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CHAPTER 17

Sobolev Spaces

1. Absolutely Continuous Functions

In this setion we review absolute continuous functions.

Definition 17.1. Let I ⊆ R be an interval and (Y, d) be a metric space. A
function u : I → Y is said to be absolutely continuous on I if for every ε > 0 there
exists δ > 0 such that

(17.1)
n∑
i=1

d(u(bi), u(ai)) ≤ ε

for every finite number of nonoverlapping intervals (ai, bi), i = 1, . . . , n, with
[ai, bi] ⊆ I and

n∑
i=1

(bi − ai) ≤ δ.

The space of all absolutely continuous functions u : I → Y is denoted by AC(I;Y ).

When Y = R we write AC(I) for AC(I;R)..
Let I ⊆ R be an interval and (Y, d) a metric space. A function u : I → Y is

locally absolutely continuous if it is absolutely continuous in [a, b] for every interval
[a, b] ⊆ I. The space of all locally absolutely continuous functions u : I → Y is
denoted by ACloc(I;Y ). As before, when Y = R we write ACloc(I) for ACloc(I;R).
Note that ACloc([a, b];Y ) = AC([a, b];Y ).

Exercise 17.2. Let u, v ∈ AC([a, b]). Prove the following.
(i) u± v ∈ AC([a, b]).
(ii) uv ∈ AC([a, b]).
(iii) If v(x) > 0 for all x ∈ [a, b], then u/v ∈ AC([a, b]).
(iv) max{u, v}, min{u, v} ∈ AC([a, b]).

Proposition 17.3. Let I ⊆ R be an interval and u ∈ ACloc(I). Then u is
differentiable L1-a.e. in I and u′ is locally Lebesgue integrable.

Theorem 17.4. Let I ⊆ R be an open interval and u ∈ ACloc(I) be such that
there exists u′(x) = 0 for L1-a.e. x ∈ I. Then u is constant.

The next theorem shows the primitive of an integrable function is absolutely
continuous.

Theorem 17.5. Let I ⊆ R be an interval and v : I → R a Lebesgue integrable
function. Fix x0 ∈ I and let

u(x) :=

∫ x

x0

v(t) dt, x ∈ I.

645



646 17. SOBOLEV SPACES

Then the function u is absolutely continuous in I and u′(x) = v(x) for L1-a.e.
x ∈ I.

Using the previous theorem we have.

Theorem 17.6 (Fundamental theorem of calculus). Let I ⊆ R be an interval.
A function u : I → RM belongs to ACloc(I) if and only if

(i) u is continuous in I,
(ii) u is differentiable L1-a.e. in I, and u′ belongs to L1

loc(I),
(iii) the fundamental theorem of calculus is valid; that is, for all x, x0 ∈ I,

u(x) = u(x0) +

∫ x

x0

u′(t) dt.

As a corollary of Theorem ?? we recover the formula for integration by parts.

Corollary 17.7 (Integration by parts). Let I ⊆ R be an interval and u, v ∈
ACloc(I). Then for all x, x0 ∈ I,∫ x

x0

uv′ dt = u(x)v(x)− u(x0)v(x0)−
∫ x

x0

u′v dt.

We recall the following definition.

Definition 17.8. If E ⊆ R is a Lebesgue measurable set and v : E → R is
a Lebesgue measurable function, then v is equi-integrable if for every ε > 0 there
exists δ > 0 such that ∫

F

|v(x)| dx ≤ ε

for every Lebesgue measurable set F ⊆ E, with L1(F ) ≤ δ.
Exercise 17.9. Let E ⊆ R be a Lebesgue measurable set, 1 ≤ p ≤ ∞, and

v ∈ Lp(E). Prove that v is equi-integrable. Prove that if we only assume that
v ∈ L1

loc(E), then the result may no longer be true.

Exercise 17.10. Let E ⊆ R be a Lebesgue measurable set with finite measure
and v : E → RM equi-integrable. Prove that v ∈ L1(E).

Theorem 17.11 (Fundamental theorem of calculus, II). Let I ⊆ R be an in-
terval. A function u : I → RM belongs to AC(I) if and only if

(i) u is continuous in I,
(ii) u is differentiable L1-a.e. in I, and u′ belongs to L1

loc(I) and is equi-
integrable,

(iii) the fundamental theorem of calculus is valid; that is, for all x, x0 ∈ I,

u(x) = u(x0) +

∫ x

x0

u′(t) dt.

Corollary 17.12. Let I ⊆ R be an interval and u : I → R be such that
(i) u is continuous on I,
(ii) u is differentiable L1-a.e. in I, and u′ ∈ Lp(I) for some 1 ≤ p ≤ ∞,
(iii) the fundamental theorem of calculus is valid; that is, for all x, x0 ∈ I,

u(x) = u(x0) +

∫ x

x0

u′(t) dt.

Then u belongs to AC(I).
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2. Sobolev Functions of One Variable

Definition 17.13. Given an open interval I ⊆ R, n ∈ N, and 1 ≤ p ≤ ∞, we
say that a function u ∈ L1

loc(I) admits a weak or distributional derivative of order
n in Lp(I) if there exists a function v ∈ Lp(I) such that∫

I

uϕ(n)dx = (−1)n
∫
I

vϕ dx

for all ϕ ∈ C∞c (I). The function v is denoted u(n).

A similar definition can be given when Lp(I) is replaced by Lploc(I).

Definition 17.14. Given an open interval I ⊆ R , m ∈ N, and 1 ≤ p ≤ ∞,
the Sobolev space Wm,p(I) is the space of all functions u ∈ Lp(I) which admit
weak derivatives of order n in Lp(I) for every n = 1, . . . ,m. The space Wm,p(I) is
endowed with the norm

‖u‖Wm,p(I) := ‖u‖Lp(I) +

m∑
n=1

‖u(n)‖Lp(I).

The space Wm,p
loc (I) is defined as the space of all functions u ∈ Lploc(I) which

admit weak derivatives of order n in Lploc(I) for every n = 1, . . . ,m.
The connection between Sobolev functions and absolutely continuous functions

is explained in the following theorem.

