^{m,p}(I)$ are dense in $W^{m,p}(I)$.

THEOREM 17.17 (Poincaré's inequality). Let I = (a, b) and $1 \le p < \infty$. Then

(17.2)
$$\int_{a}^{b} |u(x) - u_{I}|^{p} dx \le (b-a)^{p} \int_{a}^{b} |u'(x)|^{p} dx$$

for all $u \in W^{1,p}(I)$, where

$$u_I := \frac{1}{b-a} \int_a^b u(x) \, dx.$$

We conclude this section with some interpolation inequalities.

THEOREM 17.18. Let $I \subseteq \mathbb{R}$ be an open interval, $1 \leq p, q, r \leq \infty$ be such that $r \geq q$, and $u \in W^{1,1}_{loc}(I)$. Then

(17.3)
$$\|u\|_{L^{r}(I)} \leq \ell^{1/r-1/q} \|u\|_{L^{q}(I)} + \ell^{1-1/p+1/r} \|u'\|_{L^{p}(I)}$$

for every $0 < \ell < \mathcal{L}^1(I)$.

Next we consider the case m = 2 and k = 1.

THEOREM 17.19. Let $I \subseteq \mathbb{R}$ be an open interval, $1 \leq p, q, r \leq \infty$ be such that

(17.4)
$$\frac{1}{2q} + \frac{1}{2p} \ge \frac{1}{r},$$

and $u \in W^{2,1}_{\text{loc}}(I)$. Then

(17.5)
$$\|u'\|_{L^{r}(I)} \leq \ell^{1/r-1-1/q} \|u\|_{L^{q}(I)} + \ell^{1-1/p+1/r} \|u''\|_{L^{p}(I)}$$

for every $0 < \ell < \mathcal{L}^1(I)$.

We now consider the general case $m \ge 2$.

THEOREM 17.20. Let $I \subseteq \mathbb{R}$ be an open interval, $1 \leq p, q, r \leq \infty$, $m \in \mathbb{N}$, $k \in \mathbb{N}_0$, with $0 \leq k < m$, be such that

(17.6)
$$\left(1 - \frac{k}{m}\right)\frac{1}{q} + \frac{k}{m}\frac{1}{p} \ge \frac{1}{r},$$

and $u \in L^q(I) \cap \dot{W}^{m,1}(I)$. Then

(17.7)
$$\|u^{(k)}\|_{L^{r}(I)} \leq \ell^{1/r-k-1/q} \|u\|_{L^{q}(I)} + \ell^{m-k-1/p+1/r} \|u^{(m)}\|_{L^{p}(I)}$$

for every
$$0 < \ell < \mathcal{L}^1(I)$$
. In particular, for $p = q = r$,

(17.8)
$$\|u^{(k)}\|_{L^{p}(I)} \leq \ell^{-k} \|u\|_{L^{p}(I)} + \ell^{m-k} \|u^{(m)}\|_{L^{p}(I)}$$

THEOREM 17.21. Let $1 \le p, q, r \le \infty$, $m \in \mathbb{N}$, $k \in \mathbb{N}_0$, with $0 \le k < m$, be such that

$$\left(1-\frac{k}{m}\right)\frac{1}{q} + \frac{k}{m}\frac{1}{p} \ge \frac{1}{r},$$

and $u \in L^q(\mathbb{R}) \cap \dot{W}^{m,1}(\mathbb{R})$. Then

$$||u^{(k)}||_{L^{r}(\mathbb{R})} \leq ||u||_{L^{q}(\mathbb{R})}^{\theta} ||u^{(m)}||_{L^{p}(\mathbb{R})}^{1-\theta}$$

where $\theta = (m - k - 1/p + 1/r)/(m - 1/p + 1/q)$. In particular, for p = q = r, $\|u^{(k)}\|_{L^p(\mathbb{R})} \leq \|u\|_{L^p(\mathbb{R})}^{\theta} \|u^{(m)}\|_{L^p(\mathbb{R})}^{1-\theta}$.

3. Sobolev Spaces

DEFINITION 17.22. Given an open set $\Omega \subseteq \mathbb{R}^N$, i = 1, ..., N, and $1 \leq p \leq \infty$, we say that a function $u \in L^1_{loc}(\Omega)$ admits a weak or distributional partial derivative in $L^p(\Omega)$ with respect to x_i if there exists a function $v_i \in L^p(\Omega)$ such that

$$\int_{\Omega} u \frac{\partial \phi}{\partial x_i} \, dx = -\int_{\Omega} v_i \phi \, dx$$

for all $\phi \in C_c^{\infty}(\Omega)$. The function v_i is denoted $\partial_i u$ or $\frac{\partial u}{\partial x_i}$.

DEFINITION 17.23. Given an open set $\Omega \subseteq \mathbb{R}^N$ and $1 \leq p \leq \infty$, the Sobolev space $W^{1,p}(\Omega)$ is the space of all functions $u \in L^p(\Omega)$ which admit weak partial derivatives $\frac{\partial u}{\partial x_i}$ in $L^p(\Omega)$ for every $i = 1, \ldots, N$. The space $W^{1,p}(\Omega)$ is endowed with the norm

$$||u||_{W^{1,p}(\Omega)} := ||u||_{L^p(\Omega)} + \sum_{i=1}^N ||\partial_i u||_{L^p(\Omega)}.$$

The space $W_{\text{loc}}^{1,p}(\Omega)$ is defined as the space of all functions $u \in L_{\text{loc}}^{p}(\Omega)$ which admit weak partial derivatives $\frac{\partial u}{\partial x_{i}}$ in $L_{\text{loc}}^{p}(\Omega)$ for every $i = 1, \ldots, N$.

DEFINITION 17.24. Let $\Omega \subseteq \mathbb{R}^N$ be an open set and $1 \leq p < \infty$. The homogeneous Sobolev space $\dot{W}^{1,p}(\Omega)$ is the space of all functions $u \in L^1_{loc}(\Omega)$ whose weak partial derivative $\frac{\partial u}{\partial x_i}$ belongs to $L^p(\Omega)$ for every $i = 1, \ldots, N$.

THEOREM 17.25. Let $\Omega \subseteq \mathbb{R}^N$ be an open set and $1 \leq p \leq \infty$. Then

(i) the space $W^{1,p}(\Omega)$ is a Banach space,

(ii) the space $H^1(\Omega) := W^{1,2}(\Omega)$ is a Hilbert space with the inner product

$$\langle u, v \rangle_{H^1(\Omega)} := \int_{\Omega} uv \, dx + \sum_{i=1}^N \int_{\Omega} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i} \, dx$$

THEOREM 17.26 (Meyers–Serrin). Let $\Omega \subseteq \mathbb{R}^N$ be an open set and $1 \leq p < \infty$. Then the space $C^{\infty}(\Omega) \cap W^{1,p}(\Omega)$ is dense in $W^{1,p}(\Omega)$.

THEOREM 17.27. Let $\Omega \subseteq \mathbb{R}^N$ be an open set whose boundary is of class C, and $1 \leq p < \infty$. Then the restriction to Ω of functions in $C_c^{\infty}(\mathbb{R}^N)$ is dense in $W^{1,p}(\Omega)$.

THEOREM 17.28. Let $u \in W^{1,p}(\mathbb{R}^N)$, where $1 \leq p < \infty$. Then there exists a sequence $\{u_n\}_n$ of functions in $C_c^{\infty}(\mathbb{R}^N)$ such that $u_n \to u$ in $W^{1,p}(\mathbb{R}^N)$.

