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CHAPTER 17

Sobolev Spaces

1. Absolutely Continuous Functions
In this setion we review absolute continuous functions.

DEFINITION 17.1. Let I C R be an interval and (Y,d) be a metric space. A
function u : I — 'Y is said to be absolutely continuous on I if for every e > 0 there
exists § > 0 such that

(17.1) > d(u(bi),u(a;) < e

i=1
for every finite number of monoverlapping intervals (a;,b;), i = 1,...,n, with
[a;,b;] C I and

i:(bl — ai) S 0.
i=1

The space of all absolutely continuous functions uw: I — Y is denoted by AC(I;Y).

When Y = R we write AC(I) for AC(I;R)..

Let I C R be an interval and (Y, d) a metric space. A function u : I — Y is
locally absolutely continuous if it is absolutely continuous in [a, b] for every interval
[a,b] C I. The space of all locally absolutely continuous functions v : I — Y is
denoted by ACioc(I;Y). As before, when Y = R we write AC)oc(I) for ACoc(I;R).
Note that AC)ec([a,b];Y) = AC([a,b];Y).

EXERCISE 17.2. Let u,v € AC([a,b]). Prove the following.

(i) utve AC([a,b)).
(ii) uv € AC([a,b]).

(iii) If v(z) > 0 for all x € [a,b], then u/v € AC([a,b]).

(iv) max{u,v}, min{u,v} € AC([a,?]).

PROPOSITION 17.3. Let I C R be an interval and uw € AC\oc(I). Then u is
differentiable L'-a.e. in I and ' is locally Lebesgue integrable.

THEOREM 17.4. Let I C R be an open interval and u € AC\oc(I) be such that
there exists u'(x) = 0 for Ll-a.e. x € I. Then u is constant.

The next theorem shows the primitive of an integrable function is absolutely
continuous.

THEOREM 17.5. Let I C R be an interval and v : I — R a Lebesque integrable
function. Fix xg € I and let

u(x) ::/zv(t)dt, x el

0
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Then the function u is absolutely continuous in I and u'(z) = v(x) for L'-a.e.
zel.

Using the previous theorem we have.

THEOREM 17.6 (Fundamental theorem of calculus). Let I C R be an interval.
A function u : I — RM belongs to ACioc(I) if and only if
(i) w is continuous in I,
(ii) w is differentiable L' -a.e. in I, and u' belongs to Li  (I),
(iii) the fundamental theorem of calculus is valid; that is, for all x,z¢ € I,

xr

u(z) = u(zo) + / u'(t) dt.

Zo

As a corollary of Theorem 7?7 we recover the formula for integration by parts.

COROLLARY 17.7 (Integration by parts). Let I C R be an interval and u,v €
ACioc(I). Then for all z,z¢ € 1,

x

/cz uv' dt = u(z)v(z) — u(zo)v(wo) — / u'v dt.

Lo Zo

We recall the following definition.

DEFINITION 17.8. If E C R is a Lebesque measurable set and v : E — R is
a Lebesgue measurable function, then v is equi-integrable if for every € > 0 there

exists 0 > 0 such that
/ |v(x)|dx < e
F

for every Lebesgue measurable set F ' C E, with LY (F) < 4.

EXERCISE 17.9. Let E C R be a Lebesgue measurable set, 1 < p < oo, and
v € LP(E). Prove that v is equi-integrable. Prove that if we only assume that
v € LL_(E), then the result may no longer be true.

loc

EXERCISE 17.10. Let E C R be a Lebesgue measurable set with finite measure
and v : E — RM equi-integrable. Prove that v € L'(E).

THEOREM 17.11 (Fundamental theorem of calculus, II). Let I C R be an in-
terval. A function u: I — RM belongs to AC(I) if and only if

(i) u is continuous in I,
(ii) u is differentiable L'-a.e. in I, and u' belongs to Ll (I) and is equi-
integrable,
(iii) the fundamental theorem of calculus is valid; that is, for all x,zq € I,

xT

u(z) = u(zo) + / u'(t) dt.

xo
COROLLARY 17.12. Let I C R be an interval and u : I — R be such that
(i) w is continuous on I,
(i) u is differentiable L*-a.e. in I, and u' € LP(I) for some 1 < p < oo,
(iii) the fundamental theorem of calculus is valid; that is, for all x,z¢ € I,

xr

u(z) = u(zo) + / u'(t) dt.

Zo

Then u belongs to AC(I).



2. SOBOLEV FUNCTIONS OF ONE VARIABLE 647

2. Sobolev Functions of One Variable

DEFINITION 17.13. Given an open interval  CR, n € N, and 1 < p < 0o, we
say that a function uw € L (I) admits a weak or distributional derivative of order
n in LP(I) if there exists a function v € LP(I) such that

/ucp(”)dx = (—1)”/wdac
I I

for all o € C(I). The function v is denoted u(™.
A similar definition can be given when LP(I) is replaced by LV (I).