Theorem 17.15. Let I ⊆ R be an open interval and 1 ≤ p ≤ ∞. Then
a function u : I → R belongs to W 1,p(I) if and only if it admits an absolutely
continuous representative ū : I → R such that ū and its classical derivative ū′

belong to Lp(I). Moreover, if p > 1, then ū is Hölder continuous of exponent 1/p′.

Theorem 17.16. Let I ⊆ R be an open interval, m ∈ N, and 1 ≤ p <∞. Then
functions in C∞(I) ∩Wm,p(I) are dense in Wm,p(I).

Theorem 17.17 (Poincaré’s inequality). Let I = (a, b) and 1 ≤ p <∞. Then

(17.2)
∫ b

a

|u(x)− uI |pdx ≤ (b− a)p
∫ b

a

|u′(x)|pdx

for all u ∈W 1,p(I), where

uI :=
1

b− a

∫ b

a

u(x) dx.

We conclude this section with some interpolation inequalities.

Theorem 17.18. Let I ⊆ R be an open interval, 1 ≤ p, q, r ≤ ∞ be such that
r ≥ q, and u ∈W 1,1

loc (I). Then

(17.3) ‖u‖Lr(I) ≤ `1/r−1/q‖u‖Lq(I) + `1−1/p+1/r‖u′‖Lp(I)

for every 0 < ` < L1(I).

Next we consider the case m = 2 and k = 1.

Theorem 17.19. Let I ⊆ R be an open interval, 1 ≤ p, q, r ≤ ∞ be such that

(17.4)
1

2q
+

1

2p
≥ 1

r
,
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and u ∈W 2,1
loc (I). Then

(17.5) ‖u′‖Lr(I) � `1/r−1−1/q‖u‖Lq(I) + `1−1/p+1/r‖u′′‖Lp(I)

for every 0 < ` < L1(I).

We now consider the general case m ≥ 2.

Theorem 17.20. Let I ⊆ R be an open interval, 1 ≤ p, q, r ≤ ∞, m ∈ N,
k ∈ N0, with 0 ≤ k < m, be such that

(17.6)
(

1− k

m

)
1

q
+
k

m

1

p
≥ 1

r
,

and u ∈ Lq(I) ∩ Ẇm,1(I). Then

(17.7) ‖u(k)‖Lr(I) � `1/r−k−1/q‖u‖Lq(I) + `m−k−1/p+1/r‖u(m)‖Lp(I)

for every 0 < ` < L1(I). In particular, for p = q = r,

(17.8) ‖u(k)‖Lp(I) � `−k‖u‖Lp(I) + `m−k‖u(m)‖Lp(I).

Theorem 17.21. Let 1 ≤ p, q, r ≤ ∞, m ∈ N, k ∈ N0, with 0 ≤ k < m, be such
that (

1− k

m

)
1

q
+
k

m

1

p
≥ 1

r
,

and u ∈ Lq(R) ∩ Ẇm,1(R). Then

‖u(k)‖Lr(R) � ‖u‖θLq(R)‖u(m)‖1−θLp(R)

where θ = (m− k − 1/p+ 1/r)/(m− 1/p+ 1/q). In particular, for p = q = r,

‖u(k)‖Lp(R) � ‖u‖θLp(R)‖u(m)‖1−θLp(R).

3. Sobolev Spaces

Definition 17.22. Given an open set Ω ⊆ RN , i = 1, . . . , N , and 1 ≤ p ≤ ∞,
we say that a function u ∈ L1

loc(Ω) admits a weak or distributional partial derivative
in Lp(Ω) with respect to xi if there exists a function vi ∈ Lp(Ω) such that∫

Ω

u
∂φ

∂xi
dx = −

∫
Ω

viφdx

for all φ ∈ C∞c (Ω). The function vi is denoted ∂iu or ∂u
∂xi
.

Definition 17.23. Given an open set Ω ⊆ RN and 1 ≤ p ≤ ∞, the Sobolev
space W 1,p(Ω) is the space of all functions u ∈ Lp(Ω) which admit weak partial
derivatives ∂u

∂xi
in Lp(Ω) for every i = 1, . . . , N . The space W 1,p(Ω) is endowed

with the norm

‖u‖W 1,p(Ω) := ‖u‖Lp(Ω) +

N∑
i=1

‖∂iu‖Lp(Ω).

The space W 1,p
loc (Ω) is defined as the space of all functions u ∈ Lploc(Ω) which

admit weak partial derivatives ∂u
∂xi

in Lploc(Ω) for every i = 1, . . . , N .

Definition 17.24. Let Ω ⊆ RN be an open set and 1 ≤ p <∞. The homoge-
neous Sobolev space Ẇ 1,p(Ω) is the space of all functions u ∈ L1

loc(Ω) whose weak
partial derivative ∂u

∂xi
belongs to Lp(Ω) for every i = 1, . . . , N .
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Theorem 17.25. Let Ω ⊆ RN be an open set and 1 ≤ p ≤ ∞. Then
(i) the space W 1,p(Ω) is a Banach space,
(ii) the space H1(Ω) := W 1,2(Ω) is a Hilbert space with the inner product

〈u, v〉H1(Ω) :=

∫
Ω

uv dx+

N∑
i=1

∫
Ω

∂u

∂xi

∂v

∂xi
dx.

Theorem 17.26 (Meyers—Serrin). Let Ω ⊆ RN be an open set and 1 ≤ p <∞.
Then the space C∞(Ω) ∩W 1,p(Ω) is dense in W 1,p(Ω).

Theorem 17.27. Let Ω ⊆ RN be an open set whose boundary is of class C,
and 1 ≤ p < ∞. Then the restriction to Ω of functions in C∞c (RN ) is dense in
W 1,p(Ω).

Theorem 17.28. Let u ∈ W 1,p(RN ), where 1 ≤ p < ∞. Then there exists a
sequence {un}n of functions in C∞c (RN ) such that un → u in W 1,p(RN ).

Theorem 17.29. Let u ∈ Ẇ 1,p(RN ), where 1 ≤ p < ∞. Then there exists a
sequence {un}n of functions in C∞c (RN ) such that ∂un∂xi

→ ∂u
∂xi

in Lp(RN ) for every
i = 1, . . . , N if and only if N ≥ 2 or p > 1.