THEOREM 17.29. Let $u \in \dot{W}^{1,p}(\mathbb{R}^N)$, where $1 \leq p < \infty$. Then there exists a sequence $\{u_n\}_n$ of functions in $C_c^{\infty}(\mathbb{R}^N)$ such that $\frac{\partial u_n}{\partial x_i} \to \frac{\partial u}{\partial x_i}$ in $L^p(\mathbb{R}^N)$ for every $i = 1, \ldots, N$ if and only if $N \geq 2$ or p > 1.

THEOREM 17.30 (Absolute continuity on lines). Let $\Omega \subseteq \mathbb{R}^N$ be an open set and $1 \leq p < \infty$. A function $u \in L^p(\Omega)$ belongs to the space $W^{1,p}(\Omega)$ if and only if it has a representative \overline{u} that is absolutely continuous on \mathcal{L}^{N-1} -a.e. line segments of Ω that are parallel to the coordinate axes and whose first-order (classical) partial derivatives belong to $L^p(\Omega)$. Moreover the (classical) partial derivatives of \overline{u} agree \mathcal{L}^N -a.e. with the weak derivatives of u.

THEOREM 17.31 (Chain rule). Let $\Omega \subseteq \mathbb{R}^N$ be an open set, $1 \leq p \leq \infty$, and $f : \mathbb{R} \to \mathbb{R}$ be Lipschitz continuous and $u \in W^{1,p}(\Omega)$. Assume that f(0) = 0 if Ω has infinite measure. Then $f \circ u \in W^{1,p}(\Omega)$ and that for all i = 1, ..., N and for \mathcal{L}^N -a.e. $x \in \Omega$,

$$\partial_i (f \circ u)(x) = f'(u(x))\partial_i u(x),$$

where $f'(u(x))\partial_i u(x)$ is interpreted to be zero whenever $\partial_i u(x) = 0$.

THEOREM 17.32 (Change of variables). Let $\Omega, U \subseteq \mathbb{R}^N$ be open sets, $\Psi : U \to \Omega$ be invertible, with Ψ and Ψ^{-1} Lipschitz continuous functions, and $u \in \dot{W}^{1,p}(\Omega)$, $1 \leq p \leq \infty$. Then $u \circ \Psi \in \dot{W}^{1,p}(U)$ and for all $i = 1, \ldots, N$ and for \mathcal{L}^N -a.e. $y \in U$,

$$\frac{\partial(u \circ \Psi)}{\partial y_i}(y) = \sum_{j=1}^N \frac{\partial u}{\partial x_j}(\Psi(y)) \frac{\partial \Psi_j}{\partial y_i}(y).$$

THEOREM 17.33. Let $\Omega \subseteq \mathbb{R}^N$ be an open set and $u \in \dot{W}^{1,p}(\Omega), 1 \leq p < \infty$. Then for every $h \in \mathbb{R}^N \setminus \{0\}$,

(17.9)
$$\int_{\Omega_h} \frac{|u(x+h) - u(x)|^p}{\|h\|^p} \, dx \le \int_{\Omega} \|\nabla u(x)\|^p \, dx$$

while,

(17.10)
$$\kappa_{N,p} \int_{\Omega} \|\nabla u(x)\|^p dx \le \limsup_{h \to 0} \int_{\Omega_h} \frac{|u(x+h) - u(x)|^p}{\|h\|^p} dx,$$

where

(17.11)
$$\kappa_{N,p} := \frac{1}{\beta_N} \int_{S^{N-1}} |e_1 \cdot \xi|^p d\mathcal{H}^{N-1}(\xi).$$

Conversely, if $1 and <math>u \in L^1_{loc}(\Omega)$ is such that

(17.12)
$$\limsup_{h \to 0} \int_{\Omega_h} \frac{|u(x+h) - u(x)|^p}{\|h\|^p} \, dx < \infty,$$

then $u \in \dot{W}^{1,p}(\Omega)$.

EXERCISE 17.34. Let $\Omega \subseteq \mathbb{R}^N$ be an open set and for every i = 1, ..., N and $h > 0, \Omega_{h,i} := \{x \in \Omega : x + te_i \in \Omega \text{ for all } 0 < t \le h\}.$

(i) Let $u \in \dot{W}^{1,p}(\Omega)$, $1 \le p < \infty$. Prove that for every i = 1, ..., N and h > 0,

$$\int_{\Omega_{h,i}} \frac{|u(x+he_i) - u(x)|^p}{h^p} \, dx \le \int_{\Omega} |\partial_i u(x)|^p \, dx$$

and

$$\lim_{h \to 0^+} \int_{\Omega_{h,i}} \frac{|u(x+he_i) - u(x)|^p}{h^p} \, dx = \int_{\Omega} |\partial_i u(x)|^p \, dx.$$

(ii) Prove that if $1 and <math>u \in L^1_{loc}(\Omega)$ is such that

$$\liminf_{h \to 0^+} \int_{\Omega_{h,i}} \frac{|u(x+he_i) - u(x)|^p}{h^p} \, dx < \infty$$

for every $i = 1, \dots, N$, then $u \in \dot{W}^{1,p}(\Omega)$.

 $\int \partial f = \partial f = \int \int \partial f = \int \partial$

The following theorem follows from Theorems ?? and ??

THEOREM 17.35. Let $\Omega \subseteq \mathbb{R}^N$ be an open set and $1 . Then <math>W^{1,p}(\Omega)$ is reflexive. In particular, if $\{u_n\}_n$ is a bounded sequence in $W^{1,p}(E)$, then there exist a subsequence $\{u_{n_k}\}_k$ and $u \in W^{1,p}(\Omega)$ such that $u_{n_k} \rightharpoonup u$ in $W^{1,p}(\Omega)$, that is, $u_{n_k} \rightharpoonup u$ in $L^p(\Omega)$ and $\partial_i u_{n_k} \rightharpoonup \partial_i u$ in $L^p(\Omega)$ for every $i = 1, \ldots, N$.

4. Embeddings

The number

$$(17.13) p^* := \frac{Np}{N-p}$$

is called the Sobolev critical exponent.

THEOREM 17.36 (Sobolev–Gagliardo–Nirenberg's embedding in $W^{1,p}$). Let $1 \leq p < N$. Then for every function $u \in \dot{W}^{1,p}(\mathbb{R}^N)$ vanishing at infinity,

$$\|u\|_{L^{p^*}(\mathbb{R}^N)} \preceq \|\nabla u\|_{L^p(\mathbb{R}^N;\mathbb{R}^N)}.$$

In particular, $W^{1,p}(\mathbb{R}^N) \hookrightarrow L^q(\mathbb{R}^N)$ for all $p \leq q \leq p^*$.

THEOREM 17.37 (Sobolev–Gagliardo–Nirenberg's embedding in $\dot{W}^{1,p}$). Let $1 \leq p < \infty$ be such p < N. Then for every function $u \in \dot{W}^{1,p}(\mathbb{R}^N)$ there exists a constant c_u such that

$$\|u - c_u\|_{L^{p^*}(\mathbb{R}^N)} \preceq \|\nabla u\|_{L^p(\mathbb{R}^N)}.$$

THEOREM 17.38. There for every function $u \in \dot{W}^{1,N}(\mathbb{R}^N)$,

$$|u|_{\mathrm{BMO}(\mathbb{R}^N)} \preceq \|\nabla u\|_{L^N(\mathbb{R}^N;\mathbb{R}^N)}.$$

In particular, $W^{1,N}(\mathbb{R}^N) \hookrightarrow BMO(\mathbb{R}^N)$.