DEFINITION 17.14. Given an open interval I CR , m € N, and 1 < p < o0,
the Sobolev space W™P(I) is the space of all functions w € LP(I) which admit
weak derivatives of order n in LP(I) for everyn =1,...,m. The space W™P(I) is

endowed with the norm
m

lullwm.ry = llullLer) + Z ||U(")||Lv(1)

The space WP (I) is defined as the space of all functions u € L{, (I) which
admit weak derivatives of order n in L{ (I) for every n=1,...,m.

The connection between Sobolev functions and absolutely continuous functions
is explained in the following theorem.

THEOREM 17.15. Let I C R be an open interval and 1 < p < oo. Then
a function u : I — R belongs to WYP(I) if and only if it admits an absolutely
continuous representative u : I — R such that u and its classical derivative @
belong to LP(I). Moreover, if p > 1, then 4 is Hélder continuous of exponent 1/p’.

THEOREM 17.16. Let I C R be an open interval, m € N, and 1 < p < oo. Then
functions in C°°(I) N W™P(I) are dense in W™P(I).

THEOREM 17.17 (Poincaré’s inequality). Let I = (a,b) and 1 <p < co. Then

(17.2) /|u ) —ur|Pde < (b—a) /|u )|Pdx

for all w € WhP(I), where
1 b
uy = b—a/a u(z) dx.

We conclude this section with some interpolation inequalities.

THEOREM 17.18. Let I C R be an open interval, 1 < p,q,r < 0o be such that
r>q, and u € W'(I). Then

loc
(17.3) lull oy < MU ullpagry + P oy
for every 0 < £ < LY(I).
Next we consider the case m =2 and k = 1.

THEOREM 17.19. Let I C R be an open interval, 1 < p,q,r < 0o be such that
1 1 1

17.4 — 4 — > =
( ) 2q+2p_r’
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and u € Wlicl (I). Then
(17.5) /Il ey =€l oy + P | o)
for every 0 < £ < L1(I).

We now consider the general case m > 2.

THEOREM 17.20. Let I C R be an open interval, 1 < p,q,r < 00, m € N,
k € Ny, with 0 < k < m, be such that

kN1 k1 1
(17.6) <1)+z,
m)q mp T r
and v € LY(I) N W™ (I). Then
(17.7) [ ery = /TR | gy + €T PEY T gy

for every 0 < £ < LY(I). In particular, for p=q=r,
(17.8) [u ™ Lo ry <078l pocry + €K™ Lo ry.
THEOREM 17.21. Let1 < p,q,7r < oo, m € N, k € Ny, with 0 < k < m, be such

that
< k)l k1 _ 1
l—— -+ === -,
mj)q mp _r

and v € LY(R) N W™ (R). Then
[

L (R) = ||U||iq(R)||U(m)||i;?R)

where = (m —k—1/p+1/r)/(m —1/p+1/q). In particular, forp=q=r,
[u™ 2oy = Nl T ey 1™ 1 1oy

3. Sobolev Spaces

DEFINITION 17.22. Given an open set Q CRY, i=1,....N, and 1 < p < oo,
we say that a functionu € Li, () admits a weak or distributional partial derivative
in LP(Q) with respect to x; if there exists a function v; € LP(§2) such that

/ua(ZS dz:f/vigbda:
o Oz Q

for all ¢ € C(Q). The function v; is denoted O;u or %‘1

DEFINITION 17.23. Given an open set & C RY and 1 < p < oo, the Sobolev
space WLP(Q) is the space of all functions uw € LP(Q) which admit weak partial
derivatives % in LP(Q) for every i = 1,...,N. The space WP(2) is endowed

with the norm
N

lullwroy = llullzec) + D 10iwlle).
i=1
The space V[/lif () is defined as the space of all functions u € LI () which

loc
admit weak partial derivatives % in LY, (Q) for every i =1,...,N.

DEFINITION 17.24. Let  C RN be an open set and 1 < p < co. The homoge-
neous Sobolev space WP(Q) is the space of all functions u € Li (Q) whose weak
partial derivative % belongs to LP(Q) for everyi=1,..., N.
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THEOREM 17.25. Let Q@ C RY be an open set and 1 < p < oo. Then

(i) the space W1P(Q) is a Banach space,
(ii) the space HY(Q) := W2(Q) is a Hilbert space with the inner product

ou 81}
(u,v) 51(0) f/uvderZ/ D 896

THEOREM 17.26 (Meyers—Serrin). Let Q C RY be an open set and 1 < p < co.
Then the space C>(Q) N WLP(Q) is dense in WHP(Q).

THEOREM 17.27. Let Q C RY be an open set whose boundary is of class C,
and 1 < p < co. Then the restriction to Q of functions in C°(RY) is dense in
wWir(Q).