Theorem 17.30 (Absolute continuity on lines). Let Ω ⊆ RN be an open set
and 1 ≤ p <∞. A function u ∈ Lp(Ω) belongs to the space W 1,p(Ω) if and only if
it has a representative u that is absolutely continuous on LN−1-a.e. line segments
of Ω that are parallel to the coordinate axes and whose first-order (classical) partial
derivatives belong to Lp(Ω). Moreover the (classical) partial derivatives of u agree
LN -a.e. with the weak derivatives of u.

Theorem 17.31 (Chain rule). Let Ω ⊆ RN be an open set, 1 ≤ p ≤ ∞, and
f : R → R be Lipschitz continuous and u ∈ W 1,p(Ω). Assume that f(0) = 0 if Ω
has infinite measure. Then f ◦ u ∈ W 1,p(Ω) and that for all i = 1, . . . , N and for
LN -a.e. x ∈ Ω,

∂i(f ◦ u)(x) = f ′(u(x))∂iu(x),

where f ′(u(x))∂iu(x) is interpreted to be zero whenever ∂iu(x) = 0.

Theorem 17.32 (Change of variables). Let Ω, U ⊆ RN be open sets, Ψ : U → Ω

be invertible, with Ψ and Ψ−1 Lipschitz continuous functions, and u ∈ Ẇ 1,p(Ω),
1 ≤ p ≤ ∞. Then u◦Ψ ∈ Ẇ 1,p(U) and for all i = 1, . . . , N and for LN -a.e. y ∈ U ,

∂(u ◦Ψ)

∂yi
(y) =

N∑
j=1

∂u

∂xj
(Ψ(y))

∂Ψj

∂yi
(y).

Theorem 17.33. Let Ω ⊆ RN be an open set and u ∈ Ẇ 1,p(Ω), 1 ≤ p < ∞.
Then for every h ∈ RN \ {0},

(17.9)
∫

Ωh

|u(x+ h)− u(x)|p
‖h‖p dx ≤

∫
Ω

‖∇u(x)‖pdx

while,

(17.10) κN,p

∫
Ω

‖∇u(x)‖pdx ≤ lim sup
h→0

∫
Ωh

|u(x+ h)− u(x)|p
‖h‖p dx,
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where

(17.11) κN,p :=
1

βN

∫
SN−1

|e1 · ξ|pdHN−1(ξ).

Conversely, if 1 < p <∞ and u ∈ L1
loc(Ω) is such that

(17.12) lim sup
h→0

∫
Ωh

|u(x+ h)− u(x)|p
‖h‖p dx <∞,

then u ∈ Ẇ 1,p(Ω).

Exercise 17.34. Let Ω ⊆ RN be an open set and for every i = 1, . . . , N and
h > 0, Ωh,i := {x ∈ Ω : x+ tei ∈ Ω for all 0 < t ≤ h}.

(i) Let u ∈ Ẇ 1,p(Ω), 1 ≤ p < ∞. Prove that for every i = 1, . . . , N and
h > 0, ∫

Ωh,i

|u(x+ hei)− u(x)|p
hp

dx ≤
∫

Ω

|∂iu(x)|pdx

and

lim
h→0+

∫
Ωh,i

|u(x+ hei)− u(x)|p
hp

dx =

∫
Ω

|∂iu(x)|pdx.

(ii) Prove that if 1 < p <∞ and u ∈ L1
loc(Ω) is such that

lim inf
h→0+

∫
Ωh,i

|u(x+ hei)− u(x)|p
hp

dx <∞

for every i = 1, . . . , N , then u ∈ Ẇ 1,p(Ω).

The following theorem follows from Theorems ?? and ??

Theorem 17.35. Let Ω ⊆ RN be an open set and 1 < p < ∞. Then W 1,p(Ω)
is reflexive. In particular, if {un}n is a bounded sequence in W 1,p(E), then there
exist a subsequence {unk}k and u ∈ W 1,p(Ω) such that unk ⇀ u in W 1,p(Ω), that
is, unk ⇀ u in Lp(Ω) and ∂iunk ⇀ ∂iu in Lp(Ω) for every i = 1, . . . , N .

4. Embeddings

The number

(17.13) p∗ :=
Np

N − p .

is called the Sobolev critical exponent.

Theorem 17.36 (Sobolev—Gagliardo—Nirenberg’s embedding inW 1,p). Let 1 ≤
p < N . Then for every function u ∈ Ẇ 1,p(RN ) vanishing at infinity,

‖u‖Lp∗ (RN ) � ‖∇u‖Lp(RN ;RN ).

In particular, W 1,p(RN ) ↪→ Lq(RN ) for all p ≤ q ≤ p∗.

Theorem 17.37 (Sobolev—Gagliardo—Nirenberg’s embedding in Ẇ 1,p). Let 1 ≤
p < ∞ be such p < N . Then for every function u ∈ Ẇ 1,p(RN ) there exists a
constant cu such that

‖u− cu‖Lp∗ (RN ) � ‖∇u‖Lp(RN ).
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Theorem 17.38. There for every function u ∈ Ẇ 1,N (RN ),

|u|BMO(RN ) � ‖∇u‖LN (RN ;RN ).

In particular, W 1,N (RN ) ↪→ BMO(RN ).

Theorem 17.39. Let N ∈ N be such N ≥ 2. Then there exists a constant
c = c(N) > 0 such that for every function u ∈W 1,N (RN ),

‖u‖Lq(RN ) ≤ cq1−1/p+1/q‖u‖W 1,N (RN ).

In particular,

W 1,N (RN ) ↪→ Lq(RN )

for all N < q <∞.

Theorem 17.40 (Morrey’s embedding in W 1,p). Let N < p < ∞. Then
W 1,p(RN ) ↪→ C0,1−N/p(RN ). Moreover, if u ∈W 1,p(RN ) and ū is its representative
in C0,1−N/p(RN ), then

lim
‖x‖→∞

ū(x) = 0.

Remark 17.41. If N = 1, we have W 1,1(R) ↪→ C0(R).