THEOREM 17.39. Let $N \in \mathbb{N}$ be such $N \geq 2$. Then there exists a constant c = c(N) > 0 such that for every function $u \in W^{1,N}(\mathbb{R}^N)$,

$$||u||_{L^q(\mathbb{R}^N)} \le cq^{1-1/p+1/q} ||u||_{W^{1,N}(\mathbb{R}^N)}.$$

In particular,

$$W^{1,N}(\mathbb{R}^N) \hookrightarrow L^q(\mathbb{R}^N)$$

for all $N < q < \infty$.

THEOREM 17.40 (Morrey's embedding in $W^{1,p}$). Let $N . Then <math>W^{1,p}(\mathbb{R}^N) \hookrightarrow C^{0,1-N/p}(\mathbb{R}^N)$. Moreover, if $u \in W^{1,p}(\mathbb{R}^N)$ and \bar{u} is its representative in $C^{0,1-N/p}(\mathbb{R}^N)$, then

$$\lim_{\|x\| \to \infty} \bar{u}(x) = 0.$$

REMARK 17.41. If N = 1, we have $W^{1,1}(\mathbb{R}) \hookrightarrow C^0(\mathbb{R})$.

COROLLARY 17.42. Let $N . If <math>u \in \dot{W}^{1,p}(\mathbb{R}^N)$, then a representative \bar{u} of u is Hölder continuous with exponent 1 - N/p and

$$|\bar{u}(x) - \bar{u}(y)| \leq ||x - y||^{1 - N/p} ||\nabla u||_{L^p(\mathbb{R}^N)}$$

for all $x, y \in \mathbb{R}^N$.

DEFINITION 17.43. Given $1 \leq p \leq \infty$, an open set $\Omega \subseteq \mathbb{R}^N$ is called an extension domain for the Sobolev space $W^{1,p}(\Omega)$ if there exists a continuous linear operator

$$\mathcal{E}: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^N)$$

with the property that for all $u \in W^{1,p}(\Omega)$, $\mathcal{E}(u)(x) = u(x)$ for \mathcal{L}^N -a.e. $x \in \Omega$.

THEOREM 17.44 (Rellich–Kondrachov's compactness). Let $1 \leq p < \infty$ and $\Omega \subset \mathbb{R}^N$ be an extension domain for $W^{1,p}(\Omega)$ with finite measure. Let $\{u_n\}_n$ be a bounded sequence in $W^{1,p}(\Omega)$. Then there exist a subsequence $\{u_{n_k}\}_k$ of $\{u_n\}_n$ and a function $u \in L^p(\Omega)$ such that $u_{n_k} \to u$ in $L^p(\Omega)$. Moreover, if p > 1, then $u \in W^{1,p}(\Omega)$.

To give a unified treatment, only in this section, we use a different notation for L^r norms. To be precise, given $r \in [-\infty, \infty], r \neq 0$, and a function $u : \mathbb{R}^N \to \mathbb{R}$, we define

(17.14)
$$|u|_r := \begin{cases} ||u||_{L^r(\mathbb{R}^N)} & \text{if } r > 0, \\ ||\nabla^n u||_{L^\infty(\mathbb{R}^N)} & \text{if } r < 0 \text{ and } a = 0, \\ |\nabla^n u|_{C^{0,a}(\mathbb{R}^N)} & \text{if } r < 0 \text{ and } 0 < a < 1, \end{cases}$$

where if r < 0 we set $n := \lfloor -N/r \rfloor$ and $a := -n - N/r \in [0, 1)$, provided the right-hand sides are well-defined.

We begin with the case m = 1.

THEOREM 17.45 (Gagliardo-Nirenberg interpolation, m = 1). Let $1 \le p, q \le \infty$, $0 \le \theta \le 1$, and r be such that

(17.15)
$$(1-\theta)\left(\frac{1}{p} - \frac{1}{N}\right) + \frac{\theta}{q} = \frac{1}{r} \in (-\infty, 1]$$

Then

(17.16)
$$|u|_r \leq ||u||_{L^q(\mathbb{R}^N)}^{\theta} ||\nabla u||_{L^p(\mathbb{R}^N)}^{1-\theta}$$

for every $u \in L^q(\mathbb{R}^N) \cap \dot{W}^{1,p}(\mathbb{R}^N)$, with the following exceptions

- (i) if p < N and $r < q = \infty$, we assume that u vanishes at infinity,
- (ii) if $1 and <math>q = r = \infty$, then (17.16) fails for $0 \le \theta < 1$,
- (iii) if p = N > 1 and $q \neq r$ we take $0 < \theta \leq 1$.

5. Extension

DEFINITION 17.46. The boundary $\partial\Omega$ of an open set $\Omega \subseteq \mathbb{R}^N$ is uniformly Lipschitz continuous if there exist ε , L > 0, $M \in \mathbb{N}$, and a locally finite countable open cover $\{\Omega_n\}_n$ of $\partial\Omega$ such that

- (i) if $x \in \partial \Omega$, then $B(x, \varepsilon) \subseteq \Omega_n$ for some $n \in \mathbb{N}$,
- (ii) no point of \mathbb{R}^N is contained in more than M of the Ω_n 's,
- (ii) No point of M to contained in more than M if M is $M^{n-1} \times \mathbb{R}$ and (iii) for each n there exist local coordinates $y = (y', y_N) \in \mathbb{R}^{N-1} \times \mathbb{R}$ and a Lipschitz continuous function $f : \mathbb{R}^{N-1} \to \mathbb{R}$ (both depending on n), with Lip $f \leq L$, such that $\Omega_n \cap \Omega = \Omega_n \cap V_n$, where V_n is given in local coordinates by

$$\{(y', y_N) \in \mathbb{R}^{N-1} \times \mathbb{R} : y_N > f(y')\}.$$

REMARK 17.47. Similarly, given $m \in \mathbb{N}_0$ and $0 < \alpha \leq 1$ we can define open sets $\Omega \subseteq \mathbb{R}^N$ whose boundary is uniformly of class C^m (respectively, of class $C^{m,\alpha}$, see Definition ??) with parameters ε , L > 0, M provided (i), (ii), and (iii) hold but with f of class C^m (respectively of class $C^{m,\alpha}$) and with $\|f\|_{C^m(\mathbb{R}^{N-1})} \leq L$ (respectively, $\|f\|_{C^{m,\alpha}(\mathbb{R}^{N-1})} \leq L$).

THEOREM 17.48 (Stein). Let $\Omega \subseteq \mathbb{R}^N$ be an open set with uniformly Lipschitz continuous boundary. Then for all $1 \leq p \leq \infty$ there exists a continuous linear operator $\mathcal{E} : W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^N)$ such that for all $u \in W^{1,p}(\Omega)$, $\mathcal{E}(u)(x) = u(x)$ for \mathcal{L}^N -a.e. $x \in \Omega$, and

(17.17)
$$\|\mathcal{E}(u)\|_{L^p(\mathbb{R}^N)} \preceq_M \|u\|_{L^p(\Omega)},$$

(17.18)
$$\|\nabla^{\kappa} \mathcal{E}(u)\|_{L^{p}(\mathbb{R}^{N})} \preceq_{\varepsilon,L,M} \|u\|_{W^{1,p}(\Omega)}$$

for every multi-index $\alpha \in \mathbb{N}_0^N$ with $1 \leq |\alpha| \leq m$.