THEOREM 17.28. Let u € WHP(RY), where 1 < p < co. Then there exists a
sequence {uy, }n of functions in C°(RY) such that u, — u in WHP(RN).

THEOREM 17.29. Let u € W' P(RN), where 1 < p < co. Then there exists a
sequence {u, }n of functions in C=°(RN) such that %4 — 2% in LP(RN) for every
i=1,...,N if and only if N > 2 orp > 1.

THEOREM 17.30 (Absolute continuity on lines). Let Q C RY be an open set
and 1 < p < co. A function u € LP(Q) belongs to the space WP (Q) if and only if
it has a representative T that is absolutely continuous on LN -a.e. line segments
of Q that are parallel to the coordinate azes and whose first-order (classical) partial
derivatives belong to LP(Q). Moreover the (classical) partial derivatives of T agree
LN -a.e. with the weak derivatives of .

THEOREM 17.31 (Chain rule). Let @ C RY be an open set, 1 < p < oo, and
f R — R be Lipschitz continuous and u € WHP(Q). Assume that f(0) = 0 if Q
has infinite measure. Then fou € WYP(Q) and that for alli = 1,...,N and for
LN-ge z€Q,

0i(f o u)(z) = f'(u(x))diu(z),

where f'(u(x))0;u(x) is interpreted to be zero whenever dyu(x) = 0.

THEOREM 17.32 (Change of variables). Let Q,U C R be open sets, ¥ : U — Q
be invertible, with ¥ and W~ Lipschitz continuous functions, and u € W1P(Q),
1 <p<oo. ThenuoW € WhP(U) and for alli =1,...,N and for LN-a.e. y € U,

Lot =3 (V) 5 )

THEOREM 17.33. Let 2 C RY be an open set and u € Wl’p(Q), 1<p<oo.
Then for every h € RN\ {0},

(17.9) / (e + 1) @), < [ Ivu@pas

177

while,

_ P
(17.10) /iN,p/ |Vu(z)||Pdx < hmsup/ u@ + h) — u(z)] dx,
h—0 Qp, Hh”p
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where
1

(17.11) KNp ::5—/ lex - EPAHN ().
N JgN-1

Conversely, if 1 <p < oo and u € L () is such that

loc

/ lu(z +h) —u(z)”
Qp

(17.12) lim sup
It

h—0

dx < oo,

then u € WP (Q).

EXERCISE 17.34. Let Q C RN be an open set and for everyi =1,...,N and
h>0,Q;,={xeQ:x+te; € forall0<t<h}.

(i) Let u € W'P(Q), 1 < p < co. Prove that for every i = 1,...,N and

h >0,
N P
/ |u(m+h6z) U(l')l de < / |azu(l‘)|pd$
Qs h» o
and
N P
lim |u(z + he;) — u(w)] dx :/ |0yu(x)|Pdz.
h—0t Qs hP Q

(ii) Prove that if 1 < p < oo and u € L}, (Q) is such that

loc
) — p
lim inf ul@ + hei) — u(=)|
h—0+ Qi hp

dr < 00

for everyi=1,...,N, thenu € Wl’p(Q).
The following theorem follows from Theorems ?? and 77

THEOREM 17.35. Let Q C RY be an open set and 1 < p < oo. Then W1P(£)
is reflexive. In particular, if {un}n is a bounded sequence in W P(E), then there
exist a subsequence {uy,, }r and u € WHP(Q) such that u,, — u in WHP(Q), that
is, Up, — u in LP(Q) and djup,, — O;u in LP(Q) for everyi=1,...,N.

4. Embeddings

The number

(17.13) p* =

is called the Sobolev critical exponent.

THEOREM 17.36 (Sobolev—Gagliardo-Nirenberg’s embedding in W1P). Let 1 <
p < N. Then for every function u € WP (RN) vanishing at infinity,

lull o= @yy 2 (IVullLe @y my)-
In particular, WHP(RYN) — L4(RYN) for all p < q < p*.

THEOREM 17.37 (Sobolev-Gagliardo-Nirenberg’s embedding in W), Let 1 <
p < oo be such p < N. Then for every function v € WIP(RN) there ewists a
constant ¢, such that

|lu — cull o (RN) = ”vu”LP(RN)-
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THEOREM 17.38. There for every function v € WHN (RN),
lulsmo®y) = VUl Ly @y mw).-
In particular, WHN (RY) — BMO(RY).

THEOREM 17.39. Let N € N be such N > 2. Then there exists a constant
c=c(N) > 0 such that for every function u € WHN(RY),

”uHLq(RN) < qufl/pﬂ/q||U||W11N(RN)~

In particular,
WEN (RN — LIRY)
for all N < q < o0.

THEOREM 17.40 (Morrey’s embedding in W1P). Let N < p < oo. Then
WLP(RN) < COL=N/P(RN). Moreover, ifu € W'P(RN) and @ is its representative
in CO1=N/P(RN) | then

lim @(z) =0.

ll[|—o0
REMARK 17.41. If N = 1, we have WH1(R) — CO(R).