Corollary 17.42. Let N < p < ∞. If u ∈ Ẇ 1,p(RN ), then a representative
ū of u is Hölder continuous with exponent 1−N/p and

|ū(x)− ū(y)| � ‖x− y‖1−N/p‖∇u‖Lp(RN )

for all x, y ∈ RN .

Definition 17.43. Given 1 ≤ p ≤ ∞, an open set Ω ⊆ RN is called an
extension domain for the Sobolev space W 1,p(Ω) if there exists a continuous linear
operator

E : W 1,p(Ω)→W 1,p(RN )

with the property that for all u ∈W 1,p(Ω), E(u)(x) = u(x) for LN -a.e. x ∈ Ω.

Theorem 17.44 (Rellich—Kondrachov’s compactness). Let 1 ≤ p < ∞ and
Ω ⊂ RN be an extension domain for W 1,p(Ω) with finite measure. Let {un}n be
a bounded sequence in W 1,p(Ω). Then there exist a subsequence {unk}k of {un}n
and a function u ∈ Lp(Ω) such that unk → u in Lp(Ω). Moreover, if p > 1, then
u ∈W 1,p(Ω).

To give a unified treatment, only in this section, we use a different notation for
Lr norms. To be precise, given r ∈ [−∞,∞], r 6= 0, and a function u : RN → R,
we define

(17.14) |u|r :=


‖u‖Lr(RN ) if r > 0,
‖∇nu‖L∞(RN ) if r < 0 and a = 0,
|∇nu|C0,a(RN ) if r < 0 and 0 < a < 1,

where if r < 0 we set n := b−N/rc and a := −n − N/r ∈ [0, 1), provided the
right-hand sides are well-defined.

We begin with the case m = 1.
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Theorem 17.45 (Gagliardo—Nirenberg interpolation, m = 1). Let 1 ≤ p, q ≤
∞, 0 ≤ θ ≤ 1, and r be such that

(17.15) (1− θ)
(1

p
− 1

N

)
+
θ

q
=

1

r
∈ (−∞, 1].

Then

(17.16) |u|r � ‖u‖θLq(RN )‖∇u‖
1−θ
Lp(RN )

for every u ∈ Lq(RN ) ∩ Ẇ 1,p(RN ), with the following exceptions

(i) if p < N and r < q =∞, we assume that u vanishes at infinity,
(ii) if 1 < p = N and q = r =∞, then (17.16) fails for 0 ≤ θ < 1,
(iii) if p = N > 1 and q 6= r we take 0 < θ ≤ 1.

5. Extension

Definition 17.46. The boundary ∂Ω of an open set Ω ⊆ RN is uniformly
Lipschitz continuous if there exist ε, L > 0, M ∈ N, and a locally finite countable
open cover {Ωn}n of ∂Ω such that

(i) if x ∈ ∂Ω, then B(x, ε) ⊆ Ωn for some n ∈ N,
(ii) no point of RN is contained in more than M of the Ωn’s,
(iii) for each n there exist local coordinates y = (y′, yN ) ∈ RN−1 × R and

a Lipschitz continuous function f : RN−1 → R (both depending on n),
with Lip f ≤ L, such that Ωn ∩ Ω = Ωn ∩ Vn, where Vn is given in local
coordinates by

{(y′, yN ) ∈ RN−1 × R : yN > f(y′)}.

Remark 17.47. Similarly, given m ∈ N0 and 0 < α ≤ 1 we can define open
sets Ω ⊆ RN whose boundary is uniformly of class Cm (respectively, of class Cm,α,
see Definition ??) with parameters ε, L > 0, M provided (i), (ii), and (iii) hold
but with f of class Cm (respectively of class Cm,α) and with ‖f‖Cm(RN−1) ≤ L
(respectively, ‖f‖Cm,α(RN−1) ≤ L).

Theorem 17.48 (Stein). Let Ω ⊆ RN be an open set with uniformly Lipschitz
continuous boundary. Then for all 1 ≤ p ≤ ∞ there exists a continuous linear
operator E : W 1,p(Ω) → W 1,p(RN ) such that for all u ∈ W 1,p(Ω), E(u)(x) = u(x)
for LN -a.e. x ∈ Ω, and

‖E(u)‖Lp(RN ) �M ‖u‖Lp(Ω),(17.17)

‖∇kE(u)‖Lp(RN ) �ε,L,M ‖u‖W 1,p(Ω)(17.18)

for every multi-index α ∈ NN0 with 1 ≤ |α| ≤ m.

6. Poincaré’s Inequalities

Given an open set Ω ⊆ RN , a Lebesgue measurable set E ⊆ Ω with finite
positive measure, and an integrable function u : Ω→ R, we define

(17.19) uE :=
1

LN (E)

∫
E

u(x) dx.
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Theorem 17.49 (Poincaré’s inequality in W 1,p(Ω)). Let 1 ≤ p < ∞ and Ω ⊂
RN be a connected extension domain for W 1,p(Ω) with finite measure. Let E ⊆ Ω
be a Lebesgue measurable set with positive measure. Then for all u ∈W 1,p(Ω),

‖u− uE‖Lp(Ω) �Ω,E ‖∇u‖Lp(Ω).

Proposition 17.50 (Poincaré’s inequality for rectangles). Let 1 ≤ p <∞ and
R = (0, a1)× · · · × (0, aN ) ⊂ RN . Then for all u ∈W 1,p(R),

‖u− uR‖Lp(R) � max{a1, . . . , aN}‖∇u‖Lp(R).

Corollary 17.51. Let 1 ≤ p < ∞ and R = (0, a1) × · · · × (0, aN ) ⊂ RN and
let R1 b R be a rectangle. Then for all u ∈ Ẇ 1,p(R),

‖u− uR1‖Lp(R) � max{a1, . . . , aN‖∇u‖Lp(R).

Theorem 17.52 (Poincaré’s inequality for convex sets). Let 1 ≤ p < ∞ and
Ω ⊂ RN be an open bounded convex set. Then for all u ∈W 1,p(Ω),

‖u− uΩ‖Lp(Ω) � diam Ω‖∇u‖Lp(Ω).

Next we consider star-shaped sets. We recall that a set E ⊆ RN is star-shaped
with respect to a point x0 ∈ E if θx + (1 − θ)x0 ∈ E for all θ ∈ (0, 1) and for all
x ∈ E.