6. Poincaré's Inequalities

Given an open set $\Omega \subseteq \mathbb{R}^N$, a Lebesgue measurable set $E \subseteq \Omega$ with finite positive measure, and an integrable function $u: \Omega \to \mathbb{R}$, we define

(17.19)
$$u_E := \frac{1}{\mathcal{L}^N(E)} \int_E u(x) \, dx.$$

THEOREM 17.49 (Poincaré's inequality in $W^{1,p}(\Omega)$). Let $1 \leq p < \infty$ and $\Omega \subset \mathbb{R}^N$ be a connected extension domain for $W^{1,p}(\Omega)$ with finite measure. Let $E \subseteq \Omega$ be a Lebesgue measurable set with positive measure. Then for all $u \in W^{1,p}(\Omega)$,

$$\|u - u_E\|_{L^p(\Omega)} \preceq_{\Omega, E} \|\nabla u\|_{L^p(\Omega)}$$

PROPOSITION 17.50 (Poincaré's inequality for rectangles). Let $1 \le p < \infty$ and $R = (0, a_1) \times \cdots \times (0, a_N) \subset \mathbb{R}^N$. Then for all $u \in W^{1,p}(R)$,

 $||u - u_R||_{L^p(R)} \leq \max\{a_1, \dots, a_N\} ||\nabla u||_{L^p(R)}.$

COROLLARY 17.51. Let $1 \leq p < \infty$ and $R = (0, a_1) \times \cdots \times (0, a_N) \subset \mathbb{R}^N$ and let $R_1 \in R$ be a rectangle. Then for all $u \in \dot{W}^{1,p}(R)$,

$$||u - u_{R_1}||_{L^p(R)} \preceq \max\{a_1, \dots, a_N ||\nabla u||_{L^p(R)}.$$

THEOREM 17.52 (Poincaré's inequality for convex sets). Let $1 \leq p < \infty$ and $\Omega \subset \mathbb{R}^N$ be an open bounded convex set. Then for all $u \in W^{1,p}(\Omega)$,

$$||u - u_{\Omega}||_{L^{p}(\Omega)} \preceq \operatorname{diam} \Omega ||\nabla u||_{L^{p}(\Omega)}$$

Next we consider star-shaped sets. We recall that a set $E \subseteq \mathbb{R}^N$ is star-shaped with respect to a point $x_0 \in E$ if $\theta x + (1 - \theta)x_0 \in E$ for all $\theta \in (0, 1)$ and for all $x \in E$.

THEOREM 17.53 (Poincaré's inequality for star-shaped sets). Let $1 \leq p < \infty$ and $\Omega \subset \mathbb{R}^N$ be an open set star-shaped with respect to $x_0 \in \Omega$ and such that

$$Q(x_0, 4r) \subseteq \Omega \subseteq B(x_0, R)$$

for some r, R > 0. Then for all $u \in W^{1,p}(\Omega)$,

$$|u - u_{\Omega}||_{L^{p}(\Omega)} \preceq R(R/r)^{(N-1)/p} ||\nabla u||_{L^{p}(\Omega)}.$$

COROLLARY 17.54. Let $1 \leq p < \infty$ and $\Omega \subset \mathbb{R}^N$ be an open set star-shaped with respect to $x_0 \in \Omega$ and such that

$$Q(x_0, 4r) \Subset \Omega \subseteq B(x_0, R)$$

for some r, R > 0. Then for all $u \in \dot{W}^{1,p}(\Omega)$,

$$||u - u_{\Omega}||_{L^{p}(\Omega)} \leq R(R/r)^{(N-1)/p} ||\nabla u||_{L^{p}(\Omega)}.$$

7. Trace Theory

THEOREM 17.55. Let $\Omega \subseteq \mathbb{R}^N$, $N \geq 2$, be an open set whose boundary $\partial \Omega$ is Lipschitz continuous, let $1 \leq p < \infty$. There exists a unique linear operator

$$\operatorname{Tr}: W^{1,p}(\Omega) \to L^p_{\operatorname{loc}}(\partial\Omega)$$

such that

- (i) $\operatorname{Tr}(u) = u$ on $\partial\Omega$ for all $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$,
- (ii) the integration by parts formula

$$\int_{\Omega} u \partial_i \psi \, dx = -\int_{\Omega} \psi \partial_i u \, dx + \int_{\partial \Omega} \psi \operatorname{Tr}(u) \nu_i \, d\mathcal{H}^{N-1}$$

holds for all $u \in W^{1,p}(\Omega)$, all $\psi \in C_c^1(\mathbb{R}^N)$, and all $i = 1, \ldots, N$,

(iii) for every R > 0 there exist two constants c_R , $\varepsilon_R > 0$ depending on R, Ω and p such that

$$\int_{B(0,R)\cap\partial\Omega} |\operatorname{Tr}(u)|^p d\mathcal{H}^{N-1} \leq c_R \varepsilon^{-1} \int_{B(0,R)\cap(\Omega\setminus\Omega_{\varepsilon})} |u|^p dx + c_R \varepsilon^{p-1} \int_{B(0,R)\cap(\Omega\setminus\Omega_{\varepsilon})} \|\nabla u\|^p dx for every $0 < \varepsilon \leq \varepsilon_R$, where $\Omega_{\varepsilon} := \{x \in \Omega : \operatorname{dist}(x,\partial\Omega) > \varepsilon\}.$$$

The function Tr(u) is called the *trace* of u on $\partial \Omega$.

When p = 1 and Ω sufficiently regular the trace operator

$$\operatorname{Tr}: W^{1,1}(\Omega) \to L^1(\partial\Omega)$$

is onto. This fact is explained in the following theorems. As usual, we begin with the case of the half-space \mathbb{R}^N_+ .

THEOREM 17.56 (Gagliardo). Let $N \geq 2$. Then for all functions $u \in \dot{W}^{1,1}(\mathbb{R}^N_+)$ vanishing at infinity,

(17.20)
$$\|\operatorname{Tr}(u)(\cdot,0)\|_{L^{1}(\mathbb{R}^{N-1})} \leq \|\partial_{N}u\|_{L^{1}(\mathbb{R}^{N})}.$$

THEOREM 17.57 (Gagliardo). Let $g \in L^1(\mathbb{R}^{N-1})$, $N \geq 2$. Then for every $0 < \delta < 1$ there exists a function $u \in W^{1,1}(\mathbb{R}^N_+)$ such that $\operatorname{Tr}(u) = g$ and

 $\|u\|_{L^1(\mathbb{R}^N_+)} \le \delta \|g\|_{L^1(\mathbb{R}^{N-1})}, \quad \|\nabla u\|_{L^1(\mathbb{R}^N_+;\mathbb{R}^N)} \le (1+\delta) \|g\|_{L^1(\mathbb{R}^{N-1})}.$

For more general domains, we have the following result.

THEOREM 17.58. Let $\Omega \subseteq \mathbb{R}^N$, $N \geq 2$, be an open set whose boundary $\partial \Omega$ is uniformly Lipschitz continuous. Then

$$\|\operatorname{Tr}(u)\|_{L^{1}(\partial\Omega)} \leq_{\varepsilon,L,M} \|u\|_{L^{1}(\Omega)} + \|\nabla u\|_{L^{1}(\Omega;\mathbb{R}^{N})}$$

for all $u \in W^{1,1}(\Omega)$, where $\varepsilon, L > 0$, and $M \in \mathbb{N}$ are given in Definition 17.46.

