
Revision v2.0 , Chapter I
Foundations of Geometry in the Plane

The primary goal of this book is to display the richness, unity, and insight
that the concept of symmetry brings to the study of geometry. To do so,
we must start from a solid grounding in elementary geometry. This chapter
provides that necessary background.

A rigorous treatment of foundational geometry is hardly elementary: it re-
quires a careful development of appropriate concepts, axioms, and theorems.
We will not give all the details for such a full axiomatic treatment. We will,
however, structure the discussion in this chapter to outline such a treatment.
The logical clarity of this approach helps in understanding and remembering
the material.1

There are various ways to build a foundation for geometry. Our approach is
that of metric geometry, which means that distance between points and
angular measure are central organizing concepts. These concepts, in turn,
are dependent on the basic properties of R, the real number system. We
thus begin our discussion with some comments about the real numbers.

§I.1 The Real Numbers

We denote the set of real numbers with the symbol R. Other important
number systems are Z, the set of integers; N, the set of natural numbers
(non-negative integers); and Q, the set of rational numbers (quotients of
integers). Later we will also discuss C, the set of complex numbers.

Intuitively the real numbers correspond to the points on a straight line.
Given a line ℓ, fix a unit of length (e.g., an inch), designate a point O on
ℓ as the origin, and specify the “positive” and “negative” sides of ℓ. Then
every point p of ℓ respresents one unique real number xp, where xp is the
distance of p to O (positive or negative depending on the side of O) — this is
shown in Figure 1.1. The algebraic operations of addition and multiplication
of real numbers then correspond to geometric movements on the line.

1We closely follow the development of geometry found in Edwin Moise, Elementary Geometry

from an Advanced Standpoint, Third Edition, Addison Wesley Publishers. This book is the
primary reference for the basic geometry to be used in Continuous Symmetry.

1



2 Revision v2.0 , Chapter I, Foundations of Geometry in the Plane

xp

xp

distance

O
ℓ

p

0 1 2-1-2

Figure 1.1. The real number line.

Using the number line, the order operation on real numbers, x < y, read “x
is less than y,” means that the point corresponding to x occurs “to the left”
of the point corresponding to y. The inequality x ≤ y, read “x is less than
or equal to y,” means either x < y or x = y.

We will assume all the standard algebraic properties of the real numbers, i.e.,
all the standard properties of addition, multiplication, subtraction, division,
and order. For example, if x + r = y + r, then x = y, or if x < y and
r > 0, then rx < ry. Do not underestimate the importance or the depth of
this assumption! We base our development of geometry on the real number
system, a system whose existence is non-trivial to establish and whose prop-
erties are sophisticated. A proper study of the real number system belongs
to the mathematical subject known as analysis.

Using the order relations, we define various types of intervals for real num-
bers a < b:

bounded closed interval: [a, b] = {all x such that a ≤ x ≤ b},
bounded open interval: (a, b) = {all x such that a < x < b}.

We allow open endpoints with a = −∞ or b = ∞. However, in those cases
the intervals are unbounded.

The real numbers include all the natural numbers 1, 2, 3, . . . . An important
property of this inclusion is called the Archimedean Ordering Principle:

For any real number x there exists a natural number n greater than x.

One simple but highly important consequence of this property is that for
any positive real number ǫ > 0, no matter how small, there exists a natural
number n such that 1/n < ǫ (Exercise 1.1). Thus the fraction 1/n can be
made “arbitrarily small” by choosing n sufficiently large.

Completeness of the Real Number System. An intuitive understand-
ing of real numbers as developed in, say, advanced secondary school algebra,
will suffice for most of our work. However, there is one far deeper fact that
we will need at certain times: the real number line “has no holes.” When rig-
orously formulated, this property is known as the completeness of the real
number system. Some readers may wish to defer this sophisticated concept
until needed later in the text.

Such readers should now skip to §I.2.
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There are various equivalent ways to describe completeness — we will give
a description that is easy to picture using closed intervals. A sequence of
bounded, closed intervals [a1, b1], [a2, b2], . . . is said to be nested if each
interval contains the next one as a subset. Written in set notation, this
means

[a1, b1] ⊇ [a2, b2] ⊇ · · · ⊇ [an, bn] ⊇ · · · .

The real number system R is said to be complete because every such nested
sequence of bounded closed intervals has at least one real number x that
belongs to all the intervals:

Theorem 1.2. The Completeness of R.
For any nested sequence of bounded closed intervals in R there will al-
ways be at least one real number x that belongs to all the intervals (i.e.,
x is in the intersection of all the intervals).

This theorem is illustrated in Figure 1.3.
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Figure 1.3. All the nested intervals [an, bn], n = 1, 2, 3, . . . , contain x.

If the nested intervals are not closed, then there might or might not be a
point common to all the intervals. This is examined in Exercise 1.3.

The intuitive meaning of completeness is that the real number line “has no
holes.” If you have not studied a rigorous formulation of the real number
system (such as in an introductory analysis course), it’s probably hard to
appreciate the importance of completeness. In fact, it is of critical impor-
tance in much of mathematics — it guarantees that real numbers exist when
and where we need them. An example of a number system which is not com-
plete is Q, the set of rational numbers (fractions). It would, for example,
be very difficult to develop calculus with just rational numbers — there are
too many “holes” because the rationals are not complete. These ideas are
more fully explored in the exercises.

More on Completeness: Bolzano’s Theorem. There are several prop-
erties of the real number system that are implied by completeness. One such
property we will use later in the book is every bounded sequence in R has
a convergent subsequence. This is known as Bolzano’s Theorem. We now
explain this result.
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A sequence {xn}∞n=1 of real numbers is termed bounded if all the elements
of the sequence are contained in a bounded interval, i.e., there exists a
bounded interval [a, b] such that a ≤ xn ≤ b for all n. A sequence {xn}∞n=1

is said to converge to x if the terms in the sequence become arbitrarily
close to x as the index n becomes large.

A sequence can be bounded but not converge: a simple example is the
sequence

{1,−1, 1,−1, 1,−1, . . . }.
However, this sequence does have convergent subsequences; one example
is {1, 1, 1, . . . }. In fact, the completeness of the real number system im-
plies that every bounded sequence has a convergent subsequence. This is
Bolzano’s Theorem.

Theorem 1.4. Bolzano’s Theorem.
Every bounded sequence in R has a convergent subsequence.

The proof of Bolzano’s Theorem, showing it to be a consequence of the
completeness of the real number system as formulated in Theorem 1.2, is
given in §14.

Exercises I.1
“Why,” said the Dodo, “the best way to explain it is to do it.” Lewis Carroll

Exercise 1.1.

(a) Show that for any positive real number ǫ > 0, no matter how small,
there exists a natural number n such that 1/n < ǫ.
Hint: Use the Archimedean Ordering Principle with x = 1/ǫ.

(b) For any real number x′ show there exists an integer n′ less than x′.
Hint: Use the Archimedean Ordering Principle with x = −x′.

Exercise 1.2.

(a) Given any real number x, show there exists a smallest integer n0

such that x < n0. Hint: Use Archimedean order to show there
exists an integer N such that x < N . Then use Exercise 1.1b to
show that the set of integers {k | x < k ≤ N} is non-empty and
finite. Any finite set of real numbers must have a smallest member.

(b) Suppose x1 and x2 are two real numbers such that x1 < x2. Prove
there exists a rational number r = n/m such that x1 < r < x2.
Outline: First show there exists a positive integer m large enough
so that 1/m < x2 − x1. Then show there exists a smallest integer
n such that x1 < n/m. To verify that r = n/m is what you need,
you must only verify r < x2.

(c) Suppose x1 and x2 are two real numbers such that whenever r1 and
r2 are rational numbers satisfying r1 < x1 < r2, then r1 < x2 < r2
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is also true. Prove that x1 = x2. This strange looking result is
actually quite useful — indeed, it will be used later in the text.
Hint: It is easiest to use a proof by contraposition: begin by sup-
posing x1 < x2, then prove there exist rational numbers r1, r2 such
that r1 < x1 < r2 and r2 ≤ x2.

The remaining exercises examine the notion of completeness of the real num-
ber system.

Exercise 1.3.

Show that a nested sequence of bounded open intervals might or might
not have a common point. Hint: Show that the nested sequence of
bounded open intervals An = (−1/n, 1/n) does have a common point
(simply identify the point!), while the sequence Bn = (0, 1/n) does not
have a common point (show that any real number x must be excluded
from at least some of the Bn intervals).

Exercise 1.4.

Show that Q, the rational number system, is not complete. Hint: For
any two real numbers a < b define the rational closed interval [a, b]Q
to be the set of all rational numbers in [a, b], i.e., [a, b]Q = [a, b] ∩ Q.
Then consider the collection of rational bounded closed intervals {In}∞n=1

where In = [
√

2,
√

2 + 1/n]Q for each positive integer n.

Exercise 1.5.

(a) Consider the sequence

{ 1

2
, −1

2
,

2

3
, −2

3
,

3

4
, −3

4
,

4

5
, −4

5
, . . . }.

Show that this sequence does not converge in the real number sys-
tem. However, illustrate the truth of Bolzano’s Theorem for this
sequence by giving examples of at least two subsequences that do
converge in R.

(b) Consider the infinite decimal expansion for the square root of 2:√
2 = 1.41421356....

We use this expansion to define a sequence as follows:

{1,−1, 1.4,−1.4, 1.41,−1.41, 1.414,−1.414, 1.4142,−1.4142, . . . }.

Show that this sequence does not converge in the real number sys-
tem. However, illustrate the truth of Bolzano’s Theorem for this
sequence by giving examples of at least two subsequences that do
converge in R.

(c) The sequences in parts (a) and (b) are also sequences in Q, the
rational number system. However, show that only one of these
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sequences has a subsequence that converges in Q. This shows that
Bolzano’s Theorem is true only for some sequences in Q, but not all
of them. What is the property that R possesses but Q lacks that
allows this to happen?

Exercise 1.6. Infinite Decimal Expansions.

What is the meaning of an infinite decimal such as .1121231234...? In
this exercise you will see that any infinite decimal denotes a unique real
number because the real number system is complete! Suppose x1, x2, x3,
. . . is a sequence of digits (integers between 0 and 9). For each positive
integer n define the two finite decimals

an = .x1x2 . . . xn and bn = .x1x2 . . . xn + 1/10n.