Theorem 17.53 (Poincaré’s inequality for star-shaped sets). Let 1 ≤ p < ∞
and Ω ⊂ RN be an open set star-shaped with respect to x0 ∈ Ω and such that

Q(x0, 4r) ⊆ Ω ⊆ B(x0, R)

for some r,R > 0. Then for all u ∈W 1,p(Ω),

‖u− uΩ‖Lp(Ω) � R(R/r)(N−1)/p‖∇u‖Lp(Ω).

Corollary 17.54. Let 1 ≤ p < ∞ and Ω ⊂ RN be an open set star-shaped
with respect to x0 ∈ Ω and such that

Q(x0, 4r) b Ω ⊆ B(x0, R)

for some r,R > 0. Then for all u ∈ Ẇ 1,p(Ω),

‖u− uΩ‖Lp(Ω) � R(R/r)(N−1)/p‖∇u‖Lp(Ω).

7. Trace Theory

Theorem 17.55. Let Ω ⊆ RN , N ≥ 2, be an open set whose boundary ∂Ω is
Lipschitz continuous, let 1 ≤ p <∞. There exists a unique linear operator

Tr : W 1,p(Ω)→ Lploc(∂Ω)

such that

(i) Tr(u) = u on ∂Ω for all u ∈W 1,p(Ω) ∩ C(Ω),
(ii) the integration by parts formula∫

Ω

u∂iψ dx = −
∫

Ω

ψ∂iu dx+

∫
∂Ω

ψTr(u)νi dHN−1

holds for all u ∈W 1,p(Ω), all ψ ∈ C1
c (RN ), and all i = 1, . . . , N ,
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(iii) for every R > 0 there exist two constants cR, εR > 0 depending on R, Ω
and p such that∫
B(0,R)∩∂Ω

|Tr(u)|pdHN−1 ≤ cRε−1

∫
B(0,R)∩(Ω\Ωε)

|u|pdx

+ cRε
p−1

∫
B(0,R)∩(Ω\Ωε)

‖∇u‖pdx

for every 0 < ε ≤ εR, where Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε}.

The function Tr(u) is called the trace of u on ∂Ω.
When p = 1 and Ω suffi ciently regular the trace operator

Tr : W 1,1(Ω)→ L1(∂Ω)

is onto. This fact is explained in the following theorems. As usual, we begin with
the case of the half-space RN+ .

Theorem 17.56 (Gagliardo). Let N ≥ 2. Then for all functions u ∈ Ẇ 1,1(RN+ )
vanishing at infinity,

(17.20) ‖Tr(u)(·, 0)‖L1(RN−1) ≤ ‖∂Nu‖L1(RN+ ).

Theorem 17.57 (Gagliardo). Let g ∈ L1(RN−1), N ≥ 2. Then for every
0 < δ < 1 there exists a function u ∈W 1,1(RN+ ) such that Tr(u) = g and

‖u‖L1(RN+ ) ≤ δ‖g‖L1(RN−1), ‖∇u‖L1(RN+ ;RN ) ≤ (1 + δ)‖g‖L1(RN−1).

For more general domains, we have the following result.

Theorem 17.58. Let Ω ⊆ RN , N ≥ 2, be an open set whose boundary ∂Ω is
uniformly Lipschitz continuous. Then

‖Tr(u)‖L1(∂Ω) �ε,L,M ‖u‖L1(Ω) + ‖∇u‖L1(Ω;RN )

for all u ∈W 1,1(Ω), where ε, L > 0, and M ∈ N are given in Definition 17.46.
Moreover, for every g ∈ L1(∂Ω) there exists a function u ∈ W 1,1(Ω) such that

Tr(u) = g and

‖u‖L1(Ω) ≤ ‖g‖L1(∂Ω), ‖∇u‖L1(Ω;RN ) ≤ 4(1 + L)‖g‖L1(∂Ω).

When 1 < p <∞, the trace operator

Tr : W 1,p(Ω)→ Lp(∂Ω)

is not onto. Indeed, when Ω is suffi ciently regular, its image Tr(W 1,p(Ω)) can be
identified with the fractional Sobolev space W 1−1/p,p(∂Ω).

Theorem 17.59 (Gagliardo). Let 1 < p < ∞ and N ≥ 2. Then for all
u ∈ Ẇ 1,p(RN+ ),

(17.21) |Tr(u)(·, 0)|W 1−1/p,p(RN−1) � ‖∇u‖Lp(RN+ ).

Theorem 17.60 (Gagliardo). Let 1 < p <∞, N ≥ 2, and g ∈ Ẇ 1−1/p,p(RN−1).
Then there exists a function v ∈ Ẇ 1,p(RN+ ) such that Tr(v)(·, 0) = g and

|v|W 1,p(RN+ ) � |g|W 1−1/p,p(RN−1).



8. HIGHER ORDER SOBOLEV SPACES 655

Corollary 17.61. Let 1 < p < ∞, N ≥ 2, and g ∈ W 1−1/p,p(RN−1). Then
for every 0 < ε ≤ 1 there exists a function u ∈W 1,p(RN+ ) such that Tr(u)(·, 0) = g,
suppu ⊆ RN−1 × [−ε, ε] and

‖u‖Lp(RN+ ) ≤ ε1/p‖g‖Lp(RN−1),

|u|W 1,p(RN+ ) � ε−1/p′‖g‖Lp(RN−1) + |g|W 1−1/p,p(RN−1).

Theorem 17.62. Let Ω ⊆ RN , N ≥ 2, be an open set whose boundary ∂Ω is
uniformly Lipschitz continuous and let 1 < p <∞. Then

‖Tr(u)‖Lp(∂Ω) �ε,L,M ‖u‖W 1,p(Ω),

|Tr(u)|�W 1−1/p,p(∂Ω) �ε,L,M ‖u‖W 1,p(Ω)

for all u ∈W 1,1(Ω), where ε, L > 0, and M ∈ N are given in Definition 17.46.
Moreover, for every g ∈W 1−1/p,p(∂Ω) there exist a constant c = c(N, p) and a

function u ∈W 1,p(Ω) such that Tr(u) = g,

‖u‖Lp(Ω) �ε,M ‖g‖Lp(∂Ω)

and
‖∇u‖Lp(Ω) �ε,L,M ‖g‖W 1−1/p,p(∂Ω).