Moreover, for every $g \in L^1(\partial\Omega)$ there exists a function $u \in W^{1,1}(\Omega)$ such that $\operatorname{Tr}(u) = g$ and

$$|u||_{L^1(\Omega)} \le ||g||_{L^1(\partial\Omega)}, \quad ||\nabla u||_{L^1(\Omega;\mathbb{R}^N)} \le 4(1+L)||g||_{L^1(\partial\Omega)}.$$

When 1 , the trace operator

$$\operatorname{Tr}: W^{1,p}(\Omega) \to L^p(\partial\Omega)$$

is not onto. Indeed, when Ω is sufficiently regular, its image $\operatorname{Tr}(W^{1,p}(\Omega))$ can be identified with the fractional Sobolev space $W^{1-1/p,p}(\partial\Omega)$.

THEOREM 17.59 (Gagliardo). Let $1 and <math>N \geq 2$. Then for all $u \in \dot{W}^{1,p}(\mathbb{R}^N_+)$,

(17.21)
$$|\operatorname{Tr}(u)(\cdot,0)|_{W^{1-1/p,p}(\mathbb{R}^{N-1})} \preceq ||\nabla u||_{L^p(\mathbb{R}^N_+)}.$$

THEOREM 17.60 (Gagliardo). Let $1 , <math>N \ge 2$, and $g \in \dot{W}^{1-1/p,p}(\mathbb{R}^{N-1})$. Then there exists a function $v \in \dot{W}^{1,p}(\mathbb{R}^N_+)$ such that $\operatorname{Tr}(v)(\cdot, 0) = g$ and

$$|v|_{W^{1,p}(\mathbb{R}^{N}_{+})} \preceq |g|_{W^{1-1/p,p}(\mathbb{R}^{N-1})}.$$

COROLLARY 17.61. Let $1 , <math>N \ge 2$, and $g \in W^{1-1/p,p}(\mathbb{R}^{N-1})$. Then for every $0 < \varepsilon \le 1$ there exists a function $u \in W^{1,p}(\mathbb{R}^N_+)$ such that $\operatorname{Tr}(u)(\cdot, 0) = g$, $\operatorname{supp} u \subseteq \mathbb{R}^{N-1} \times [-\varepsilon, \varepsilon]$ and

$$\begin{aligned} \|u\|_{L^{p}(\mathbb{R}^{N}_{+})} &\leq \varepsilon^{1/p} \|g\|_{L^{p}(\mathbb{R}^{N-1})}, \\ |u|_{W^{1,p}(\mathbb{R}^{N}_{+})} &\leq \varepsilon^{-1/p'} \|g\|_{L^{p}(\mathbb{R}^{N-1})} + |g|_{W^{1-1/p,p}(\mathbb{R}^{N-1})}. \end{aligned}$$

THEOREM 17.62. Let $\Omega \subseteq \mathbb{R}^N$, $N \geq 2$, be an open set whose boundary $\partial \Omega$ is uniformly Lipschitz continuous and let 1 . Then

$$\|\operatorname{Tr}(u)\|_{L^{p}(\partial\Omega)} \preceq_{\varepsilon,L,M} \|u\|_{W^{1,p}(\Omega)}, |\operatorname{Tr}(u)|_{W^{1-1/p,p}(\partial\Omega)}^{\diamond} \preceq_{\varepsilon,L,M} \|u\|_{W^{1,p}(\Omega)}$$

for all $u \in W^{1,1}(\Omega)$, where $\varepsilon, L > 0$, and $M \in \mathbb{N}$ are given in Definition 17.46.

Moreover, for every $g \in W^{1-1/p,p}(\partial \Omega)$ there exist a constant c = c(N,p) and a function $u \in W^{1,p}(\Omega)$ such that $\operatorname{Tr}(u) = g$,

$$\|u\|_{L^p(\Omega)} \preceq_{\varepsilon, M} \|g\|_{L^p(\partial\Omega)}$$

and

$$\|\nabla u\|_{L^p(\Omega)} \preceq_{\varepsilon,L,M} \|g\|_{W^{1-1/p,p}(\partial\Omega)}$$

Next we show that if the domain Ω is sufficiently regular, we may characterize $W_0^{1,p}(\Omega)$ as the subspace of functions in $W^{1,p}(\Omega)$ with trace zero.

THEOREM 17.63 (Traces and $W_0^{1,p}$). Let $\Omega \subset \mathbb{R}^N$, $N \geq 2$, be an open set whose boundary $\partial \Omega$ is Lipschitz continuous, let $1 \leq p < \infty$, and let $u \in W^{1,p}(\Omega)$. Then $\operatorname{Tr}(u) = 0$ if and only if $u \in W_0^{1,p}(\Omega)$.

8. Higher Order Sobolev Spaces

DEFINITION 17.64. Given an open set $\Omega \subseteq \mathbb{R}^N$, a multi-index $\alpha \in \mathbb{N}_0^N \setminus \{0\}$, and $1 \leq p \leq \infty$, we say that a function $u \in L^1_{loc}(\Omega)$ admits a weak or distributional α th derivative in $L^p(\Omega)$ if there exists a function $v_{\alpha} \in L^p(\Omega)$ such that

(17.22)
$$\int_{\Omega} u \partial^{\alpha} \phi \, dx = (-1)^{|\alpha|} \int_{\Omega} v_{\alpha} \phi \, dx$$

for all $\phi \in C_c^{\infty}(\Omega)$. The function v_{α} is denoted $\partial^{\alpha} u$ or $\frac{\partial^{|\alpha|} u}{\partial x^{\alpha}}$.

DEFINITION 17.65. Given an open set $\Omega \subseteq \mathbb{R}^N$, $m \in \mathbb{N}$, and $1 \leq p \leq \infty$, the Sobolev space $W^{m,p}(\Omega)$ is the space of all functions $u \in L^p(\Omega)$ which admit weak derivatives $\partial^{\alpha} u$ in $L^p(\Omega)$ for every $\alpha \in \mathbb{N}_0^N$ with $1 \leq |\alpha| \leq m$. The space $W^{m,p}(\Omega)$ is endowed with the norm

$$||u||_{W^{m,p}(\Omega)} := ||u||_{L^p(\Omega)} + \sum_{1 \le |\alpha| \le m} ||\partial^{\alpha} u||_{L^p(\Omega)}.$$

The space $W_{\text{loc}}^{m,p}(\Omega)$ is defined as the space of all functions $u \in L_{\text{loc}}^{p}(\Omega)$ which admit weak derivatives $\partial^{\alpha} u$ in $L_{\text{loc}}^{p}(\Omega)$ for every $\alpha \in \mathbb{N}_{0}^{N}$ with $1 \leq |\alpha| \leq m$.

DEFINITION 17.66. Let $\Omega \subseteq \mathbb{R}^N$ be an open set, $m \in \mathbb{N}$, and $1 \leq p < \infty$. The homogeneous Sobolev space $\dot{W}^{m,p}(\Omega)$ is the space of all functions $u \in L^1_{\text{loc}}(\Omega)$ whose α th weak derivative $\partial^{\alpha} u$ belongs to $L^p(\Omega)$ for every $\alpha \in \mathbb{N}_0^N$ with $|\alpha| = m$.