This means that an and bn are equal to

an =
x1

10
+

x2

100
+ · · · + xn

10n
and bn =

x1

10
+

x2

100
+ · · ·+ xn + 1

10n
.

(a) Show that an and bn are both rational numbers.

(b) Show that [a1, b1], [a2, b2], . . . is a nested sequence of bounded closed
intervals.

(c) Use completeness to show that there is a unique real number x in
all of the intervals [a1, b1], [a2, b2], . . . . This is the real number
corresponding to the infinite decimal expansion given by the digits
x1, x2, x3, x4, . . . , i.e., x = .x1x2x3x4 . . . .
Hint: The existence of a real number x in all the intervals is imme-
diate from completeness. Uniqueness is a little less trivial. Suppose
y is a second number in all the intervals, and let n be a positve
integer large enough so that |x − y| > 1/10n. Could x and y both
be in the interval [an, bn]?

§I.2 The Incidence Axioms

A formal description of the real number system is often given using the
axiomatic method. This begins with the real numbers as undefined objects
and then states axioms (also called postulates or assumptions) which define
the desired properties of real numbers. Commonly there are a set of field
axioms (describing the basic properties of addition and multiplication), a set
of order axioms (describing the behavior of < and >), and a completeness
axiom (equivalent to the nested intervals property of §1). Then all desired
results about real numbers are proven from these axioms (or from results
previously derived from the axions).

When using the axiomatic method for a mathematical theory, the desire is
always to state the minimal number of axioms possible. In particular, if
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Axiom D can be proven from Axioms A, B, and C, then Axiom D should be
removed from the list of axioms and relabeled as a theorem or proposition.

It is also important to demonstrate that a proposed set of axioms is consis-
tent, meaning that the axioms don’t ultimately contradict one other. Veri-
fying consistency generally requires exhibiting a concrete example, called a
model for the axiom system, in which all the axioms are indeed satisfied.

An axiomatic approach is necessary for the rigorous development and under-
standing of geometry. In this chapter we therefore develop a set of axioms
sufficient to support Euclidean geometry in the plane and explain the mean-
ing and important consequences of the axioms. Variations of this axiom
system will describe different geometries — that will be explained in Vol-
ume II of this text. The axiom system of this chapter will show Euclidean
geometry developed in a logical order and provide the tools needed for the
remainder of the book. We will, however, develop only those results which
are necessary for subsequent work and will present only some of the proofs.2

The Undefined Objects.

The (Euclidean) plane is a set E consisting of points. There is also
a collection L of special subsets of E called (straight) lines.

The points and lines are the undefined objects of our axiom system — their
properties will be determined solely by the axioms we set down. Note,
however, that our intuitive notion for a line is that of a straight line which
is infinitely long in both of its directions.

We begin our list of axioms with those concerning incidence, properties
about the intersection or containment of sets. These are not surprising.

Incidence Axioms.

I-1. The plane E contains at least three non-collinear points, i.e., three
points which are not all contained on the same line.

I-2. Given two distinct points p and q, there is exactly one line ←→pq
containing both.

There’s not much we can prove from just these two axioms. However, we
do have the following simple proposition:

Proposition 2.1.
Two different lines can intersect in at most one point.

Proof. Suppose ℓ1 and ℓ2 are two different lines whose intersection contains
two distinct points, p and q. Axiom I-2 states there is only one line which
contains both p and q. Hence ℓ1 and ℓ2 must both equal that line, and hence

2A complete axiomatic development of Euclidean geometry is given in Edwin Moise, Ele-

mentary Geometry from an Advanced Standpoint, as cited at the start of this chapter.
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the two lines are not different, contradicting our starting assumption. Thus
we cannot have two distinct points in the intersection of ℓ1 and ℓ2. �

Because our Incidence Axioms are so brief and simple there are a wide
variety of wildly different models for this initial axiom system. We present
several such models, all of which will have important uses later in the text
and its sequel.

Example 2.2. R2: The Real Cartesian Plane.

The points of this model are all ordered pairs (x, y), where x and y are
any two real numbers. Thus the plane in this model, which we denote
as R2, is simply the set of all ordered pairs of real numbers:

R2 = {(x, y) | x, y ∈ R}.

A line in this model is the set of all points (x, y) that satisfy an equation
of the form ax+ by + c = 0 for some set of real numbers a, b, c, where
at least one of the two numbers a or b is not zero. This definition of line
includes those with well-defined “slopes,” i.e., those whose equations
can be put in the form y = mx + B (the case when b 6= 0), as well
as vertical lines of the form x = C (the case when b = 0 but a 6= 0).
Written formally, the set L of lines is given by

L = {La,b,c | a, b, c ∈ R and a2 + b2 6= 0}, where

La,b,c = {(x, y) | ax+ by + c = 0}.

In order for the set R2 with the specified lines L to be a model for the Inci-
dence Axioms, we must verify each axiom for the pair R2 and L. We must
take care in our verifications: we cannot appeal to “intuitive” understandings
of the meaning of points and lines; we must only use the precise definitions
of points and lines as given in the definitions of R2 and L. Although the
tools needed for these verifications are simply high school algebra and basic
logical thinking, the resulting arguments are surpisingly sophisticated.

I-1. We must show that there are at least three points in R2 which are not
contained in any single line. For example, consider the points (0, 0), (1, 1),
and (−1, 1). Suppose they were all contained in one line La,b,c. Then an
equation of the form ax+ by + c = 0 is satisfied by all three points, giving

a 0 + b 0 + c = 0,

a 1 + b 1 + c = 0,

a (−1) + b 1 + c = 0.

Hence c = 0, a+ b = 0, and −a+ b = 0. But these last two equations imply
a = b = 0, which is not allowed in our definition of a line. This proves that
our three points do not lie on the same line.
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I-2. Given two distinct points p = (x1, y1) and q = (x2, y2), we must show
there is exactly one line L in R2 containing both points.

First consider the case x1 = x2. We will show that the only line containing
p and q is the line with equation x = x1. Clearly this line does contain the
two points, so now we must prove it to be unique. If the two points are also
contained in another line La,b,c, then

ax1 + by1 + c = 0 and ax2 + by2 + c = 0.

Since x1 equals x2, this gives by1 = by2, which implies y1 = y2 if b 6= 0.
But since p and q are distinct points with x1 = x2, then y1 cannot equal y2.
Thus b = 0, and hence a cannot be zero. Thus the equation of La,b,c must
be of the form ax+ c = 0 with a 6= 0, which can be rewritten as

x = −c/a.

Since p = (x1, y1) satisfies this equation, this shows x1 = −c/a, so that the
equation for La,b,c can indeed be rewritten as x = x1, as we desired to show.
Thus, in the case where x1 and x2 are equal, we have shown there exists
exactly one line in L containing our two points.

Now consider the second case, when x1 and x2 are unequal. If La,b,c is a line
(that we must show exists and is unique) containing both points, then

ax1 + by1 + c = 0 and ax2 + by2 + c = 0.

We claim that in this case b cannot be zero. For suppose b = 0. Then

ax1 + c = 0 and ax2 + c = 0,

which gives either x1 = x2 or a = 0. But neither can be true (since x1 6= x2

by assumption, and if a = 0, then both a and b are zero, contradicting
our definition of a line in R2). Hence b 6= 0, and so dividing the equation
ax + by + c = 0 by b shows that our line can be specified by an equation
of the form y = (−a/b)x+ (−c/b). Since this linear equation is satisfied by
both p = (x1, y1) and q = (x2, y2), we obtain a system of two equations:

y1 =(−a/b)x1 + (−c/b),
y2 =(−a/b)x2 + (−c/b).

Solving for the two unknown quantities −a/b and −c/b yields

−a/b =
y2 − y1

x2 − x1
, the slope of the line, (2.3a)

and

−c/b =
x2y1 − x1y2

x2 − x1
, the y-intercept of the line. (2.3b)
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Using these equations we can now show the existence and uniqueness of the
line La,b,c containing the points p and q. For the existence of La,b,c let b = 1
and define the necessary values of a and c from equations (2.3a) and (2.3b).
The line so defined will contain p and q, as desired. For the uniqueness of
La,b,c, notice that although b can have any non-zero value, equations (2.3a)
and (2.3b) then show a and c will be fixed multiples of b. In other words,
the linear equation ax + by + c = 0 is just a non-zero multiple of one fixed
equation, and hence all of these equations define just one unique line!

Hence given two distinct points in R2, there is exactly one line containing
both points. This verifies Axiom I-2 for R2, as desired. �

As you can see from Example 2.2, verifying axioms for a specific model can
be an intricate process. However, once done for a specific model, the axiom
system is seen to be consistent. Moreover, any theorem proven for the axiom
system applies to the specific model. For example, since R2 has been shown
to satisfy the Incidence Axioms, then Proposition 2.1 must apply to R2, i.e.,
any two distinct lines in R2 can intersect in at most one point.

Our next example, the Poincaré disk, will seem quite odd to those readers
who have not encountered non-Euclidean geometric systems. The primary
oddity is that what we call a “line” in the Poincaré disk is not always
“straight” in the ordinary Euclidean sense. In fact, most of the Poincaré
“lines” are actually parts of Euclidean circles. But though not “straight”
in the ordinary sense, the collection of Poincaré lines, combined with the
Poincaré disk, will satisfy the two incidence axioms!

This model will be important in Volume II of this text: it will provide the
basis for a standard model of hyperbolic geometry.

Example 2.4. P2: The Poincaré Disk.