Next we show that if the domain Ω is suffi ciently regular, we may characterize
W 1,p

0 (Ω) as the subspace of functions in W 1,p(Ω) with trace zero.

Theorem 17.63 (Traces andW 1,p
0 ). Let Ω ⊂ RN , N ≥ 2, be an open set whose

boundary ∂Ω is Lipschitz continuous, let 1 ≤ p < ∞, and let u ∈ W 1,p(Ω). Then
Tr(u) = 0 if and only if u ∈W 1,p

0 (Ω).

8. Higher Order Sobolev Spaces

Definition 17.64. Given an open set Ω ⊆ RN , a multi-index α ∈ NN0 \ {0},
and 1 ≤ p ≤ ∞, we say that a function u ∈ L1

loc(Ω) admits a weak or distributional
αth derivative in Lp(Ω) if there exists a function vα ∈ Lp(Ω) such that

(17.22)
∫

Ω

u∂αφdx = (−1)|α|
∫

Ω

vαφdx

for all φ ∈ C∞c (Ω). The function vα is denoted ∂αu or ∂|α|u
∂xα .

Definition 17.65. Given an open set Ω ⊆ RN , m ∈ N, and 1 ≤ p ≤ ∞, the
Sobolev space Wm,p(Ω) is the space of all functions u ∈ Lp(Ω) which admit weak
derivatives ∂αu in Lp(Ω) for every α ∈ NN0 with 1 ≤ |α| ≤ m. The space Wm,p(Ω)
is endowed with the norm

‖u‖Wm,p(Ω) := ‖u‖Lp(Ω) +
∑

1≤|α|≤m

‖∂αu‖Lp(Ω).

The space Wm,p
loc (Ω) is defined as the space of all functions u ∈ Lploc(Ω) which

admit weak derivatives ∂αu in Lploc(Ω) for every α ∈ NN0 with 1 ≤ |α| ≤ m.

Definition 17.66. Let Ω ⊆ RN be an open set, m ∈ N, and 1 ≤ p < ∞.
The homogeneous Sobolev space Ẇm,p(Ω) is the space of all functions u ∈ L1

loc(Ω)
whose αth weak derivative ∂αu belongs to Lp(Ω) for every α ∈ NN0 with |α| = m.

Theorem 17.67. Let Ω ⊆ RN be an open set, m ∈ N, and 1 ≤ p ≤ ∞. Then



656 17. SOBOLEV SPACES

(i) the space Wm,p(Ω) is a Banach space,
(ii) the space Hm(Ω) := Wm,2(Ω) is a Hilbert space with the inner product

〈u, v〉H1(Ω) :=

∫
Ω

uv dx+
∑

1≤|α|≤m

∫
Ω

∂αu∂αv dx.

Theorem 17.68 (Meyers—Serrin). Let Ω ⊆ RN be an open set, m ∈ N, and
1 ≤ p <∞. Then the space C∞(Ω) ∩Wm,p(Ω) is dense in Wm,p(Ω).

Theorem 17.69. Let Ω ⊆ RN be an open set whose boundary is of class C,
m ∈ N, and 1 ≤ p < ∞. Then the restriction to Ω of functions in C∞c (RN ) is
dense in Wm,p(Ω).

Theorem 17.70. Let u ∈ Ẇm,p(RN ), where m ∈ N and 1 ≤ p < ∞. Then
there exists a sequence {un}n of functions in C∞c (RN ) such that ∂αun → ∂αu in
Lp(RN ) for every multi-index α with |α| = m if and only if N ≥ 2 or p > 1.

Theorem 17.71. Let Ω, U ⊆ RN be open sets, let m ∈ N, let Ψ : U → Ω be
invertible, with Ψ ∈ Cm−1,1(U ;RN ) and Ψ−1 Lipschitz continuous, and let u ∈
Wm,p(Ω), 1 ≤ p ≤ ∞. Then u ◦ Ψ belongs to Wm,p(U) and and for every multi-
index α ∈ NM0 , with 0 < |α| ≤ m, and for LN -a.e. y ∈ U ,

∂|α|

∂yα
(u ◦Ψ)(y) =

∑
cα,β,γ,l

∂|β|u

∂xβ
(Ψ(y))

|β|∏
i=1

∂|γi|Ψli

∂yγi
(y),

where cα,β,γ,l ∈ R, the sum is done over all β ∈ NN0 with 1 ≤ |β| ≤ |α|, γ =

(γ1, . . . , γ|β|), γi ∈ NM0 , with |γi| > 0 and
∑|β|
i=1 γi = α, and l = (l1, . . . , l|β|),

li ∈ {1, . . . , N}, i = 1, . . . , |β|.

To extend the Sobolev—Gagliardo—Nirenberg embedding theorem to functions
in Ẇm,p(RN ), where m ≥ 2 and 1 ≤ p <∞ are such that mp < N , for every k = 0,
. . . , m we define the Sobolev critical exponent.

(17.23) p∗m,k :=
Np

N − (m− k)p
.

Note that p∗m,m−1 = p∗ and p∗m,m = p.

Corollary 17.72 (Sobolev—Gagliardo—Nirenberg’s embedding in Wm,p). Let
m ∈ N and 1 ≤ p < ∞ be such mp < N . Then for every function u ∈ Wm,p(RN )
and for every k = 0, . . . , m− 1 and

‖∇ku‖
L
p∗
m,k (RN )

� ‖∇mu‖Lp(RN ).

In particular,

Wm,p(RN ) ↪→ Lq0(RN ) ∩W 1,q1(RN ) ∩ · · · ∩Wm−1,qm−1(RN )

for all p ≤ qk ≤ p∗m,k, k = 0, . . . , m− 1.