COROLLARY 17.42. Let N <p < oco. Ifu € Wl’p(RN), then a representative
@ of u is Holder continuous with exponent 1 — N/p and

@) - a(y)| <z =yl NPVl o @v)
for all z,y € RV,

DEFINITION 17.43. Given 1 < p < oo, an open set Q@ C RN is called an
extension domain for the Sobolev space W1P(Q) if there exists a continuous linear
operator

E:WhP(Q) — WhHP(RY)
with the property that for all u € W1P(Q), E(u)(x) = u(x) for LN -a.e. z € Q.

THEOREM 17.44 (Rellich-Kondrachov’s compactness). Let 1 < p < oo and
Q C RY be an extension domain for WP (Q) with finite measure. Let {u,}, be
a bounded sequence in WYP(Q). Then there exist a subsequence {u,, }x of {tntn
and a function w € LP(Q) such that u,, — w in LP(Q2). Moreover, if p > 1, then
u € WHP(Q).

To give a unified treatment, only in this section, we use a different notation for
L™ norms. To be precise, given r € [—00, 0], 7 # 0, and a function u : RN — R,
we define

||’ZL||L7‘(RN) if r > 0,
(].7].4) "LL|,« = ||V"uHLoc(RN) ifr<0anda=0,
IV™"u|co.emny ifr<0and 0<a <1,

where if r < 0 we set n := |-N/r| and a := —n — N/r € [0,1), provided the
right-hand sides are well-defined.
We begin with the case m = 1.
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THEOREM 17.45 (Gagliardo—Nirenberg interpolation, m = 1). Let 1 < p,q <
00, 0 <0 <1, and r be such that

1 1 0 1
17.1 1-0)(-—=)+-==¢€(—o0,1].
(17.15) (-0~ 5)+, =, ool
Then
(17.16) lr Xl a2l o o

for every u € LYRN) N WLP(RN), with the following exceptions
(i) if p < N and r < g = 0o, we assume thal u vanishes at infinity,
(ii) if L <p= N and g =r = 0o, then (17.16) fails for 0 < 0 < 1,
(iii) f p=N>1 and q # r we take 0 < 0 < 1.

5. Extension

DEFINITION 17.46. The boundary 09 of an open set Q@ C RN is uniformly
Lipschitz continuous if there exvist e, L > 0, M € N, and a locally finite countable
open cover {2y}, of OQ such that

(i) if v € 09, then B(x,e) C Q, for some n € N,

(i) no point of RN is contained in more than M of the Q,,’s,

(iii) for each m there exist local coordinates y = (y',yn) € R¥N"! x R and
a Lipschitz continuous function f : RN=Y — R (both depending on n),
with Lip f < L, such that Q, NQ = Q, NV, where V,, is given in local
coordinates by

{(,yn) eRN X R yn > f(y)}-

REMARK 17.47. Similarly, given m € Ny and 0 < a < 1 we can define open
sets Q0 C RN whose boundary is uniformly of class C™ (respectively, of class C™,
see Definition ??) with parameters e, L > 0, M provided (i), (ii), and (i) hold
but with f of class C™ (respectively of class C™%) and with || f|cm@~-1) < L
(respectively, || fl|cm.o@y-1y < L).

THEOREM 17.48 (Stein). Let Q C RY be an open set with uniformly Lipschitz
continuous boundary. Then for all 1 < p < oo there exists a continuous linear
operator & : WHP(Q) — WLP(RYN) such that for all u € WHP(Q), E(u)(z) = u(z)
for LN -a.e. x € Q, and

(17.17) € Lr@ry 2 ull ey,
(17.18) IVEE ()| Lo @ny Zeonns ullwrr (o)

for every multi-index o € NY with 1 < |a| < m.

6. Poincaré’s Inequalities

Given an open set © C RN, a Lebesgue measurable set £ C € with finite
positive measure, and an integrable function u : 2 — R, we define

(17.19) up = ch(E)[Eu(z) dzx.
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THEOREM 17.49 (Poincaré’s inequality in W1P(Q)). Let 1 < p < 0o and Q C
RN be a connected extension domain for WP (Q) with finite measure. Let E C Q)
be a Lebesgue measurable set with positive measure. Then for all u € W1P(§2),

lu—ugplie @) Sa.r |Vulr@)-

PROPOSITION 17.50 (Poincaré’s inequality for rectangles). Let 1 < p < oo and
R=(0,a1) x --- x (0,any) C RN. Then for all u € W*P(R),

|lu —urllLr(r) X max{ay,...,an}|VullLr(r)-

COROLLARY 17.51. Let 1 <p < oo and R = (0,a1) X -+ x (0,ay) C RN and
let Ry € R be a rectangle. Then for all u € WYP(R),

lu—up, |[Lr(r) 2 max{ay,...,an|Vulze(r).-

THEOREM 17.52 (Poincaré’s inequality for convex sets). Let 1 < p < oo and
Q C RY be an open bounded convex set. Then for all u € WHP(Q),

|lw — UQ”LP(Q) = diamQHVUHLp(Q).