The points of this model are the ordered pairs of real numbers (x, y) that
lie inside the unit disk, i.e., for which x2 + y2 < 1. Thus the “plane” in
this model, which we denote as P2, is the open unit disk

P2 = {(x, y) | x, y ∈ R and x2 + y2 < 1}.
There will be two types of lines in this model, both shown in Figure 2.5.
One will be any ordinary straight line containing the origin (0, 0) (re-
stricted of course to the open disk P2). These lines can be described
algebraically by taking any two real numbers a and b, at least one being
non-zero, and defining the line La,b to be the collection of points (x, y)
in the open unit disk that satisfy the equation ax+ by = 0, i.e.,

La,b = {(x, y) | ax+ by = 0 and x2 + y2 < 1}.
Such a line is ℓ1 in Figure 2.5. The other type of “line” will be any
ordinary circle in R2 (restricted to P2) which intersects the unit circle
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x2 + y2 = 1 in a perpendicular fashion, i.e., the tangent lines to the two
circles at a point of intersection must form a right angle. Examples are
ℓ2, ℓ3, and ℓ4 in Figure 2.5. In Exercise 2.4 you will show that such a
“line” can be described algebraically by taking any two real numbers α
and β, where α2 + β2 > 1, and defining the “line” L◦α,β (a circle in R2)

to be the collection of points (x, y) in the open unit disk that satisfy the
equation (x− α)2 + (y − β)2 = α2 + β2 − 1, i.e.,

L◦α,β = {(x, y) | (x− α)2 + (y − β)2 = α2 + β2 − 1, x2 + y2 < 1}.

The collection L of lines in the Poincaré disk is simply the collection of
all the lines La,b and L◦α,β defined above, i.e.,

L = {La,b | a2 + b2 > 0} ∪ {L◦α,β | α2 + β2 > 0}.

ℓ1

ℓ2

ℓ3

ℓ4

p1
p2

p3

Figure 2.5. Lines and points in P2, the Poincaré disk.

In order for the set P2 with the specified lines L to be a model for the
Incidence Axioms, we must demonstrate the truth of the two axioms I-1
and I-2 for the pair P2 and L, just as we did for the real Cartesian plane
R2. However, since the Poincaré disk will be new to most readers of this
text, even intuitively it may not be clear that the two axioms are valid!
Indeed they are — we will outline verifications below, leaving the details to
Exercise 2.4.

I-1. We must show that there are at least three points in P2 which are
not contained by any single “line.” It turns out that any three points in
the Poincaré disk which lie on a line not passing through the origin cannot
lie on any one Poincaré “line.” Draw some pictures to see why this must
be true. You can easily verify this claim algebraically for the three points
(0, 0), (0, 1/2), and (1/2, 0), proving Axiom I-1 for P2.
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I-2. Given any two points p = (x1, y1) and q = (x2, y2) in the Poincaré disk,
we must show there exists one and only one “line” in L that contains both
points. As with the real Cartesian plane R2 we have two cases to consider.

First consider the case where p and q both lie on an ordinary straight line
containing the origin (0, 0). Then the coordinates of p and q must satisfy an
equation of the form ax + by = 0 for some real numbers a and b, not both
zero. Moreover, the only linear equations of this form which are valid for
both p and q are just constant multiples of ax+ by = 0. This proves that p
and q are contained in one unique line of the form La,b. Furthermore, one
can show (Exercise 2.4) that the two points p and q, being collinear with
the origin, cannot lie on any “line” (circle) of the form L◦α,β.

Now consider the case where p and q do not lie on an ordinary straight line
containing the origin. This condition will be shown in Exercise 2.4 to be
equivalent to the expression x1y2 − x2y1 not equaling zero. However, this
condition is just what is needed to algebraically verify that there is exactly
one pair of numbers (α, β) such that the equation

(x− α)2 + (y − β)2 = α2 + β2 − 1

is satisfied by the coordinates of both p and q — you will verify this in
Exercise 2.4. Hence p and q are indeed contained in exactly one line of the
form L◦α,β, and they cannot be on any line of the form La,b.

This shows that any two points of the Poincaré disk are members of exactly
one Poincaré line in L, finishing the verification of Axiom I-2. �

The Poincaré disk stretched our concept of “line.” The next example, the
real projective plane, will stretch our concept of “point” as well as line. In
this model each “point” is a pair of antipodal (opposite) points on the unit
sphere, and each “line” is the collection of “points” which lie along a great
circle of the sphere!

Like the Poincaré disk, this model will reappear in Volume II of this text.
When expanded, it will become a basic model for elliptic geometry.

Example 2.6. RP2: The Real Projective Plane.

We start with the standard unit sphere S2 in R3:

S2 = {(x, y, z) | x2 + y2 + z2 = 1}.

If P = (x0, y0, z0) is a point on S2, then the point on the sphere directly
opposite P is its antipodal point Q = (−x0,−y0,−z0). The “points” of
RP2, the real projective plane, are the pairs of antipodal points of the
sphere. It is as though we simply consider a point and its antipodal
point as “the same.” Thus the set RP2 can be expressed as

RP2 = {{(x, y, z), (−x,−y,−z)} | x2 + y2 + z2 = 1}.



§I.2. The Incidence Axioms 13

A great circle on a sphere is a circle gotten by intersecting the sphere
with a plane that passes through the center of the sphere. If a point
P on a sphere lies on a great circle, then so does its antipodal point.
The “lines” of the real projective plane are simply the collections of all
pairs of antipodal points that lie on a given fixed great circle. Since
any plane through the origin in R3 is given by an equation of the form
ax+ by + cz = 0 where at least one of the numbers a, b, c is non-zero,
then any three such numbers determine a “line” La,b,c in RP2 by

La,b,c = {{(x, y, z), (−x,−y,−z)} | x2+y2+z2 = 1 and ax+by+cz = 0}.

The collection of all such La,b,c forms the collection L of “lines” in RP2:

L = {La,b,c | a2 + b2 + c2 > 0}.

Because there is only one type of line for RP2, verifying the Incidence Axioms
for the real projective plane is actually easier than for the real Cartesian
plane or the Poincaré disk. We leave the verification of these axioms to
Exercise 2.5.

Notice that Axiom I-2 would be false had we not identified antipodal points.
If we do not make this identification, then we would simply obtain the unit
sphere S2, with the lines being just the great circles. However, if we take
two antipodal points on the sphere — which are distinct points on S2 —
then there are an infinite number of great circles which contain these two
points. Thus Axiom I-2 does not hold for S2.

The next example of a model for the Incidence Axioms is perhaps the
strangest of all. The Moulton plane has some surprising properties that will
be highly instructive when projective geometry is studied in Volume II.

Example 2.7. MP2: The Moulton Plane.

The points of the Moulton plane MP2 are the same as for the real
Cartesian plane R2: all ordered pairs of real numbers. Thus

MP2 = {(x, y) | x, y ∈ R}.

However the collection of lines in MP2 is quite odd. There are three
kinds of lines, all illustrated in Figure 2.8:

(1) all vertical lines in R2, i.e., all collections of points (x, y) satisfying
an equation of the form x = a for a fixed constant a ∈ R (see ℓ1 in
Figure 2.8),

(2) all lines in R2 with non-positive slope, i.e., all collections of points
(x, y) satisfying an equation of the form y = mx+ b where m ≤ 0
and b is a fixed real constant (see ℓ2 in Figure 2.8),
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(3) all “bent” lines in R2 with a positive slope m > 0 when x < 0 and
a positive slope of half that amount, m/2 > 0, when x > 0. Thus
we have all collections of points (x, y) satisfying an equation

y =

{
mx+ b when x ≤ 0,

1
2mx+ b when x > 0,

where m > 0 and b is a real constant (see ℓ3 and ℓ4 in Figure 2.8).

ℓ1

ℓ2

ℓ3

ℓ4

p1

p2

p3

Figure 2.8. Lines and points in the Moulton plane.

It is not difficult to verify that the Moulton plane satisfies the Incidence
Axioms. The details are left to Exercise 2.6.

The next and final model may be surprising in that it is “three dimensional.”
A little thought should make this understandable: the Incidence Axioms
imply nothing about dimension. Further axioms will be needed to imply
that our geometry is “two dimensional.”

Example 2.9. R3: Real Cartesian Space.

The points in real Cartesian space R3 are all ordered triples of real
numbers, i.e.,

R3 = {(x, y, z) | x, y, z ∈ R}.
Lines in R3 are most conveniently described via parametric equations.
Given six fixed real constants a1, a2, a3, b1, b2, b3, where at least one of
the first three is non-zero, a line L is defined as the collection of points
(x, y, z) that can be expressed as

x =a1t+ b1,

y =a2t+ b2,

z =a3t+ b3

for some real number t. Thus

L = { (x, y, z) | there exists t ∈ R such that

x = a1t+ b1, y = a2t+ b2, z = a3t+ b3 }.
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There is a useful vector interpretation for L. Start with the point
(b1, b2, b3) and add to it all multiples of the vector (a1, a2, a3).

The set L of lines in R3 is the collection of all subsets of R3 of this form.

Verifying the Incidence Axioms for R3 will be left to Exercise 2.7.

The Incidence Axioms provide a very modest start on developing geometry
in the plane. We will make a quantum leap in the next section, postulating
the existence of a well-behaved distance for any two points in the plane.

Exercises I.2

Exercise 2.1.

Suppose we have a system of points and lines that satisfy the Incidence
Axioms. If r and s are distinct points on the line ←→pq , then what is the
relationship between the two lines ←→pq and ←→rs ? Prove your claim using
only the Incidence Axioms and/or Proposition 2.1.

Exercise 2.2.

Suppose we have a system of points and lines that satisfy the Inci-
dence Axioms. Prove there exist at least three distinct lines that do
not all intersect at one point. Use only the Incidence Axioms and/or
Proposition 2.1.

Exercise 2.3.

The Incidence Axioms do not go very far in describing a geometric
system. As an example, consider the following system. Let E0 be a
set of three non-collinear points, and call any two-point subset of E0 a
“line.” Verify that the Incidence Axioms are valid for this system.

Exercise 2.4. The Poincaré Disk

In this problem you will verify the various unproven claims made in the
discussion of Example 2.4, the Poincaré disk. This will complete the
proof that the Poincaré disk satisfies the Incidence Axioms.

(a) Suppose C is an ordinary circle in R2 with center (α, β) and radius
r > 0, i.e.,

C = {(x, y) | (x− α)2 + (y − β)2 = r2}.
Using basic high school analytic geometry, show that C intersects
the unit circle x2 + y2 = 1 in two right angles if and only if the

radius r equals
√
α2 + β2 − 1.