THEOREM 17.67. Let $\Omega \subseteq \mathbb{R}^N$ be an open set, $m \in \mathbb{N}$, and $1 \leq p \leq \infty$. Then

- (i) the space $W^{m,p}(\Omega)$ is a Banach space,
- (ii) the space $H^m(\Omega) := W^{m,2}(\Omega)$ is a Hilbert space with the inner product

$$\langle u, v \rangle_{H^1(\Omega)} := \int_{\Omega} uv \, dx + \sum_{1 \le |\alpha| \le m} \int_{\Omega} \partial^{\alpha} u \partial^{\alpha} v \, dx$$

THEOREM 17.68 (Meyers–Serrin). Let $\Omega \subseteq \mathbb{R}^N$ be an open set, $m \in \mathbb{N}$, and $1 \leq p < \infty$. Then the space $C^{\infty}(\Omega) \cap W^{m,p}(\Omega)$ is dense in $W^{m,p}(\Omega)$.

THEOREM 17.69. Let $\Omega \subseteq \mathbb{R}^N$ be an open set whose boundary is of class C, $m \in \mathbb{N}$, and $1 \leq p < \infty$. Then the restriction to Ω of functions in $C_c^{\infty}(\mathbb{R}^N)$ is dense in $W^{m,p}(\Omega)$.

THEOREM 17.70. Let $u \in \dot{W}^{m,p}(\mathbb{R}^N)$, where $m \in \mathbb{N}$ and $1 \leq p < \infty$. Then there exists a sequence $\{u_n\}_n$ of functions in $C_c^{\infty}(\mathbb{R}^N)$ such that $\partial^{\alpha}u_n \to \partial^{\alpha}u$ in $L^p(\mathbb{R}^N)$ for every multi-index α with $|\alpha| = m$ if and only if $N \geq 2$ or p > 1.

THEOREM 17.71. Let $\Omega, U \subseteq \mathbb{R}^N$ be open sets, let $m \in \mathbb{N}$, let $\Psi : U \to \Omega$ be invertible, with $\Psi \in C^{m-1,1}(\overline{U};\mathbb{R}^N)$ and Ψ^{-1} Lipschitz continuous, and let $u \in W^{m,p}(\Omega)$, $1 \leq p \leq \infty$. Then $u \circ \Psi$ belongs to $W^{m,p}(U)$ and and for every multiindex $\alpha \in \mathbb{N}_0^M$, with $0 < |\alpha| \leq m$, and for \mathcal{L}^N -a.e. $y \in U$,

$$\frac{\partial^{|\alpha|}}{\partial y^{\alpha}}(u \circ \Psi)(y) = \sum c_{\alpha,\beta,\gamma,l} \frac{\partial^{|\beta|} u}{\partial x^{\beta}}(\Psi(y)) \prod_{i=1}^{|\beta|} \frac{\partial^{|\gamma_i|} \Psi_{l_i}}{\partial y^{\gamma_i}}(y)$$

where $c_{\alpha,\beta,\gamma,l} \in \mathbb{R}$, the sum is done over all $\beta \in \mathbb{N}_0^N$ with $1 \leq |\beta| \leq |\alpha|, \gamma = (\gamma_1, \ldots, \gamma_{|\beta|}), \gamma_i \in \mathbb{N}_0^M$, with $|\gamma_i| > 0$ and $\sum_{i=1}^{|\beta|} \gamma_i = \alpha$, and $l = (l_1, \ldots, l_{|\beta|}), l_i \in \{1, \ldots, N\}, i = 1, \ldots, |\beta|$.

To extend the Sobolev–Gagliardo–Nirenberg embedding theorem to functions in $\dot{W}^{m,p}(\mathbb{R}^N)$, where $m \ge 2$ and $1 \le p < \infty$ are such that mp < N, for every k = 0, ..., m we define the Sobolev critical exponent.

(17.23)
$$p_{m,k}^* := \frac{Np}{N - (m - k)p}$$

Note that $p_{m,m-1}^* = p^*$ and $p_{m,m}^* = p$.

COROLLARY 17.72 (Sobolev–Gagliardo–Nirenberg's embedding in $W^{m,p}$). Let $m \in \mathbb{N}$ and $1 \leq p < \infty$ be such mp < N. Then for every function $u \in W^{m,p}(\mathbb{R}^N)$ and for every $k = 0, \ldots, m-1$ and

$$\|\nabla^k u\|_{L^{p^*_{m,k}}(\mathbb{R}^N)} \preceq \|\nabla^m u\|_{L^p(\mathbb{R}^N)}.$$

In particular,

$$W^{m,p}(\mathbb{R}^N) \hookrightarrow L^{q_0}(\mathbb{R}^N) \cap W^{1,q_1}(\mathbb{R}^N) \cap \dots \cap W^{m-1,q_{m-1}}(\mathbb{R}^N)$$

for all $p \le q_k \le p_{m,k}^*$, k = 0, ..., m - 1.

THEOREM 17.73 (Sobolev–Gagliardo–Nirenberg's embedding in $\dot{W}^{m,p}$). Let $m \in \mathbb{N}$ and $1 \leq p < \infty$ be such mp < N. Then for every function $u \in \dot{W}^{m,p}(\mathbb{R}^N)$ there exists a polynomial P_u of degree m - 1 such that

$$\|\nabla^k (u - P_u)\|_{L^{p_{m,k}^*}(\mathbb{R}^N)} \preceq \|\nabla^m u\|_{L^p(\mathbb{R}^N)}$$

for every $k = 0, \ldots, m - 1$. Moreover,

$$P_u = u - \sum_{|\alpha|=m} (K_\alpha * \partial^\alpha u),$$

where $K_{\alpha}(x) := \frac{m}{\beta_N \alpha!} \frac{x^{\alpha}}{\|x\|^N}, x \in \mathbb{R}^N \setminus \{0\}.$

THEOREM 17.74. Let $m \in \mathbb{N}$, $m \geq 2$. Then for every $u \in \dot{W}^{m,N/m}(\mathbb{R}^N)$ there exists a polynomial P_u of degree m-1 such that

$$|u - P_u|_{\mathrm{BMO}(\mathbb{R}^N)} \preceq \|\nabla^m u\|_{L^{N/m}(\mathbb{R}^N)}$$

and

$$\|\nabla^k (u - P_u)\|_{L^{N/k}(\mathbb{R}^N)} \leq \|\nabla^m u\|_{L^{N/m}(\mathbb{R}^N)}$$

for $k = 1, \ldots, m - 1$. In particular,

$$W^{m,N/m}(\mathbb{R}^N) \hookrightarrow BMO(\mathbb{R}^N) \cap W^{1,q_1}(\mathbb{R}^N) \cap \cdots \cap W^{m-1,q_{m-1}}(\mathbb{R}^N)$$

for all $N/m \le q_k \le N/k, \ k = 1, \ \dots, \ m - 1.$

THEOREM 17.75. Let $m, N \in \mathbb{N}$ be such N > m. Then for every function $u \in W^{m,N/m}(\mathbb{R}^N)$,

$$||u||_{L^q(\mathbb{R}^N)} \preceq_{m,N} q^{1-1/p+1/q} ||u||_{W^{m,N/m}(\mathbb{R}^N)}$$

for every $N/m < q < \infty$ and

$$\|\nabla^k u\|_{L^{N/k}(\mathbb{R}^N)} \preceq \|\nabla^m u\|_{L^{N/m}(\mathbb{R}^N)}$$

for every $k = 1, \ldots, m - 1$. In particular,

$$W^{m,N/m}(\mathbb{R}^N) \hookrightarrow L^{q_0}(\mathbb{R}^N) \cap W^{1,q_1}(\mathbb{R}^N) \cap \dots \cap W^{m-1,q_{m-1}}(\mathbb{R}^N)$$

for all $N/m < q_0 < \infty$ and all $N/m \le q_k \le N/k, \ k = 1, \dots, m-1$.