Next we consider star-shaped sets. We recall that a set E C RY is star-shaped
with respect to a point o € E if 0z + (1 — 0)xo € E for all § € (0,1) and for all
zekFE.

THEOREM 17.53 (Poincaré’s inequality for star-shaped sets). Let 1 < p < oo
and Q C RY be an open set star-shaped with respect to xy € Q and such that

Q(.’ﬂo,é‘:?") g Q g B($07R)
for some r, R > 0. Then for all u € WP(Q),
lu— uo ey = RR/P)N D7Vl o).

COROLLARY 17.54. Let 1 < p < oo and Q C RY be an open set star-shaped
with respect to xog € Q and such that

Q(I074T) €N - B(.’Io,R)
for some 7, R > 0. Then for all u € W'P(%),
lu = uql|Lo(e) < R(R/r) N V7|Vl 1 ).

7. Trace Theory

THEOREM 17.55. Let Q C RN, N > 2, be an open set whose boundary OS2 is
Lipschitz continuous, let 1 < p < co. There exists a unique linear operator

Tr: WhP(Q) — LY (9Q)

such that

(i) Tr(u) =u on 9 for allu € WHP(Q) N C(Q),
(ii) the integration by parts formula

/ udpp dr = —/ Youdx + ¢ Tr(u)y; dHN !
Q Q a9

holds for all u € WYP(Q), all oy € CHRYN), and alli=1,..., N,
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(iii) for every R > 0 there exist two constants cr, eg > 0 depending on R, Q
and p such that

/ | Tr(u)[PdHN 1 < cRafl/ |u|Pdx
B(0,R)NAN B(0,R)N(2\Q:)

+cRgP*1/ VulPdz
B(0,R)N(Q\Q2.)

for every 0 < ¢ < e, where Q. :={z € Q: dist(z,0Q) > }.

The function Tr(u) is called the trace of u on 9f.
When p =1 and Q sufficiently regular the trace operator

Tr: Wh(Q) — L'(09)

is onto. This fact is explained in the following theorems. As usual, we begin with
the case of the half-space Rf .

THEOREM 17.56 (Gagliardo). Let N > 2. Then for all functions u € Wl’l(Rf)
vanishing at infinity,

(17.20) [ Tr(u) (-, 0)llprmov—1)y < Onull L1 (reyy-
THEOREM 17.57 (Gagliardo). Let g € LY (RN=Y), N > 2. Then for every
0 < & <1 there exists a function u € WH(RY) such that Tr(u) = g and
||UHL1(JR$) < 6[gllLr @mr-1y, HquLl(Rf;]RN) < (1 +)gllpr@mn-1y-
For more general domains, we have the following result.

THEOREM 17.58. Let Q C RN, N > 2, be an open set whose boundary 0% is
uniformly Lipschitz continuous. Then

[ Tr(u)llLr00) Ze,r,m l[ullLi@) + IVl L1 @y

for all u € WH1(Q), where e, L > 0, and M € N are given in Definition 17.46.
Moreover, for every g € L1(0Q) there exists a function u € W11(Q) such that
Tr(u) = g and

lullzr@) < l9llraey,  Vullpioryy <41+ L)|lgllzra0)-
When 1 < p < oo, the trace operator
Tr: WHP(Q) — LP(0Q)

is not onto. Indeed, when € is sufficiently regular, its image Tr(WP(£2)) can be
identified with the fractional Sobolev space W!=1/P2(9Q).

THEOREM 17.59 (Gagliardo). Let 1 < p < oo and N > 2. Then for all
u € Wl’p(RﬁY),

(17.21) | Tr(w)(, 0)[wr-1/mo@r-1) 2 (I Vull o).

THEOREM 17.60 (Gagliardo). Let1 <p < oo, N > 2, and g € Wi-1/pp(RN-1),
Then there exists a function v € WIP(RY) such that Tr(v)(-,0) = g and

‘U‘W1=P(Rf) 2 glwi-1/pp@y-1).-
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COROLLARY 17.61. Let 1 < p < oo, N > 2, and g € W'=Y/PP(RN=1). Then
for every 0 < e <1 there ezists a function u € WHP(RY) such that Tr(u)(-,0) = g,
suppu C RV~1 x [—¢,¢] and

l[ull Loy < e\ gll Lo rr-1y,
|u|W1,p(R$) = e~ 1/p ||g||Lp(]RN—1) + |g‘W171/p,p(RN71)-