Hint: Let O be the origin, c the center of C, and p a point of
intersection of C with the unit circle. For both directions of your
verification consider properties of the triangle △Ocp. The reverse
implication requires some messy algebra.
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(b) Show that a Poincaré “line” L◦α,β, as defined in Example 2.4, is part

of an ordinary circle in R2 which intersects the unit circle x2+y2 = 1
in two right angles.

(c) Complete the proof of Axiom I-1 for the Poincaré disk by verifying
that the three points (0, 0), (0, 1/2), and (1/2, 0) cannot lie on any
Poincaré line. To do so, you must consider Poincaré lines of both
forms La,b and L◦α,β, showing contradictions occur if you assume
either type contains the three given points.

(d) Show that the equation defining the Poincaré line L◦α,β can be
rewritten in the following useful form:

x2 − 2αx+ y2 − 2βy + 1 = 0. (2.10)

(e) Suppose p = (x1, y1) and q = (x2, y2) are two distinct points in the
Poincaré disk P2 which lie along an ordinary straight line containing
the origin (0, 0). Show p and q cannot both lie on any Poincaré line
of the form L◦α,β.

Outline: p = (x1, y1) and q = (x2, y2) will be collinear with the
origin if and only if there exists a real number λ such that x2 = λx1

and y2 = λy1. Moreover, by interchanging p and q if necessary, we
can assume q is no farther from the origin than p. This is equivalent
to assuming −1 ≤ λ < 1.

To show p and q cannot both lie on a Poincaré line of the form L◦α,β,
assume the opposite, i.e., that both do lie on such a line. Then
(2.10) is valid for both p = (x1, y1) and q = (λx1, λy1). Subtract
the resulting two equations from each other and use

λ2 − 1 = (λ+ 1)(λ− 1)

to obtain λ(x2
1 + y2

1) = 1. Show this contradicts the assumption
that p = (x1, y1) is in the open unit disk P2.

(f) If the Poincaré line L◦α,β contains both p = (x1, y1) and q = (x2, y2),
then show the following system of equations is valid:

x1α+ y1β =(x2
1 + y2

1 + 1)/2,

x2α+ y2β =(x2
2 + y2

2 + 1)/2.

(g) Show that two points p = (x1, y1) and q = (x2, y2) are on an or-
dinary line in R2 that also contains the origin (0, 0) if and only
if x1y2 = x2y1. Be sure to consider the cases when some of the
coefficients are zero.

(h) Suppose p = (x1, y1) and q = (x2, y2) are not on an ordinary line in
R2 that also contains the origin. In this case show there is exactly
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one pair of values for α and β which satisfy the system of equa-
tions in (f). This proves there exists exactly one Poincaré line L◦α,β

containing the points p and q.

Exercise 2.5. The Real Projective Plane.

(a) Verify Axiom I-1 for the real projective plane RP2 (Example 2.6).

Hint: Pick three simple points on the sphere S2, none of which is
an antipodal point for the remaining two. Show these points cannot
lie on a plane in R3 that contains the origin. Then show why this
means the corresponding pairs of antipodal points in RP2 cannot
lie on one real projective line.

(b) Verify Axiom I-2 for RP2.

Exercise 2.6. The Moulton Plane.

(a) Determine the equation of the line in the Moulton plane containing
the points (−1, 1) and (2,−5).

(a) Determine the equation of the line in the Moulton plane containing
the points (−1, 1) and (2, 7).

(c) Verify the Incidence Axioms for the Moulton plane MP2.

Exercise 2.7. Real Cartesian Space.

Verify the Incidence Axioms for real Cartesian space R3.

§I.3 Distance and Coordinate Systems on Lines

In Euclidean geometry there exists a distance between any two points in
the plane. We build this into our model via the assumption of a coordinate
system for each line.

The desire is that each line ℓ appear to be a “copy” of the real number line R,
which at the very least requires the existence of a one-to-one correspondence3

χ from ℓ to R. Such a mapping χ is termed a coordinate system on ℓ.

Definition 3.1.

A coordinate system χ on a line ℓ is a one-to-one correspondence
χ : ℓ→ R.

We now assume, for each line ℓ in E , the existence of a fixed coordinate
system χℓ : ℓ → R. This adds the coordinate systems to our collection of
undefined objects of the previous section; the properties of the coordinate
systems will be specified by subsequent axioms.

3A one-to-one correspondence χ from a set A to a set B is a function χ : A→ B such that,
for each b ∈ B, there is a unique a ∈ A for which χ(a) = b. This is equivalent to the mapping
χ : A→ B being both one-to-one and onto. In other words, we have a “pairing” between elements
of A and elements of B.
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Notice a simple but important consequence of our assumption: every line
has an infinite number of distinct points. For suppose ℓ is a line. Then
the assumed coordinate system χℓ : ℓ → R is a one-to-one correspondence
between ℓ and R. Since R is infinite, this means ℓ must also be infinite, as
claimed. For this reason, the “three point geometry” of Exercise 2.3 will no
longer satisfy the axiomatic system we are building.

Given a line ℓ, any two points p, q in ℓ are identified with two points χℓ(p),
χℓ(q) in R. But points in R have a distance defined between them; it is
therefore natural to take the distance between χℓ(p), χℓ(q) in R, which is
|χℓ(p)− χℓ(q)|, and use it as the distance between p and q in ℓ, i.e.,

the distance d(p, q) between p and q in ℓ equals |χℓ(p)− χℓ(q)|.
Since any two distinct points in the plane E are contained on exactly one
line, we have therefore defined a distance d(p, q) between any two points p,
q in E . This number is denoted by several different notations: d(p, q), |pq|,
or simply pq.

Let E ×E denote the collection of all ordered pairs (p, q) of two points in the
plane. Then the distance d is a function assigning a real number to each
pair (p, q) in E × E , written as d : E × E → R. We summarize this definition
of distance as follows:

Definition 3.2.

For each line ℓ in the plane fix a coordinate system χℓ : ℓ → R. Then
the distance function on the plane E is the function d : E × E → R

which assigns to any two points p, q a real number d(p, q) = pq defined
by

d(p, q) = pq =

{ |χℓ(p)− χℓ(q)| if p 6= q where ℓ =←→pq ,

0 if p = q.
(3.3)

This number d(p, q) = pq is called the distance between p and q.

All the expected elementary properties of distance for points lying along a
single line are valid for our distance function. These are summarized in the
next proposition.

Proposition 3.4. Distance Properties along a Line.
Let d be the distance function (3.3) on the plane E. Then

(a) d(p, q) ≥ 0 for any two points p and q,

(b) d(p, q) = 0 if and only if p = q,

(c) d(p, q) = d(q, p) for any two points p and q,

(d) d(p, q) ≤ d(p, r)+ d(r, q) for any three collinear points p, q, and r.

Proof. All of these properties follow from (3.3) and the corresponding prop-
erties of distance in R. In particular, (d) follows from the triangle inequality
of R: |x+ y| ≤ |x|+ |y| for any two real numbers x, y. �



§I.3. Distance and Coordinate Systems on Lines 19

It is important to realize that property (d) is only valid (at this time) for
collinear points. Subsequent axioms will extend (d) to all points in the
plane, at which time it will become known as the triangle inequality for
E . The possible failure of the triangle inequality under our current small set
of axioms is examined in Exercise 3.3 (see also Exercise 3.4).

Any line ℓ actually has an infinite number of coordinate systems. For ex-
ample, if χ is a coordinate system on ℓ and a, b are fixed real numbers such
that a 6= 0, then defining ξ : ℓ→ R by ξ(p) = aχ(p) + b for all points p on
ℓ produces a new coordinate system on ℓ (Exercise 3.1). However, two dif-
ferent coordinate systems on a line ℓ will not necessarily produce the same
distance function on ℓ. If they do, the coordinate systems are said to be
equivalent .

Definition 3.5.

Two coordinate systems χ : ℓ → R and ξ : ℓ → R on a line ℓ are
equivalent if they give the same distances between points on ℓ.

If χℓ is the coordinate system we’ve fixed for a line ℓ, then we can replace χℓ

by any equivalent coordinate system without changing the distance function
(3.3) defined on the plane E . In fact, given a line ℓ, we will often desire
a coordinate system with the origin (the point with coordinate zero) at a
specified point p ∈ ℓ and the positive coordinates on a specified side of
p. If the coordinate system χℓ originally chosen for ℓ does not have these
desired properties, it is not difficult to prove that there exists an equivalent
coordinate system that does. This is the useful Ruler Placement Theorem.

Proposition 3.6. The Ruler Placement Theorem.
Let ℓ be a line with the chosen coordinate system χℓ : ℓ → R and let p
and q be two distinct points of ℓ. Then ℓ has an equivalent coordinate
system ξ such that p is the origin and q has a positive coordinate, i.e.,

ξ(p) = 0 and ξ(q) > 0.

Proof. Exercise 3.1.

The Real Cartesian Plane. In the previous section we discussed a number
of models for the Incidence Axioms. We now return to the first and most
fundamental of these models, Example 2.2, the real Cartesian plane R2, and
show that we can fix coordinate systems on the lines of R2 such that the
distance function they generate via (3.3) is the standard distance function
studied in analytic geometry:

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2. (3.7)

To verify our claim, for each line ℓ in R2 we must produce a coordinate
system χ which is compatible with (3.7). Any line ℓ in R2 is defined to be
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the set of points (x, y) that satisfy an equation of the form ax+ by + c = 0
for constants a, b, c where at least one of a, b is non-zero. If b = 0, then a 6= 0
and we can write x = −c/a for every point in this vertical line. But if b 6= 0,
then our line is given by the equation y = −(a/b)x − c/b. This allows the
following definition of a coordinate system χℓ on the line ℓ with equation
ax+ by + c = 0:

χℓ((x, y)) =

{
y if b = 0,

x
√

1 + (a
b
)2 if b 6= 0.

As you will show in Exercise 3.2, χℓ is a coordinate system on ℓ compatible
with (3.7). Hence, choosing such a coordinate system for each line results
in the standard distance function (3.7) on the real Cartesian plane R2. �

Exercises I.3

Exercise 3.1.