Theorem 17.73 (Sobolev—Gagliardo—Nirenberg’s embedding in Ẇm,p). Let
m ∈ N and 1 ≤ p < ∞ be such mp < N . Then for every function u ∈ Ẇm,p(RN )
there exists a polynomial Pu of degree m− 1 such that

‖∇k(u− Pu)‖
L
p∗
m,k (RN )

� ‖∇mu‖Lp(RN )
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for every k = 0, . . . , m− 1. Moreover,

Pu = u−
∑
|α|=m

(Kα ∗ ∂αu),

where Kα(x) := m
βNα!

xα

‖x‖N , x ∈ R
N \ {0}.

Theorem 17.74. Let m ∈ N, m ≥ 2. Then for every u ∈ Ẇm,N/m(RN ) there
exists a polynomial Pu of degree m− 1 such that

|u− Pu|BMO(RN ) � ‖∇mu‖LN/m(RN )

and
‖∇k(u− Pu)‖LN/k(RN ) � ‖∇mu‖LN/m(RN )

for k = 1, . . . , m− 1. In particular,

Wm,N/m(RN ) ↪→ BMO(RN ) ∩W 1,q1(RN ) ∩ · · · ∩Wm−1,qm−1(RN )

for all N/m ≤ qk ≤ N/k, k = 1, . . . , m− 1.

Theorem 17.75. Let m,N ∈ N be such N > m. Then for every function
u ∈Wm,N/m(RN ),

‖u‖Lq(RN ) �m,N q1−1/p+1/q‖u‖Wm,N/m(RN )

for every N/m < q <∞ and

‖∇ku‖LN/k(RN ) � ‖∇mu‖LN/m(RN )

for every k = 1, . . . , m− 1. In particular,

Wm,N/m(RN ) ↪→ Lq0(RN ) ∩W 1,q1(RN ) ∩ · · · ∩Wm−1,qm−1(RN )

for all N/m < q0 <∞ and all N/m ≤ qk ≤ N/k, k = 1, . . . , m− 1.

Theorem 17.76 (Morrey’s embedding in Wm,p). Let m ∈ N, m ≥ 2, and
1 ≤ p < ∞ be such mp > N . Then Wm,p(RN ) ↪→ C`,θ(RN ), where if m −N/p is
not an integer,

` := bm−N/pc, θ := m− `−N/p,
while if m−N/p is an integer,

` := m− 1−N/p, θ := any number less than 1.

Definition 17.77. Given m ∈ N and 1 ≤ p ≤ ∞, an open set Ω ⊆ RN is called
an extension domain for the Sobolev space Wm,p(Ω) if there exists a continuous
linear operator

E : Wm,p(Ω)→Wm,p(RN )

with the property that for all u ∈Wm,p(Ω), E(u)(x) = u(x) for LN -a.e. x ∈ Ω.

Theorem 17.78 (Gagliardo—Nirenberg interpolation, I). Let 1 ≤ p, q ≤ ∞,
m ∈ N, k ∈ N, with 1 ≤ k < m, r be such that

k

m

1

p
+
(

1− k

m

)1

q
=

1

r
.

Then
‖∇ku‖Lr(RN ) � ‖u‖

1−k/m
Lq(RN )

‖∇mu‖k/m
Lp(RN )
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for every u ∈ Lq(RN ) ∩ Ẇm,p(RN ). In particular, if 1 ≤ p, q ≤ ∞, and r is given
by

1

2p
+

1

2q
=

1

r
,

then
‖∇u‖Lr(RN ) � ‖u‖

1/2

Lq(RN )
‖∇2u‖1/2

Lp(RN )

for every u ∈ Lq(RN ) ∩ Ẇ 2,p(RN ).

Theorem 17.79 (Gagliardo—Nirenberg interpolation, general case). Let 1 ≤
p, q ≤ ∞, m ∈ N, k ∈ N0, with 0 ≤ k < m, and θ, r be such that

0 ≤ θ ≤ 1− k/m

and

(17.24) (1− θ)
(1

p
− m− k

N

)
+ θ
(1

q
+
k

N

)
=

1

r
∈ (−∞, 1].

Then

(17.25) |∇ku|r � ‖u‖θLq(RN )‖∇mu‖
1−θ
Lp(RN )

for every u ∈ Lq(RN ) ∩ Ẇm,p(RN ), with the following exceptional cases:

(i) If q = r =∞ and 1 < p <∞, then (17.25) fails for θ ∈ (0, 1).
(ii) If k = 0, mp < N , r < q =∞, we assume that u vanishes at infinity.
(iii) If 1 < p <∞ and m−k−N/p is a nonnegative integer, then (17.25) only

holds for 0 < θ ≤ 1− k/m.

Exercise 17.80. Let Ω ⊂ RN be an open bounded set, let E ⊆ Ω be a Lebesgue
measurable set with finite positive measure, let m ∈ N, and let 1 ≤ p ≤ ∞. Prove
that given u ∈ Wm,p(Ω) there exists a polynomial pE(u) of degree m− 1 such that
for every multi-index α ∈ NN0 , with 0 ≤ |α| ≤ m− 1,∫

E

(∂αu(x)− ∂αpE(u)(x)) dx = 0.

Theorem 17.81 (Poincaré’s inequality in Wm,p(Ω)). Let m ∈ N, let 1 ≤ p <
∞, and let Ω ⊂ RN be a connected extension domain for Wm,p(Ω) with finite
measure. Let E ⊆ Ω be a Lebesgue measurable set with positive measure. Then for
all u ∈Wm,p(Ω),

m−1∑
k=0

‖∇k(u− pE(u))‖Lp(Ω) �E,Ω ‖∇mu‖Lp(Ω).

Proposition 17.82 (Poincaré’s inequality for rectangles). Let m ∈ N, let 1 ≤
p < ∞, and let R = (0, a1) × · · · × (0, aN ) ⊂ RN . Then for all u ∈ Wm,p(R), and
every 0 ≤ k ≤ m− 1,

‖∇k(u− pR(u))‖Lp(R) � (max{a1, . . . , aN})(m−k)‖∇mu‖Lp(R).