THEOREM 17.62. Let 2 C RN, N > 2, be an open set whose boundary OS2 is
uniformly Lipschitz continuous and let 1 < p < oo. Then
| Tr(u)l|zro0) Ze.r,m [lullwie),
|Tr(u)|<1>/vlfl/p,p(aﬂ) Seru |[ullwre
for all u € WH(Q), where e, L > 0, and M € N are given in Definition 17.46.
Moreover, for every g € W=Y/PP(9Q) there exist a constant ¢ = ¢(N,p) and a
function uw € WHP(Q) such that Tr(u) = g,
[ullze@) 2er l9llzr o0
and
HVUHLT’(Q) Se,L,M ”g”Wl—l/PvP(aQ)'
Next we show that if the domain {2 is sufficiently regular, we may characterize

W,yP(€2) as the subspace of functions in W1 () with trace zero.

THEOREM 17.63 (Traces and Wol’p). Let Q C RN, N > 2, be an open set whose
boundary 0) is Lipschitz continuous, let 1 < p < oo, and let u € WP(). Then
Tr(u) = 0 if and only if u € WyP ().

8. Higher Order Sobolev Spaces

DEFINITION 17.64. Given an open set Q C RY | a multi-index o € N}’ \ {0},
and 1 < p < 00, we say that a function u € Llloc(Q) admits a weak or distributional
ath derivative in LP(Q) if there exists a function v, € LP(Q) such that

(17.22) /u@ad)daz:(—l)lo“/vaqﬁdz
Q Q
0 ; ; o alely
for all ¢ € C(Q2). The function v, is denoted 0%u or %3*.

DEFINITION 17.65. Given an open set Q C RN, m e N, and 1 < p < oo, the
Sobolev space W™P(Q) is the space of all functions u € LP(Q) which admit weak
derivatives 0%u in LP(QY) for every a € NY¥ with 1 < |a| < m. The space W™P ()
is endowed with the norm

[ullwmr@) = lulleo@ + D 10%ullLeo)-

1<]al<m

The space WP (Q) is defined as the space of all functions u € L} () which

loc loc

admit weak derivatives 0%u in L], (Q) for every o € N with 1 < |a| < m.

DEFINITION 17.66. Let © C RN be an open set, m € N, and 1 < p < oo.
The homogeneous Sobolev space W™P () is the space of all functions u € Li, ()
whose ath weak derivative 0%u belongs to LP(QY) for every a € N with |a| = m.

THEOREM 17.67. Let Q C RY be an open set, m € N, and 1 < p < co. Then
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(i) the space W™P(Q) is a Banach space,
(ii) the space H™(Q) := W™2(Q) is a Hilbert space with the inner product

(u,v) g1(0) ::/uvdx—i— Z /8au8"‘vdx

1<|a|<m

THEOREM 17.68 (Meyers-Serrin). Let 2 C RY be an open set, m € N, and
1 <p < oo. Then the space C*(2) N W™P(Q) is dense in W™P(Q).

THEOREM 17.69. Let Q C RY be an open set whose boundary is of class C,
m €N, and 1 < p < oo. Then the restriction to Q of functions in C°(RYN) is
dense in WP ().

THEOREM 17.70. Let u € W™P(RN), where m € N and 1 < p < co. Then
there erxists a sequence {u,}n of functions in C°(RYN) such that 0%u,, — 0%u in
LP(RN) for every multi-indexr o with || = m if and only if N > 2 or p > 1.

THEOREM 17.71. Let Q,U C RY be open sets, let m € N, let U : U — Q be
invertible, with ¥ € C™ LY(U;RN) and U1 Lipschitz continuous, and let u €
WmP(Q), 1 < p < oco. Then uo W belongs to W™P(U) and and for every multi-
index o € NM, with 0 < || <m, and for LN -a.e. y € U,

18]

a\al a\ﬁ\u 3'”“111
8y U, o \IJ an,ﬁ,'y, 1_[1 8y“ﬁ 7

where co 51 € R, the sum is done over all 3 € N) with 1 < |B] < |af, v =

(71737\[30 Vi € N ’ with |’Yz‘ > 0 and Z‘iml’ﬁ =a, and | = (llv"‘7l|ﬁ\)y

Lefl,...,N},i=1,..., |4

To extend the Sobolev—Gagliardo-Nirenberg embedding theorem to functions
in W™P(RY), where m > 2 and 1 < p < oo are such that mp < N, for every k = 0,
, m we define the Sobolev critical exponent.
Np
N—(m—k)p

Note that py, ,,_y =p* and py, ,,, = p.