(a) Suppose χ is a coordinate system for a line ℓ and a, b are two
real numbers such that a 6= 0. Define a new function ξ on ℓ by
ξ(p) = aχ(p)+b for all points p on ℓ. Show that ξ is also a coordinate
system for ℓ. Hints: You need to show ξ is one-to-one and onto.
To show ξ is one-to-one, you assume ξ(p) = ξ(q) and prove that
p = q. To show ξ is onto, you take any real number x and show
there exists a point p on ℓ such that ξ(p) = x.

(b) Suppose χ and ξ are coordinate systems for a line ℓ as given in part
(a). For what values of a and b will these two coordinate systems
be equivalent, i.e., yield the same distance function on ℓ?

(c) Prove the Ruler Placement Theorem. Hint: Starting with χ = χℓ

and the points p, q ∈ ℓ, find values of a and b so that an equivalent
coordinate system ξ is defined such that ξ(p) = 0 and ξ(q) > 0.

Exercise 3.2.

Suppose ℓ is a line in the real Cartesian plane defined by the equation
ax+ by + c = 0 and χℓ : ℓ→ R is the function given by

χℓ((x, y)) =

{
y if b = 0,

x
√

1 + (a
b
)2 if b 6= 0.

(a) Prove that χℓ is a coordinate system on ℓ.

(b) If every line ℓ in R2 is given the coordinate system χℓ as defined in
(a), prove that the distance function defined on R2 is the standard
distance function studied in analytic geometry:

d((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2.
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Exercise 3.3.

In this problem we will ultimately show that the triangle inequality for
non-collinear points is not a consequence of the Incidence Axioms and
the existence of coordinate systems. To do so, suppose E is a set with
a collection L of special subsets called lines that satisfy the Incidence
Axioms and such that each line has a coordinate system. Assume no
further properties for this system! Hence,

• for each line ℓ ∈ L there is a coordinate system χℓ : ℓ→ R, and

• the set {χℓ | ℓ ∈ L} generates a distance function d : E × E → R.

(a) Choose a line ℓ0 from L and a positive real number λ. Then define a
new coordinate system ξ : ℓ0 → R by ξ(p) = λχℓ0(p) for all p ∈ ℓ0.
If this is the only line whose coordinate system is changed, how
does the new distance function dλ compare to the original d? Hint:
Compute dλ(p, q) when p and q are both points of ℓ0 and when at
least one of the points is not on ℓ0.

(b) The triangle inequality states that for any three points p, q, and
r we have d(p, q) ≤ d(p, r) + d(r, q). Prove that you can choose a
positive real number λ in part (a) so that the triangle inequality
will not always be valid for the the distance function dλ.

(c) Explain why parts (a) and (b) show that the Incidence Axioms and
a coordinate system for each line do not always imply the triangle
inequality for non-collinear points.

Exercise 3.4. The Moulton Plane.

Recall the Moulton plane MP2 from Example 2.7. To each Moulton line
ℓ we can define a coordinate system χℓ : ℓ → R such that the distance
between any two points p, q ∈ ℓ will equal the ordinary R2 distance
as measured along the (possibly bent) Moulton line ℓ. Hence, if ℓ is a
Moulton line with a bend at p0 = (0, y) and p and q are on opposite
sides of the bend, then the Moulton distance from p to q is given by
pp0 +p0q, where pp0 and p0q are the ordinary R2 lengths of the two line
segments pp0 and p0q.

(a) Prove the assertions just made by determining formulas for coordi-
nate systems χℓ for each type of Moulton line ℓ, verifying that the
distance function on MP2 so produced agrees with the R2 distance
in the sense stated above. (These formulas will not be needed for
the other parts of this problem.)

(b) The points p = (−3, 0), r = (0, 3), and q = (3, 6) are collinear in the
real Cartesian plane R2. Are they collinear in the Moulton plane?

(c) Compare the Moulton distances d(p, q) and d(p, r) + d(r, q). What
important fact does this tell you about the Moulton plane?
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§I.4 Betweenness

In the previous section we used the coordinate systems χℓ : ℓ → R for all
lines ℓ in the plane to define a distance function on the collection of all pairs
of points of the plane. We now use the coordinate systems and the distance
function to define and analyze betweenness: given three distinct points on a
line ℓ, how can we determine when one point is between the other two? We
present an elegant method based on the distance function.

Definition 4.1.

Suppose a, b, and c are three distinct collinear points (i.e., they all lie
on one line). Then b is between a and c if and only if ab+ bc = ac:

a b c

ab bc

ac

Given a coordinate system χℓ, the coordinate of a point p ∈ ℓ is the number
x assigned by χℓ to p, i.e., x = χℓ(p) is the coordinate of p on ℓ. The next
result shows that betweenness of points on ℓ is mirrored by betweenness of
the corresponding coordinates in R.

Proposition 4.2.
Let ℓ be a line and let a, b, c be three distinct points of ℓ with coordinates
x, y, z, respectively. Then the point b is between the points a and c if
and only if the number y is between the numbers x and z.

Proof. First suppose the coordinate y is between the coordinates x and z.
There are two possibilities: x < y < z or z < y < x. Suppose the first. By
the definition of the distance function (3.3) we have

ac = |χℓ(a)− χℓ(c)| = |x− z| = z − x,
the last equality following from x < z. Similarly

ab = y − x and bc = z − y.
Then simple addition gives the desired result:

ab+ bc = (y − x) + (z − y) = z − x = ac,

proving point b is indeed between a and c. The second possibility, z < y < x,
is handled in the same fashion, showing again that b is between a and c.

Showing that if b is between a and c, then y is between x and z, is left as
Exercise 4.1. �

Because of Proposition 4.2, the properties of betweenness for points on a
line can be carried over from the usual order properties for real numbers.
What follows are some unsurprising results that will be useful in subsequent
work. The proofs are left for Exercise 4.3.
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Proposition 4.3.
(a) For any three distinct collinear points, exactly one is between the

other two.

(b) For any two distinct points a and c there exists a point b between a
and c and a point d such that c is between a and d.

(c) For any two distinct points a and c there exists a unique midpoint ,
i.e., a point b which is between a and c such that ab = bc = ac/2.

We define the concepts of line segments and rays by using betweenness:

Definition 4.4.

(a) Given two distinct points a and b, the line segment ab is the set
consisting of a, b, and all the points c between a and b, i.e.,

ab = { c ∈ ←→ab | c = a, c = b, or c is between a and b}.

(b) Given two distinct points a and b, the ray from a through b, denoted

by
−→
ab, is the set of points c on the line

←→
ab such that a is not between

b and c, i.e.,

−→
ab = {c ∈ ←→ab | a is not between b and c} :

−→
abab

ba

ray

ba

segment

c c

Definition 4.5.

Given a ray
−→
ab, let b′ be collinear with a and b such that a is between

b and b′. Then
−→
ab′ is the ray opposite to

−→
ab:

opposite

b ′

−→
ab

ba

ray
−→
abray

Given
−→
ab, from Proposition 4.3b we know there exists a point b′ such that

a is between b and b′. This proves the ray opposite to
−→
ab does indeed exist.

Furthermore, it is easy to show (Exercise 4.5) that the line
←→
ab is the union

of
−→
ab and

−→
ab′ and that these two rays intersect only at the point a. This is

clearly seen in the figure above.
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Definition 4.6.

a

b

angle
c

∠bac

(a) An angle with vertex at the point a is the

union of two rays
−→
ab and −→ac, both starting

at a, where a, b, and c are not collinear:

∠bac =
−→
ab ∪ −→ac.

triangle △abc
a

b

c

(b) The triangle △abc with non-collinear ver-
tices a, b, c is the union of the three line
segments ab, bc, and ac:

△abc = ab ∪ bc ∪ ac.

We state some of the most useful consequences of these definitions in the
next proposition, leaving the proofs for Exercise 4.8.

Proposition 4.7.

(a) If a and b are distinct points, then ab = ba.

(b) If b1 is a point of
−→
ab other than a, then

−→
ab =

−→
ab1.

(c) a1b1 = a2b2 if and only if the set of endpoints {a1, b1} equals4 the
set of endpoints {a2, b2}.

(d) △a1b1c1 = △a2b2c2 if and only if the set of vertices {a1, b1, c1}
equals the set of vertices {a2, b2, c2}.

Our concepts of line, line segment, and angle do not have “direction” associ-
ated with them. If direction is desired, we must specify further information
to obtain directed lines, directed line segments, and directed angles.

Definition 4.8.

(a) A directed line ℓ is a line along with the choice of a ray −→r in ℓ
that indicates the positive direction along ℓ.

(b) A directed line segment ab is a line segment along with the des-
ignation of a as the initial endpoint and b as the terminal endpoint.

The ray
−→
ab indicates the positive direction along ab.

(c) A directed angle ∡bac is the union of two rays,
−→
ab ∪−→ac, where

−→
ab

is designated as the initial ray and −→ac as the terminal ray.

Although all ordinary (non-directed) angles must be constructed from non-
collinear points, we drop that restriction when dealing with directed angles.

4Equality between the two sets {a1, b1} and {a2, b2} does not necessarily imply a1 = a2 and
b1 = b2. We could also have the other match-up, i.e., a1 = b2 and b1 = a2. This same warning
applies to part (d) of the proposition, where there are six possible match-ups between the two
sets of triangle vertices.
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Hence a directed angle ∡bac can simply be a ray (when
−→
ab = −→ac) or a line

(when −→ac is the ray opposite to
−→
ab).

The concepts of directed angles and directed lines will be particularly im-
portant when we construct isometries of the plane in Chapter II.

We end this section on the distance function and its immediate consequences
with the definition of congruence for line segments. Intuitively two geo-
metric figures are congruent if one can be “moved” (without altering size or
shape) so as to exactly coincide with the other. Making the concept of “con-
gruence via movement” rigorous is one of the important goals of this book.
However, we start initially by defining congruence for particular types of
figures by using properties that do not involve “movement.” Later all these
ad hoc, figure-specific definitions for congruence will be shown to be part of
a single, unified concept (Definition V.1.1).

Definition 4.9. Line Segment Congruence.

Two line segments, ab and cd, are congruent, written ab ∼= cd, if and
only if the segments have the same length. Thus

ab ∼= cd if and only if ab = cd.

It should be intuitively reasonable that two segments can be moved so as to
exactly coincide if and only if they have the same length.

Congruence is an equivalence relation on the collection of all line segments
in the plane. This means that congruence has the following three properties:

(1) Reflexivity. ab ∼= ab for every line segment ab.