Exercise 17.83. Let R be as in the previous theorem and let u ∈ Ẇm,p(R).
Prove that u ∈ Wm,p(R). Hint: Prove first that pR(u) can be replaced by pR1

(u),
where R1 is rectangle compactly contained in R.
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Theorem 17.84 (Poincaré’s inequality for convex sets). Let m ∈ N, let 1 ≤
p <∞ and let Ω ⊂ RN be an open bounded convex set. Then for all u ∈Wm,p(Ω),
and every 0 ≤ k ≤ m− 1,

‖∇k(u− pΩ(u))‖Lp(Ω) � (diam Ω)m−k‖∇mu‖Lp(Ω).

Theorem 17.85 (Poincaré’s inequality for star-shaped sets). Let m ∈ N, let
1 ≤ p <∞, and let Ω ⊂ RN be an open set star-shaped with respect to x0 ∈ Ω and
such that

Q(x0, 4r) ⊆ Ω ⊆ B(x0, R)

for some r,R > 0. Then for all u ∈Wm,p(Ω), and every 0 ≤ k ≤ m− 1,

‖∇k(u− pΩ(u))‖Lp(Ω) � Rm−k(R/r)(N−1)(m−k)/p‖∇mu‖Lp(Ω).

Exercise 17.86. Let Ω be as in the previous theorem and let u ∈ Ẇm,p(Ω).
Prove that u ∈Wm,p(Ω).

Theorem 17.87 (Stein). Let Ω ⊆ RN be an open set with uniformly Lipschitz
continuous boundary. Then for all 1 ≤ p ≤ ∞ and m ∈ N there exists a contin-
uous linear operator E : Wm,p(Ω) → Wm,p(RN ) such that for all u ∈ Wm,p(Ω),
E(u)(x) = u(x) for LN -a.e. x ∈ Ω, and

‖E(u)‖Lp(RN ) �M ‖u‖Lp(Ω),

‖∇kE(u)‖Lp(RN ) �ε,L,M
k∑
i=0

‖∇iu‖Lp(Ω)

for every 1 ≤ k ≤ m.

Theorem 17.88. Let R := I1 × · · · × IN ⊆ RN , where each Ii ⊆ R is an open
interval, let 1 ≤ p, q, r ≤ ∞ be such that

(17.26)
1

r
=

1

2p
+

1

2q
,

and let u ∈ Lq(R) ∩ Ẇ 2,p(R). Then

‖∂iu‖Lr(R) � ‖u‖1/2Lq(R)‖∂
2
i u‖

1/2
Lp(R)

for all i = 1, . . . , N , provided all the intervals Ii have infinite length, while

‖∂iu‖Lr(R) � `−1(LN (R))1/r−1/q‖u‖Lq(R) + ‖u‖1/2Lq(R)‖∂
2
i u‖

1/2
Lp(R)

if all the intervals Ii have finite length and p ≤ q, where ` := mini L1(Ii).

Theorem 17.89 (Gagliardo—Nirenberg interpolation, m = 2). Let Ω ⊆ RN
be an open set with uniformly Lipschitz continuous boundary (with parameters
ε, L,M), let 0 < ` < ε/(4(1 + L)), and let 1 ≤ p, q, r ≤ ∞ be such that p ≤ q
and (17.26) holds. If p < q assume further that Ω is bounded. Then for every
u ∈ Lq(Ω) ∩ Ẇ 2,p(Ω), if p < q,

‖∇u‖Lr(Ω) � `−1(LN (Ω))1/r−1/q‖u‖Lq(Ω) + ‖u‖1/2Lq(Ω)‖∇
2u‖1/2Lp(Ω)

if p < q, while if p = q,

‖∇u‖Lp(Ω) � `−1‖u‖Lp(Ω) + ‖u‖1/2Lp(Ω)‖∇
2u‖1/2Lp(Ω).
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Remark 17.90. We remark that when Ω ⊂ RN is an open, bounded, connected
set with Lipschitz boundary and if u ∈ Lq(Ω) ∩ Ẇ 2,p(Ω), where 1 ≤ q ≤ p, then it
follows from Poincaré’s inequality that u and ∇u are in Lp(Ω) and so in all Lr(Ω)
for 1 ≤ r ≤ p. This is why we only considered the interesting case p < q in the
previous theorem.

An important consequence of the previous theorem is the following result.

Corollary 17.91. Let Ω ⊆ RN be an open set with uniformly Lipschitz con-
tinuous boundary and let 1 ≤ p ≤ ∞. Then W 2,p(Ω) = Lp(Ω) ∩ Ẇ 2,p(Ω) with
equivalence of the norms

∑2
k=0 ‖∇ku‖Lp(Ω) and ‖u‖Lp(Ω) + ‖∇2u‖Lp(Ω).

Remark 17.92. Note that for sets of infinite measure the previous corollary
cannot be obtained using the Poincaré inequality.

Next we consider the case m ≥ 2.

Theorem 17.93 (Gagliardo—Nirenberg interpolation, m ≥ 2). Let Ω ⊆ RN
be an open set with uniformly Lipschitz continuous boundary (with parameters
ε, L,M), let 0 < ` < ε/(4(1 + L)), let m, k ∈ N, with m ≥ 2 and 1 ≤ k < m,
and let 1 ≤ p, q, r ≤ ∞ be such that p ≤ q and

k

m

1

p
+

(
1− k

m

)
1

q
=

1

r
.

If p < q assume further that Ω is bounded. Then for every u ∈ Lq(Ω) ∩ Ẇm,p(Ω),

‖∇ku‖Lr(Ω) � `−k(LN (Ω))1/r−1/q‖u‖Lq(Ω) + ‖u‖1−k/mLq(Ω) ‖∇
mu‖k/mLp(Ω)

if p < q, while

‖∇ku‖Lp(Ω) � `−k‖u‖Lp(Ω) + ‖u‖1−k/mLp(Ω) ‖∇
mu‖k/mLp(Ω)

if p = q.

As in the case m = 2, the previous inequality implies the following important
consequence.

Corollary 17.94. Let Ω ⊆ RN be an open set with uniformly Lipschitz con-
tinuous boundary, let m ∈ N with m ≥ 2 and let 1 ≤ p ≤ ∞. Then Wm,p(Ω) =

Lp(Ω)∩ Ẇm,p(Ω) with equivalence of the norms
∑m
k=0 ‖∇ku‖Lp(Ω) and ‖u‖Lp(Ω) +

‖∇mu‖Lp(Ω).