(17.23) Pk =

COROLLARY 17.72 (Sobolev-Gagliardo—Nirenberg’s embedding in W"P). Let
m €N and 1 < p < 0o be such mp < N. Then for every function u € WP (RN)
and for every k=0, ..., m—1 and

It = IV ul o )

LPm.k (RN)
In particular,
WP (RN) — LO@RN) a Wb (RY) - T bamor(RY)
forallp <q, <pj,,, k=0,...,m—1
THEOREM 17.73 (Sobolev-GagliardoNirenberg’s embedding in W™?). Let

meEN and 1 < p < oo be such mp < N. Then for every function u € Wm’p(RN)
there exists a polynomial P, of degree m — 1 such that

|V*(u — P,

u)HLP:ﬂ’k(RN) = V™ ul @y
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for every k=0, ..., m—1. Moreover,

P, =u-— Z (Ko * 0%u),

|o|=m

where Ko () = 5% it , © € RV \ {0}

THEOREM 17.74. Let m € N, m > 2. Then for every u € W™ N/™(RN) there
exists a polynomial P, of degree m — 1 such that

lu — Pulgmo@y) = IV ull pr/m @y

and
V¥ (w = Pl pare ey 2 V™ ull pasm g
fork=1, ..., m—1. In particular,
W N/mRN) — BMORY) nwha (RY) A - n W bam—1(RY)
foral N/m < q < N/k, k=1, ..., m—1.

THEOREM 17.75. Let m,N € N be such N > m. Then for every function
= Wm,N/m(RN)!

HU‘HLQ(RN) jm,N ql_l/p+1/q||U||Wm,N/m(RN)
for every N/m < q < co and

||Vku||LN/k(RN) 2V ul| L vsm @y

foreveryk =1, ..., m—1. In particular,
wmNmRN) o L (@®RY) AW (RY) A - Wb (RY)
for all N/m < gy < oo and all N/m < q, < N/k, k=1, ..., m—1.

THEOREM 17.76 (Morrey’s embedding in W™P). Let m € N, m > 2, and
1 <p < oo be such mp > N. Then W™P(RN) — C4%(RN), where if m — N/p is
not an integer,
¢:=|m—N/p|], 0:=m—{—N/p,
while if m — N/p is an integer,
C:=m—1—N/p, 0:= any number less than 1.

DEFINITION 17.77. Givenm € N and 1 < p < 0o, an open set Q C RN is called
an extension domain for the Sobolev space W™P(Q) if there exists a continuous
linear operator

E:W™MP(Q) — WmP(RY)
with the property that for all u € W™P(Q), E(u)(x) = u(x) for LN -a.e. z € Q.

THEOREM 17.78 (Gagliardo—Nirenberg interpolation, I). Let 1 < p,q < oo,
meN, keN, with1l <k <m,r be such that
k1 kN1 1
Zot(1-2)2 ==
mp

Then

1—-k/m m k/m
IV 0l vy 2 lull oy [V ™l 0 ey
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for every u € LY(RN) N W™P(RN). In particular, if 1 < p,q < oo, and r is given

by
1 1 1

20 2¢ 71’
then
1/2 1/2
IVull vy =l oty IV 20ll 5
for every u € LY(RN) 0 W2P(RN).
THEOREM 17.79 (Gagliardo—Nirenberg interpolation, general case). Let 1 <
p,qg <00, meN, keNy, with0<k<m, and 0, r be such that

0<0<1—k/m

and

1 m-—-k&k 1 k 1
17.24 1-— - — -+ =) =- — 1l.
(a7 ) ( 9)(1) N )+9(q+N) TE(OO’]
Then
(17.25) V¥l =< ull ooy IVl 3

for every u € LY(RN) N Wm’p(RN), with the following exceptional cases:
(i) Ifg=r=00 and 1 < p < o0, then (17.25) fails for 6 € (0,1).
(ii) If k=0, mp < N, r < g = 00, we assume that u vanishes at infinity.
(iii) If 1 <p < oo and m—k— N/p is a nonnegative integer, then (17.25) only
holds for 0 < 8 <1 —k/m.

EXERCISE 17.80. Let Q C RY be an open bounded set, let E C § be a Lebesgue
measurable set with finite positive measure, let m € N, and let 1 < p < co. Prove
that given uw € WP (Q) there exists a polynomial pg(u) of degree m — 1 such that
for every multi-index o € NI, with 0 < |a] <m — 1,

/E(Bau(m) — %pg(u)(x))dz = 0.

THEOREM 17.81 (Poincaré’s inequality in W™P(Q)). Let m € N, let 1 <p <
o0, and let @ C RN be a connected extension domain for W™P(Q) with finite

measure. Let E C Q be a Lebesgue measurable set with positive measure. Then for
all w € W™P(Q),

m—1
> IVFu = pe@)lzr @) 2.0 IV Ul g)-
k=0

PROPOSITION 17.82 (Poincaré’s inequality for rectangles). Let m € N, let 1 <
p < oo, and let R = (0,a1) x --- x (0,an) C RY. Then for all u € W™P(R), and
every 0 <k <m —1,

IV*(u = pr(u)|lLr(r) = (ma’x{a17~--aaN})(mik)”vmuHLP(R)-

EXERCISE 17.83. Let R be as in the previous theorem and let u € WP (R).
Prove that uw € W™P(R). Hint: Prove first that pr(u) can be replaced by pr, (u),
where Ry 1is rectangle compactly contained in R.
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THEOREM 17.84 (Poincaré’s inequality for convex sets). Let m € N, let 1 <
p < oo and let Q@ C RN be an open bounded convex set. Then for all u € W™P(Q),
and every 0 <k <m—1,

IVF(u = po ()| o) = (diam Q)™ * [ V"™u| 1o (o).