(2) Symmetry. If ab ∼= cd, then cd ∼= ab.

(3) Transitivity. If ab ∼= cd and cd ∼= ef , then ab ∼= ef .

These easily verified properties make congruence between line segments act
like equality . That makes sense since if two line segments are congruent, then
one can be moved so that it “is” equal to the other! Equivalence relations
will play a central role in Chapter V (see Definition V.1.8).

Given a line segment ab, it is easy to construct congruent copies wherever
needed by appealing to the next result. The proof, which depends on Propo-
sition 3.6, the Ruler Placement Theorem, is left to Exercise 4.9.

Proposition 4.10. Segment Construction.

Given a line segment ab and a ray
−→
cd, there is exactly one point d0 ∈

−→
cd

such that ab ∼= cd0:

ba d0
ab ∼= cd0

c

d
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Exercises I.4

Exercise 4.1.

Prove the remaining direction of Proposition 4.2: Let ℓ be a line and
let a, b, and c be three distinct points of ℓ with coordinates x, y, and
z, respectively. If the point b is between the points a and c, then the
number y is between the numbers x and z.

Exercise 4.2.

Suppose χ and ξ are equivalent coordinate systems on line ℓ. If a, b, c ∈ ℓ,
then prove

b is between a and c according to the coordinate system χ

if and only if

b is between a and c according to the coordinate system ξ.

Hence any two equivalent coordinate systems on ℓ will determine be-
tweenness among points on ℓ in exactly the same way. Hence, when
considering questions of betweenness on a line ℓ you can change the given
coordinate system to any equivalent system. This is often convenient,
especially in view of Proposition 3.6, the Ruler Placement Theorem.

Exercise 4.3.

Prove the results in Proposition 4.3. Hints: Use Proposition 4.2 in all
parts. It is smart to apply the Ruler Placement Theorem to obtain and
use a coordinate system χ that is equivalent to χℓ but more convenient
for the computations. Changing coordinate systems in this manner is a
legitimate technique because of Exercise 4.2.

Exercise 4.4.

(a) Show that, given a ray
−→
ab, there exists a coordinate system χ on

ℓ =
←→
ab equivalent to χℓ but for which

−→
ab = {c ∈ ←→ab | 0 ≤ χ(c)}.

(b) Given a line segment ab of length y, show there exists a coordinate

system χ on ℓ =
←→
ab equivalent to χℓ but for which χ(a) = 0 and

ab = {c ∈ ←→ab | 0 ≤ χ(c) ≤ y}.

Exercise 4.5.

(a) Suppose
−→
ab is a ray and χ the coordinate system on

←→
ab from Ex-

ercise 4.4a, i.e.,
−→
ab = {c ∈ ←→ab | 0 ≤ χ(c)}. If a is between b and b′,

so that
−→
ab′ is the ray opposite

−→
ab, prove

−→
ab′ = {c′ ∈ ←→ab | 0 ≥ χ(c′)}.

(b) Show that
−→
ab and

−→
ab′ intersect only in the one point a and that

their union is the line
←→
ab . This verifies the figure for Definition 4.5.
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Exercise 4.6.

Suppose χ = χℓ is the chosen coordinate system on a line ℓ and a, b ∈ ℓ
are any two distinct points on ℓ. Then prove

−→
ab =

{ {c ∈ ℓ | χ(c) ≥ χ(a)} if χ(b) > χ(a),

{c ∈ ℓ | χ(c) ≤ χ(a)} if χ(b) < χ(a).

Exercise 4.7.

Verify that the ray
−→
ab equals the union of the line segment ab with the

set of points c such that b is between a and c, i.e.,
−→
ab = ab ∪ {c ∈ ←→ab | b is between a and c}.

Hint: Use Exercise 4.4.

Exercise 4.8.

Prove the four parts of Proposition 4.7. (Hints: Exercise 4.4 may prove
useful in some of the verifications. The final part of the proposition is
the most difficult. For this it might be helpful to first show that the

only points of the line
←→
ab which lie on the triangle △abc are the points

of the line segment ab.)

Exercise 4.9.

Prove Proposition 4.10, Segment Construction. (Hint: Apply Propo-

sition 3.6, the Ruler Placement Theorem, to the line
←→
cd . Then show

there is one and only one coordinate for the desired point d0.)

§I.5 The Plane Separation Axiom

The axiomatic system we’ve developed so far is satisfied not only by all lines
and points in the plane but also by all lines and points in three-dimensional
space. In this section we introduce another axiom which will force us into
an essentially two-dimensional situation.

Definition 5.1.

A subset A of the plane E is convex if, whenever p and q are two points
of A, then the line segment pq joining p to q is also contained in A.

For a set A to be convex, it must contain the line segments ab for all pairs
of points p, q ∈ A. This is true for all the sets shown in Figure 5.2.

q
p

p

p

q q

Figure 5.2. Three examples of convex sets in the plane.
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Thus a set A is not convex if there is at least one pair of points p, q ∈ A
such that some portion of the segment pq fails to lie in A. This is seen in
the sets of Figure 5.3.

q
p p

p

q

q

Figure 5.3. Three examples of non-convex sets in the plane.

Now consider the situation of a line ℓ in the plane E . Intuitively the line
will divide E into three disjoint pieces: the line ℓ itself and the two parts of
the plane on either side of ℓ. These two sets are called half planes, and it
should be intuitively clear that they are both convex (if p and q both lie on
the same side of ℓ, then all the points between p and q should also lie on this
same side of ℓ). Moreover, if p and q lie on opposite sides of ℓ, then the line
segment pq will intersect ℓ. These “facts,” however, do not follow from our
previous axioms — they form the substance of our Plane Separation Axiom:

The Plane Separation Axiom.

PS. If a line ℓ is removed from the plane E , the result is a disjoint union
of two non-empty convex sets H1

ℓ and H2
ℓ such that if p ∈ H1

ℓ and
q ∈ H2

ℓ , then the line segment pq intersects ℓ:

ℓp

q

ℓH1

ℓH2

Definition 5.4.

The two non-empty convex sets H1
ℓ and H2

ℓ formed by removing the line
ℓ from the plane are called half planes, and the line ℓ is the edge of
each half plane.

The Plane Separation Axiom has important consequences, many of which
we will use in subsequent work almost without thinking. Here is an example
of such a result.

ℓ
da

b

c

Proposition 5.5. Pasch’s Axiom.

Suppose the line ℓ and triangle △abc both lie in
the plane E, with ℓ intersecting ac at some point
d between a and c. Then ℓ also intersects either
ab or bc.
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Proof. If ℓ contains either point a or c, then we are done. So assume that ℓ
and ac only intersect at d.

In that case, the Plane Separation Axiom implies a and c are on opposite
sides of ℓ, since otherwise ac could not intersect ℓ. However, if ℓ does not
intersect either ab or bc, then the Plane Separation Axiom also implies a
and b are on the same side of ℓ, and that b and c are also on the same side of
ℓ. Oops! This means that all three points a, b, and c must be on the same
side of ℓ, contradicting our initial observation that a and c are on opposite
sides. Hence we must have ℓ intersecting either ab or bc, as desired. �

The Plane Separation Axiom will allow us to define the important concepts
of interior of an angle and interior of a triangle. However, in order to justify
these definitions, we need the following simple and intuitive result.

ℓ
a

b

b

Proposition 5.6.

Suppose a is on line ℓ and b is not on ℓ. Then all

the points (other than a) of ray
−→
ab lie on the same

side of ℓ, and all the points (other than a) of
−→
ab′, the

ray opposite to
−→
ab, lie on the opposite side of ℓ.

Proof. Suppose c is a point of
−→
ab which lies on the side of ℓ which is opposite

to the side containing b. Then the Plane Separation Axiom tells us that the
line segment bc must intersect the line ℓ. However, this intersection must

be the point a (otherwise ℓ and
←→
ab would have two points of intersection,

giving that they are equal by Axiom I-2, and hence b would be on ℓ, which
is false). Hence a is between b and c. But this contradicts the definition of c

being on the ray
−→
ab since by definition a cannot be between b and c. Hence

our initial assumption that b and c are on opposite sides of ℓ cannot be true,

proving that all points of
−→
ab (other than a) are on the same side of ℓ.

Now let
−→
ab′ be the ray opposite to

−→
ab, and let c′ be any point of

−→
ab′ other

than a. Suppose c′ is on the same side H of ℓ as b — we need to show that

this is impossible. Since c′ is not on
−→
ab, then a is between b and c′. But

since H is convex and contains both b and c′, it must also contain a. Oops!
This is not possible since a is on the line ℓ which has no intersection with
H. Hence c′ must be on the opposite side of ℓ as b, as we desired. �

Now consider an angle ∠abc. By definition this angle is the union of two

rays,
−→
ba ∪ −→bc , and the three points a, b, c are non-collinear. Hence a lies

in one of the two half planes determined by
←→
bc — denote this half plane

as Ha. Similarly c lies in one of the two half planes determined by
←→
ab —

denote this half plane as Hc. The interior of angle ∠abc is the intersection
of Ha and Hc, as shown in Figure 5.8.
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Definition 5.7.

The interior of angle ∠abc, denoted int ∠abc, is the intersection

int ∠abc = Ha ∩Hc

where Ha is the half plane with edge
←→
bc containing a, and

Hc is the half plane with edge
←→
ab containing c.

From Proposition 5.6 we know the half plane Ha contains the full ray
−→
ba

(except for the point b). Similarly Hc contains
−→
bc (except for b).

interior

b

c

a

∠abc

b

c

a
b

c

a
Ha

Hc

Figure 5.8. An angle interior is the intersection of half planes Ha and Hc.

The following result, the Crossbar Theorem, is highly intuitive and quite
important. It is also not easy to prove! However, it is a consequence of the
three axioms we have given thus far, and we provide an outline of the steps
of the proof in Exercise 5.10.

d

b

c

a

Theorem 5.9. The Crossbar Theorem.

Suppose d is in the interior of the angle ∠abc.

Then the ray
−→
bd intersects the line segment ac at

a point between a and c.

Here is an important application of the Crossbar Theorem.

Definition 5.10.