THEOREM 17.76 (Morrey's embedding in $W^{m,p}$). Let $m \in \mathbb{N}$, $m \geq 2$, and $1 \leq p < \infty$ be such mp > N. Then $W^{m,p}(\mathbb{R}^N) \hookrightarrow C^{\ell,\theta}(\mathbb{R}^N)$, where if m - N/p is not an integer,

$$\ell := \lfloor m - N/p \rfloor, \quad \theta := m - \ell - N/p,$$

while if m - N/p is an integer,

 $\ell := m - 1 - N/p, \quad \theta := any number less than 1.$

DEFINITION 17.77. Given $m \in \mathbb{N}$ and $1 \leq p \leq \infty$, an open set $\Omega \subseteq \mathbb{R}^N$ is called an extension domain for the Sobolev space $W^{m,p}(\Omega)$ if there exists a continuous linear operator

$$\mathcal{E}: W^{m,p}(\Omega) \to W^{m,p}(\mathbb{R}^N)$$

with the property that for all $u \in W^{m,p}(\Omega)$, $\mathcal{E}(u)(x) = u(x)$ for \mathcal{L}^N -a.e. $x \in \Omega$.

THEOREM 17.78 (Gagliardo–Nirenberg interpolation, I). Let $1 \leq p, q \leq \infty$, $m \in \mathbb{N}, k \in \mathbb{N}$, with $1 \leq k < m, r$ be such that

$$\frac{k}{m}\frac{1}{p} + \left(1 - \frac{k}{m}\right)\frac{1}{q} = \frac{1}{r}.$$

Then

$$\|\nabla^k u\|_{L^r(\mathbb{R}^N)} \preceq \|u\|_{L^q(\mathbb{R}^N)}^{1-k/m} \|\nabla^m u\|_{L^p(\mathbb{R}^N)}^{k/m}$$

for every $u \in L^q(\mathbb{R}^N) \cap \dot{W}^{m,p}(\mathbb{R}^N)$. In particular, if $1 \leq p, q \leq \infty$, and r is given by

$$\frac{1}{2p} + \frac{1}{2q} = \frac{1}{r},$$

then

$$\|\nabla u\|_{L^r(\mathbb{R}^N)} \leq \|u\|_{L^q(\mathbb{R}^N)}^{1/2} \|\nabla^2 u\|_{L^p(\mathbb{R}^N)}^{1/2}$$

for every $u \in L^q(\mathbb{R}^N) \cap \dot{W}^{2,p}(\mathbb{R}^N)$.

THEOREM 17.79 (Gagliardo-Nirenberg interpolation, general case). Let $1 \leq p, q \leq \infty, m \in \mathbb{N}, k \in \mathbb{N}_0$, with $0 \leq k < m$, and θ , r be such that

 $0 \le \theta \le 1 - k/m$

and

(17.24)
$$(1-\theta)\left(\frac{1}{p} - \frac{m-k}{N}\right) + \theta\left(\frac{1}{q} + \frac{k}{N}\right) = \frac{1}{r} \in (-\infty, 1].$$

Then

(17.25)
$$|\nabla^k u|_r \leq ||u||_{L^q(\mathbb{R}^N)}^{\theta} ||\nabla^m u||_{L^p(\mathbb{R}^N)}^{1-\theta}$$

for every $u \in L^q(\mathbb{R}^N) \cap \dot{W}^{m,p}(\mathbb{R}^N)$, with the following exceptional cases:

- (i) If $q = r = \infty$ and $1 , then (17.25) fails for <math>\theta \in (0, 1)$.
- (ii) If k = 0, mp < N, $r < q = \infty$, we assume that u vanishes at infinity.
- (iii) If 1 and <math>m k N/p is a nonnegative integer, then (17.25) only holds for $0 < \theta \le 1 k/m$.

EXERCISE 17.80. Let $\Omega \subset \mathbb{R}^N$ be an open bounded set, let $E \subseteq \Omega$ be a Lebesgue measurable set with finite positive measure, let $m \in \mathbb{N}$, and let $1 \leq p \leq \infty$. Prove that given $u \in W^{m,p}(\Omega)$ there exists a polynomial $p_E(u)$ of degree m-1 such that for every multi-index $\alpha \in \mathbb{N}_0^N$, with $0 \leq |\alpha| \leq m-1$,

$$\int_{E} (\partial^{\alpha} u(x) - \partial^{\alpha} p_{E}(u)(x)) \, dx = 0.$$

THEOREM 17.81 (Poincaré's inequality in $W^{m,p}(\Omega)$). Let $m \in \mathbb{N}$, let $1 \leq p < \infty$, and let $\Omega \subset \mathbb{R}^N$ be a connected extension domain for $W^{m,p}(\Omega)$ with finite measure. Let $E \subseteq \Omega$ be a Lebesgue measurable set with positive measure. Then for all $u \in W^{m,p}(\Omega)$,

$$\sum_{k=0}^{m-1} \|\nabla^k (u - p_E(u))\|_{L^p(\Omega)} \leq_{E,\Omega} \|\nabla^m u\|_{L^p(\Omega)}.$$

PROPOSITION 17.82 (Poincaré's inequality for rectangles). Let $m \in \mathbb{N}$, let $1 \leq p < \infty$, and let $R = (0, a_1) \times \cdots \times (0, a_N) \subset \mathbb{R}^N$. Then for all $u \in W^{m,p}(R)$, and every $0 \leq k \leq m-1$,

$$\|\nabla^k(u-p_R(u))\|_{L^p(R)} \leq (\max\{a_1,\ldots,a_N\})^{(m-k)}\|\nabla^m u\|_{L^p(R)}.$$

EXERCISE 17.83. Let R be as in the previous theorem and let $u \in W^{m,p}(R)$. Prove that $u \in W^{m,p}(R)$. Hint: Prove first that $p_R(u)$ can be replaced by $p_{R_1}(u)$, where R_1 is rectangle compactly contained in R.

THEOREM 17.84 (Poincaré's inequality for convex sets). Let $m \in \mathbb{N}$, let $1 \leq p < \infty$ and let $\Omega \subset \mathbb{R}^N$ be an open bounded convex set. Then for all $u \in W^{m,p}(\Omega)$, and every $0 \leq k \leq m-1$,

$$\|\nabla^k (u - p_{\Omega}(u))\|_{L^p(\Omega)} \preceq (\operatorname{diam} \Omega)^{m-k} \|\nabla^m u\|_{L^p(\Omega)}.$$

THEOREM 17.85 (Poincaré's inequality for star-shaped sets). Let $m \in \mathbb{N}$, let $1 \leq p < \infty$, and let $\Omega \subset \mathbb{R}^N$ be an open set star-shaped with respect to $x_0 \in \Omega$ and such that

$$Q(x_0, 4r) \subseteq \Omega \subseteq B(x_0, R)$$

for some r, R > 0. Then for all $u \in W^{m,p}(\Omega)$, and every $0 \le k \le m - 1$,

$$\|\nabla^{k}(u - p_{\Omega}(u))\|_{L^{p}(\Omega)} \leq R^{m-k} (R/r)^{(N-1)(m-k)/p} \|\nabla^{m}u\|_{L^{p}(\Omega)}.$$

EXERCISE 17.86. Let Ω be as in the previous theorem and let $u \in \dot{W}^{m,p}(\Omega)$. Prove that $u \in W^{m,p}(\Omega)$.