THEOREM 17.85 (Poincaré’s inequality for star-shaped sets). Let m € N, let
1< p<oo, and let Q C RN be an open set star-shaped with respect to xy € Q and
such that

Q(zo,4r) C Q C B(zo, R)
for some r, R > 0. Then for allu € W™P(Q), and every 0 < k <m —1,

IV* (u = pa(w))ll (o) < R H(R/r)N=DE=RP 7| 1 o).

EXERCISE 17.86. Let Q be as in the previous theorem and let u € W™P(Q).
Prove that uw € W™P(Q).

THEOREM 17.87 (Stein). Let Q C RYN be an open set with uniformly Lipschitz
continuous boundary. Then for all 1 < p < co and m € N there exists a contin-
uous linear operator £ : W™P(Q) — W™P(RN) such that for all u € W™P(Q),
E(w)(z) = u(z) for LN-a.e. x € Q, and

1€l =ar 1l ooy,

k
IV E W)l ony 2o DIV U] Loy

i=0
for every 1 <k <m.

THEOREM 17.88. Let R:=1I; x --- x Iy CRY, where each I; C R is an open
interval, let 1 < p,q,r < 0o be such that

1 1 1
17.26 - =—+ —
( ) r  2p + 2q°
and let w € LY(R) N W?P(R). Then

1/2 1/2
Lo(r) = ull g 107ull )

||(91’LL‘ LP(R)

foralli=1,... N, provided all the intervals I; have infinite length, while

_ r— 1/2 1/2
10wul| o (ry = €7HEN (R ul| oy + Il o 1020 e

if all the intervals I; have finite length and p < q, where £ := min; £ (Ii).

THEOREM 17.89 (Gagliardo—Nirenberg interpolation, m = 2). Let Q C RY
be an open set with uniformly Lipschitz continuous boundary (with parameters
e, L,M), let 0 < £ < e/(4(1 + L)), and let 1 < p,q,r < oo be such that p < g
and (17.26) holds. If p < q assume further that Q is bounded. Then for every
ue LIQ) NW2P(Q), if p < q,

_ e 1/2 1/2
IVull ey = € EN @)™l Lagey + llull iy | V2ull 2oy

if p < g, while if p = q,
1/2 1/2

IVullzr(e) = € lullno@) + lull oo IVl fog)-
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REMARK 17.90. We remark that when Q C RN is an open, bounded, connected
set with Lipschitz boundary and if u € LI(2) N WQ’Z’(Q), where 1 < q < p, then it
follows from Poincaré’s inequality that w and Vu are in LP(Q) and so in all L™ (Q)
for 1 < r < p. This is why we only considered the interesting case p < q in the
previous theorem.

An important consequence of the previous theorem is the following result.

COROLLARY 17.91. Let Q C RYN be an open set with uniformly Lipschitz con-
tinuous boundary and let 1 < p < co. Then WP(Q) = LP(Q) N W2P(Q) with
equivalence of the norms Zi:o IV ul| oy and [Jull ey + V20l Lo (q)-

REMARK 17.92. Note that for sets of infinite measure the previous corollary
cannot be obtained using the Poincaré inequality.

Next we consider the case m > 2.

THEOREM 17.93 (Gagliardo-Nirenberg interpolation, m > 2). Let Q C RV
be an open set with uniformly Lipschitz continuous boundary (with parameters
e, L, M), let 0 < £ < e/(4(1 + L)), let m,k € N, withm > 2 and 1 < k < m,
and let 1 < p,q,r < o0 be such that p < q and

k1 < k)l 1
— 4+ 1= —)=-=-.
mp mj)q T

If p < q assume further that §) is bounded. Then for every u € L1(Q) N Wmvp(Q),
_ — 1—k m, ik
I ull ey = €N @)Yl gy + ull b [l

if p < q, while
_ 1—k k
IV ull Loy = €7 lull oy + Il g 119 ™ ull Sty
ifp=q.
As in the case m = 2, the previous inequality implies the following important
consequence.

COROLLARY 17.94. Let Q C RN be an open set with uniformly Lipschitz con-
tinuous boundary, let m € N with m > 2 and let 1 < p < co. Then W™P(Q) =
LP(Q) N W™P(Q) with equivalence of the norms > [[V*ul| o) and ||ul|pe o) +
V™ ull Lo ().