Suppose a, b, c, d are four non-collinear points in the plane such that
the four line segments ab, bc, cd, da intersect only at their endpoints.

(a) The quadrilateral �abcd is the union ab ∪ bc ∪ cd ∪ da. These
four line segments are the sides of the quadrilateral. The two line
segments ac and bd are the diagonals of the quadrilateral.

(b) The quadrilateral is convex if each side lies entirely in one of the
half planes determined by (the line containing) the opposite side.

a

b

convex

c
c d

a
b

d non-convex

Figure 5.11. Two quadrilaterals.
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The second quadrilateral in Figure 5.11 is not convex since the side cd does

not lie in just one of the half planes determined by the opposite line
←→
ab .

The picture of the convex quadrilateral in Figure 5.11 should make the
following proposition intuitively believable.

Proposition 5.12.
Each vertex of a convex quadrilateral is in the opposite angle’s interior.

Proof. Consider vertex d in the first (convex) quadrilateral shown in Fig-
ure 5.11. We will show that d is in the interior of angle ∠abc, i.e., that d
is in the two half planes Ha and Hc whose intersection gives the interior of
∠abc. Since the quadrilateral is convex, we know cd is on one side of the

line
←→
ab , i.e., in the half plane Hc. In particular, d is in Hc. Similarly, ad is

on one side of
←→
bc , i.e., in the half plane Ha. Thus d is in Ha. Hence d is in

Ha ∩Hc, the interior of ∠abc, as desired. �

As can be seen in the second quadrilateral in Figure 5.11, the two diagonals
ac and bd do not always intersect. However, we claim the diagonals for any
convex quadrilateral always intersect. The proof, however, will require the
Crossbar Theorem.

Proposition 5.13.
The diagonals of a convex quadrilateral always intersect each other.

Proof. Suppose �abcd is a convex quadrilateral as shown on the left in
Figure 5.11. From Proposition 5.12 we know that d is in the interior of ∠abc.

Thus, by Theorem 5.9 — the Crossbar Theorem — the ray
−→
bd intersects the

line segment ac at some point p. This is shown on the left half of Figure 5.14.

c d

a
b

p

c d

a
b

q

Figure 5.14. Two applications of the Crossbar Theorem.

Another application of the Crossbar Theorem to the vertex c (which is in
the interior of ∠dab) shows that the ray −→ac intersects the line segment bd at
some point q. This is shown in the right half of Figure 5.14. Now suppose
p and q are not the same point. Then p and q would be two distinct points

on the line ←→ac as well as the line
←→
bd . Hence, since there is only one line

containing two distinct points (Axiom I-2), then ←→ac and
←→
bd would be the

same line, and hence a, b, c, d would all be collinear. This is not possible
for a quadrilateral, and hence p = q. But since p lies on the diagonal line
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segment bd and q lies on the diagonal line segment ac, the two diagonals
intersect, as desired. �

We define the interior of a triangle in a manner similar to the definition of
the interior of an angle. The interior of a triangle △abc is merely the
intersection of three half planes: the side of ab containing c, the side of bc
containing a, and the side of ac containing b.

Definition 5.15.

The interior of triangle △abc, denoted int△abc, is the intersection

int ∠abc = Ha ∩Hb ∩Hc

where Ha is the half plane with edge
←→
bc containing a,

Hb is the half plane with edge ←→ac containing b,

Hc is the half plane with edge
←→
ab containing c.

Thus the interior consists of all the points on the “inside” of the triangle.
In particular, points on the sides of the triangle are not part of the interior:

interior

b

c

a

△abc

The following properties of the interior of a triangle are easily established.
Their proofs are left for Exercise 5.6.

Proposition 5.16.

(a) The interior of a triangle is a convex set.

(b) The interior of a triangle is the intersection of the interiors of its
three angles.

(c) The interior of a triangle is the intersection of the interiors of any
two of its angles.

Exercises I.5

Exercise 5.1.

(a) Suppose A and B are convex subsets of the plane E . Prove the
intersection A ∩B is also convex. What about the union, A ∪B?

(b) Let A be any set of points in the plane and let B be the union of all
the line segments pq where p and q are both points of A. Is the set
B convex? Either prove this is true or produce a counterexample.
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Exercise 5.2.

Suppose the line ℓ does not contain any of the vertices of the triangle
△abc. Prove ℓ cannot intersect all three of the sides of the triangle.
(Hint: Apply the Plane Separation Axiom to ℓ and the three line seg-
ments that comprise the sides of △abc.)

Exercise 5.3.

Prove any half plane contains at least three non-collinear points. Be
sure to cite all necessary axioms and propositions.

Exercise 5.4.

In a triangle △abc the angle which is opposite to the side bc is the
interior angle with vertex at a, i.e., ∠bac. Prove every side of a triangle
(except for its vertices) is in the interior of its opposite angle. (Hint:
Proposition 5.6.)

Exercise 5.5.

(a) Suppose x1 and x2 lie on one side of
←→
ab . If a, x1, and x2 are not

collinear, prove either x1 is in the interior of ∠bax2 or x2 is in the
interior of ∠bax1.

(b) Suppose x1 and x2 lie on opposite sides of
←→
ab and a, x1, and x2 are

not collinear. Let b′ be a point of
←→
ab such that a is between b and

b′. Prove either b or b′ is in the interior of ∠x1ax2.

Exercise 5.6.

Prove the three parts of Proposition 5.16:

(a) The interior of a triangle is a convex set.

(b) The interior of a triangle is the intersection of the interiors of its
three angles.

(c) The interior of a triangle is the intersection of the interiors of any
two of its angles.

Exercise 5.7.

Prove that if a line intersects the interior of a triangle, then the line
must intersect at least one side of the triangle.

Exercise 5.8.

Prove the converse of Proposition 5.13: if the diagonals of a quadrilateral
intersect, then the quadrilateral is convex.

Exercise 5.9.

Determine if the Plane Separation Axiom is valid for the following ex-
amples from §2. Explain your reasoning in each case.

(a) The real Cartesian plane R2, Example 2.2.
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(b) The Poincaré disk P2, Example 2.4.

(c) The real projective plane RP2, Example 2.6.

(d) The Moulton plane MP2, Example 2.7.

(e) Real Cartesian space R3, Example 2.9.

Exercise 5.10. The Crossbar Theorem.

This exercise leads you through a proof of Theorem 5.9, the Crossbar
Theorem. For that reason you cannot use any results of the text past
Theorem 5.9 nor any exercise that depends on this theorem.

(a) Suppose ℓ = ←−→x1x2 with y1 and y2 points on opposite sides of ℓ.
Prove the rays −−→x1y1 and −−→x2y2 do not intersect.

(b) Given a triangle △abc, let d be a point between a and c, and let

e be a point on the same side of ℓ = ←→ac as b. Prove the ray
−→
de

intersects either the line segment ab or the line segment bc.

Outline. First draw a picture! With
−→
de′ as the ray opposite to

−→
de

and with ℓ = ←→ac , use (a) to show
−→
de′ does not intersect ab or bc.

Proposition 5.5 will then complete the proof.

(c) Prove Theorem 5.9, the Crossbar Theorem.

Outline. Let
−→
ba′ be the ray opposite to

−→
ba. Then use (b) to show−→

bd intersects either ca′ or ca. However, use (a) with ℓ =
←→
bc to show

that
−→
ca′ and

−→
bd cannot intersect. Conclude that

−→
bd must intersect

ca, and show that the point of intersection cannot be a or c. This
will prove the Crossbar Theorem.

§I.6 The Angular Measure Axioms

Let A denote the collection of all angles in the plane. In this section we
assume a new undefined object for our axiomatic system: an angle measure
function m : A → R that assigns to each angle ∠A a real number m∠A,
understood to be its measure in degrees.5

The basic properties of this function are specified by four Angle Measure Ax-
ioms. None of these axioms will surprise you — they are all intuitively clear
from our usual notion of angle measurement. What is less obvious is that
this list of axioms, when combined with our other axioms for Euclidean ge-
ometry as summarized in §15, is sufficient to completely characterize angular
measure, i.e., no other notion of angular measure can satisfy this complete
set of axioms.

5For geometry any “unit of angular measure” may be employed — we initially choose a
degree since that is the most universally understood. Radian measure, while necessary to produce
good calculus properties with the trigonometric functions, is not required for purely geometric
goals. We will use both measures in this text, choosing the most convenient for the task at hand.
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Since one of the axioms concerns linear pairs of angles, we preface our listing
of the Angle Measure Axioms with the definition of a linear pair.

Definition 6.1.

Two angles ∠bac and ∠cad sharing a common vertex a and a common

side −→ac form a linear pair if their non-common sides
−→
ab and

−→
ad are

opposite rays, i.e., the union of the non-common sides
−→
ab and

−→
ad is the

full line
←→
bd .

dab

c

∠cad∠bac

Figure 6.2. ∠bac and ∠cad form a linear pair.

Angle Measure Axioms.

Let A denote the collection of all angles in the plane. Then there exists an
angle measure function m : A → R with the following properties.

M-1. For every angle ∠A, its measure m∠A is between 0 and 180◦:

0 < m∠A < 180◦.

a b

c

m∠bac = r

H

ℓ

M-2. Angle Construction. Suppose
−→
ab is a

ray on the line ℓ and H is one of the two
half planes with edge ℓ. Then for every
number 0 < r < 180◦ there is a unique ray
−→ac, with c in H, such that

m∠bac = r.

d

a

b

c ∠bad
∠bac

∠cad

M-3. Angle Addition. If c is a point in the
interior of ∠bad, then

m∠bad = m∠bac+m∠cad.

dab

c

∠cad

∠bacM-4. Supplements. If two angles ∠bac and ∠cad
form a linear pair, then they are supple-
mentary, i.e.,

m∠bac+m∠cad = 180◦.

For notational convenience the relationship m∠abc < m∠def will often be
written simply as ∠abc < ∠def .

Angle measure now allows us an easy way to define congruence of angles.6

6Recall the general discussion of congruence of geometric figures prior to Definition 4.9.
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Definition 6.3. Angle Congruence.

Two angles, ∠A and ∠B, are congruent, written ∠A ∼= ∠B, if and only
if they have the same angular measure. Thus

∠A ∼= ∠B if and only if m∠A = m∠B.