THEOREM 17.87 (Stein). Let $\Omega \subseteq \mathbb{R}^N$ be an open set with uniformly Lipschitz continuous boundary. Then for all $1 \leq p \leq \infty$ and $m \in \mathbb{N}$ there exists a continuous linear operator $\mathcal{E} : W^{m,p}(\Omega) \to W^{m,p}(\mathbb{R}^N)$ such that for all $u \in W^{m,p}(\Omega)$, $\mathcal{E}(u)(x) = u(x)$ for \mathcal{L}^N -a.e. $x \in \Omega$, and

$$\begin{aligned} \|\mathcal{E}(u)\|_{L^{p}(\mathbb{R}^{N})} &\preceq_{M} \|u\|_{L^{p}(\Omega)}, \\ \|\nabla^{k}\mathcal{E}(u)\|_{L^{p}(\mathbb{R}^{N})} &\preceq_{\varepsilon,L,M} \sum_{i=0}^{k} \|\nabla^{i}u\|_{L^{p}(\Omega)} \end{aligned}$$

for every $1 \leq k \leq m$.

THEOREM 17.88. Let $R := I_1 \times \cdots \times I_N \subseteq \mathbb{R}^N$, where each $I_i \subseteq \mathbb{R}$ is an open interval, let $1 \leq p, q, r \leq \infty$ be such that

(17.26)
$$\frac{1}{r} = \frac{1}{2p} + \frac{1}{2q},$$

and let $u \in L^q(R) \cap \dot{W}^{2,p}(R)$. Then

$$\|\partial_i u\|_{L^r(R)} \leq \|u\|_{L^q(R)}^{1/2} \|\partial_i^2 u\|_{L^p(R)}^{1/2}$$

for all i = 1, ..., N, provided all the intervals I_i have infinite length, while

$$\|\partial_i u\|_{L^r(R)} \leq \ell^{-1} (\mathcal{L}^N(R))^{1/r-1/q} \|u\|_{L^q(R)} + \|u\|_{L^q(R)}^{1/2} \|\partial_i^2 u\|_{L^p(R)}^{1/2}$$

if all the intervals I_i have finite length and $p \leq q$, where $\ell := \min_i \mathcal{L}^1(I_i)$.

THEOREM 17.89 (Gagliardo-Nirenberg interpolation, m = 2). Let $\Omega \subseteq \mathbb{R}^N$ be an open set with uniformly Lipschitz continuous boundary (with parameters ε, L, M), let $0 < \ell < \varepsilon/(4(1 + L))$, and let $1 \leq p, q, r \leq \infty$ be such that $p \leq q$ and (17.26) holds. If p < q assume further that Ω is bounded. Then for every $u \in L^q(\Omega) \cap \dot{W}^{2,p}(\Omega)$, if p < q,

$$\|\nabla u\|_{L^{r}(\Omega)} \leq \ell^{-1} (\mathcal{L}^{N}(\Omega))^{1/r-1/q} \|u\|_{L^{q}(\Omega)} + \|u\|_{L^{q}(\Omega)}^{1/2} \|\nabla^{2} u\|_{L^{p}(\Omega)}^{1/2}$$

if p < q, while if p = q,

$$\|\nabla u\|_{L^{p}(\Omega)} \leq \ell^{-1} \|u\|_{L^{p}(\Omega)} + \|u\|_{L^{p}(\Omega)}^{1/2} \|\nabla^{2} u\|_{L^{p}(\Omega)}^{1/2}$$

REMARK 17.90. We remark that when $\Omega \subset \mathbb{R}^N$ is an open, bounded, connected set with Lipschitz boundary and if $u \in L^q(\Omega) \cap \dot{W}^{2,p}(\Omega)$, where $1 \leq q \leq p$, then it follows from Poincaré's inequality that u and ∇u are in $L^p(\Omega)$ and so in all $L^r(\Omega)$ for $1 \leq r \leq p$. This is why we only considered the interesting case p < q in the previous theorem.

An important consequence of the previous theorem is the following result.

COROLLARY 17.91. Let $\Omega \subseteq \mathbb{R}^N$ be an open set with uniformly Lipschitz continuous boundary and let $1 \leq p \leq \infty$. Then $W^{2,p}(\Omega) = L^p(\Omega) \cap \dot{W}^{2,p}(\Omega)$ with equivalence of the norms $\sum_{k=0}^2 \|\nabla^k u\|_{L^p(\Omega)}$ and $\|u\|_{L^p(\Omega)} + \|\nabla^2 u\|_{L^p(\Omega)}$.

REMARK 17.92. Note that for sets of infinite measure the previous corollary cannot be obtained using the Poincaré inequality.

Next we consider the case $m \geq 2$.

THEOREM 17.93 (Gagliardo-Nirenberg interpolation, $m \geq 2$). Let $\Omega \subseteq \mathbb{R}^N$ be an open set with uniformly Lipschitz continuous boundary (with parameters ε, L, M), let $0 < \ell < \varepsilon/(4(1 + L))$, let $m, k \in \mathbb{N}$, with $m \geq 2$ and $1 \leq k < m$, and let $1 \leq p, q, r \leq \infty$ be such that $p \leq q$ and

$$\frac{k}{m}\frac{1}{p} + \left(1 - \frac{k}{m}\right)\frac{1}{q} = \frac{1}{r}$$

If p < q assume further that Ω is bounded. Then for every $u \in L^q(\Omega) \cap \dot{W}^{m,p}(\Omega)$,

$$\|\nabla^{k}u\|_{L^{r}(\Omega)} \leq \ell^{-k} (\mathcal{L}^{N}(\Omega))^{1/r-1/q} \|u\|_{L^{q}(\Omega)} + \|u\|_{L^{q}(\Omega)}^{1-k/m} \|\nabla^{m}u\|_{L^{p}(\Omega)}^{k/m}$$

if p < q, while

$$\|\nabla^{k}u\|_{L^{p}(\Omega)} \leq \ell^{-k} \|u\|_{L^{p}(\Omega)} + \|u\|_{L^{p}(\Omega)}^{1-k/m} \|\nabla^{m}u\|_{L^{p}(\Omega)}^{k/m}$$

if p = q.

As in the case m = 2, the previous inequality implies the following important consequence.

COROLLARY 17.94. Let $\Omega \subseteq \mathbb{R}^N$ be an open set with uniformly Lipschitz continuous boundary, let $m \in \mathbb{N}$ with $m \geq 2$ and let $1 \leq p \leq \infty$. Then $W^{m,p}(\Omega) = L^p(\Omega) \cap \dot{W}^{m,p}(\Omega)$ with equivalence of the norms $\sum_{k=0}^m \|\nabla^k u\|_{L^p(\Omega)}$ and $\|u\|_{L^p(\Omega)} + \|\nabla^m u\|_{L^p(\Omega)}$.