This is a reasonable definition since, intuitively, an angle ∠A can be “moved
onto” an angle ∠B if and only if the two angles have the same measure.

Results that prove two angles congruent are important in geometry. What
follows — the Vertical Angle Theorem — is such a result.

Suppose two distinct lines ℓ and m intersect at a point a, and let b, b′ be
points of ℓ on opposite sides of a, and let c, c′ be points of m on opposite
sides of a. This is shown in Figure 6.4. Then the two angles ∠bac and ∠b′ac′

are said to form a vertical pair.

a

b

c
ℓ

m

∠bac

b

c

∠ acb

Figure 6.4. Angles ∠bac and ∠b′ac′ form a vertical pair.

Theorem 6.5. The Vertical Angle Theorem
If two angles form a vertical pair, then they are congruent.

Proof. Since the point a is between b and b′,
−→
ab and

−→
ab′ are opposite rays.

Hence ∠bac and ∠cab′ form a linear pair, so that the two angles are supple-
mentary by Axiom M-4. Hence m∠bac+m∠cab′ = 180◦, so that

m∠bac = 180◦ −m∠cab′.

The same argument applies to the angles ∠b′ac′ and ∠cab′, yielding

m∠b′ac′ = 180◦ −m∠cab′.

Combining our two equalities shows m∠bac = m∠b′ac′, proving the two
angles ∠bac and ∠b′ac′ are congruent, as desired. �

Angle Bisectors. An important consequence of the Angle Measure Axioms
is the existence and uniqueness of an angle bisector for every angle.

Definition 6.6.

A ray
−→
ad is an angle bisector of angle ∠bac if

(a) d is in the interior of ∠bac and

(b) the angles ∠bad and ∠dac are congruent.
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a

b

c

d

Figure 6.7. The ray
−→
ad bisects the angle ∠bac.

Proposition 6.8.
Every angle has a unique angle bisector.

Proof. We sketch the proof and leave the details to Exercise 6.2. Let ℓ =
←→
ab .

Then by Angle Axiom M-2 there exists a unique ray
−→
ad with d on the same

side of ℓ as c such that m∠bad = 1
2m∠bac. We must show the following.

(a) The point d is in the interior of ∠bac. If this is not true, then you
can show that point c would have to be in the interior of ∠bad, and
this will lead to a contradiction of Angle Axiom M-3.

(b) m∠bad = m∠dac. This follows from (a) and Angle Axiom M-3.

(c) The ray
−→
ad is the only angle bisector for ∠bac. Just apply Angle

Axiom M-2. �

Perpendicularity. By Angle Axiom M-4 the angle measures of a linear
pair of angles sum to 180◦. Hence if linear pair angles are congruent to each
other, then each has measure 90◦. We call such angles right angles.

Definition 6.9.

(a) A right angle is an angle whose measure is 90◦ (equivalently, an
angle that is a member of a linear pair of congruent angles).

(b) An angle is acute if its measure is less than 90◦.

(c) An angle is obtuse if its measure is greater than 90◦.

(d) Two angles are complementary if their measures add to 90◦.

Perpendicularity is now easily defined for rays, lines, and line segments.
Two such objects are perpendicular if their union produces a right angle, as
formalized in the next definition.

Definition 6.10.

(a) Two rays,
−→
ab and −→ac, with the same initial point are perpendicu-

lar, written
−→
ab ⊥ −→ac, if their union ∠bac is a right angle. Thus
−→
ab ⊥ −→ac if and only if m∠bac = 90◦.

(b) Two lines with intersection point a, which can therefore be ex-

pressed in the forms
←→
ab and ←→ac , are perpendicular if the cor-

responding rays are perpendicular, i.e.,
←→
ab ⊥ ←→ac if and only if

−→
ab ⊥ −→ac.
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(c) Two line segments, ab and ac, with a common endpoint a are per-
pendicular if the corresponding lines are perpendicular, i.e.,

ab ⊥ ac if and only if
←→
ab ⊥ ←→ac .

The existence of many perpendicular lines follows from the next result.

p
ℓ

m
Proposition 6.11.

Suppose ℓ is a line in the plane E and p is any
point of ℓ. Then there exists a unique line m
containing p which is perpendicular to ℓ.

Proof. Pick a point b on ℓ which is not equal to p.
According to Angle Axiom M-2 we can find a point c
such that m∠bpc = 90◦ (Figure 6.12.). Thusm =←→pc
is the desired perpendicular to ℓ.

p

ℓ

m

b

c

Figure 6.12. Pick c so that ∠bpc is a right angle.

This proves existence of the perpendicular linem. We now prove uniqueness.
Suppose m′ is another line through p which is perpendicular to ℓ. Then pick
a point c′ on m′ on the same side of ℓ as the point c, as in Figure 6.13.

p

ℓ

m

b

c c

m

Figure 6.13. Suppose m =←→pc and m′ =
←→
pc′ are both perpendicular to ℓ.

Consider the angle ∠bpc′. This must be a right angle, a consequence of
Exercise 6.3. Hence, since ∠bpc is also a right angle by construction, then

Angle Axiom M-2 gives that the two rays −→pc and
−→
pc′ must be equal. But

this means the two lines m =←→pc and m′ =
←→
pc′ are equal, as desired. �

Directed Angle Measure at a Point. Sometimes a concept can be more
complicated than it appears on the surface. This is the case for “clockwise”
and “counterclockwise” rotation, or the more general procedure of defining
directed angular measure. This development illuminates the subtleties
inherent in the dichotomy of clockwise/counterclockwise.
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Why does the concept of “clockwise rotation” around a point seem so intu-
itively clear? Simple: because we are all familiar with clocks, having seen
them all our lives. And since all clocks “rotate in the same direction,” we
have no question as to what is meant by clockwise rotation. However, sup-
pose you had to describe, solely in words, the rotational direction specified
by “clockwise” to someone who had never seen a clock? You would most
certainly draw a picture or wave your hand in an appropriate way. But
suppose you could not use pictures or hand gestures or anything other than
words?! Try to do this! Do you see the problem? 7

The difficulty is that clockwise and counterclockwise are merely the mir-
ror images of each other, and there is no inherent way to distinguish one
rotational direction from the other except that each is the opposite of the
other! Unless you can actually “show” someone the clockwise direction
(which could mean simply identifying something with clockwise rotation
which is known to the person), there is no fundamental way to distinguish
one rotational direction from the other.

So we are forced to pick some object with a fixed rotational direction (we
use a clock), arbitrarily designate its rotational direction as “clockwise,”
and then classify all other rotations as clockwise or counterclockwise via
comparison with the fixed, “standard” clock.

We now formalize our concept of directed angle measure. Let a0 be any
chosen point in the plane E . We will show there are exactly two inherently
different and natural choices for directed angle measure at the point (or
vertex) a0. To do so, we will use the concept of equality modulo 360:

Definition 6.14.

Two numbers, θ1 and θ2, are equal modulo 360,

θ1 = θ2 mod 360,

if they differ by a multiple of 360, i.e., θ1 = θ2 + 360k for an integer k.

The basic properties of equality modulo 360 will be developed in Exercise 6.6.

We use the notation ∡A = ∡bac to denote the directed angle with initial

ray
−→
ab and terminal ray −→ac, as given in Definition 4.8. A directed angle is

trivial if it equals just one ray, i.e., if the two rays comprising the angle are
the same. A straight angle is a directed angle in which the two rays are
the opposites of each other. If a directed angle ∡A is not trivial or straight,
then the two rays comprising ∡A form an ordinary angle which we naturally
denote as ∠A.

7The phenomenal success of digital watches may result in a crisis of rotational confusion:
the loss of the one universally recognized standard for classifying the two rotational directions.
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To each directed angle ∡A with vertex at a0 we will associate a directed
angle measure, i.e., a real number m∡A = θ in the range −180◦ < θ ≤ 180◦

with the following properties:

(1) ∡A is trivial if and only if m∡A = 0◦.

(2) ∡A is a straight angle if and only if m∡A = 180◦.

(3) If ∡A is not trivial or a straight angle, then |m∡A| = m∠A.

(4) If b, c, d are any three points other than a0, then

m∡ba0d = m∡ba0c+m∡ca0d mod 360:

a0

d

b

c
∡cad

∡bac

∡bad

Hence directed angle measure must agree up to sign with ordinary angle
measure when the latter is defined, and the choices of the signs for the
directed angle measure are to be made so that directed angle addition is
valid in all cases.

Restricting the values of directed angle measure to −180◦ < θ ≤ 180◦ is
logically complete and straightforward in that all directed angles are assigned
a measure and this measure is natural and unique. However, there is a
practical, interpretive problem: our initial formulation of directed angle
measure does not convey a dynamic notion of rotation.

For example, consider a directed angle ∡ba0c with directed measure 90◦.
This provides a static interpretation for the angle: there is a positive angle

of 90◦ separating the initial ray
−→
a0b from the terminal ray −→a0c. However,

if we really wish to consider a dynamic, rotatory process which takes
−→
a0b

to −→a0c, then we have a problem: there are an infinite number of different

“rotations” which could move
−→
a0b onto −→a0c! Only one of these rotations

is accurately modeled by the measure 90◦, and that is a “quarter turn in
the positive direction.” However, what about a “three-quarter turn in the
negative direction”? Or a “one-and-a-quarter turn in the positive direction”?

These other rotatory movements are best described by angle measurements
which indicate the number of total revolutions about the vertex, as well as
the direction of the revolutions. A “three-quarter turn in the negative direc-
tion” is best described by the measure −270◦, while a “one-and-a-quarter
turn in the positive direction” is described by the measure 450◦.
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Thus a fixed directed angle ∡A represents an infinite number of rotatory
movements, each with its own angle measurement. Any two of these mea-
surements will differ by an integer multiple of 360◦; hence all measurements
associated with a given directed angle will be equal modulo 360.

For this reason we revise the definition of a directed angle measure m∡A to
be a collection of numbers, described in the next definition.

Definition 6.15.

A directed angle measure m at a point a0 is an assignment to each
directed angle ∡A with vertex at a0 of a collection m∡A of all those real
numbers which are equal modulo 360 and have the following properties:

(1) ∡A is trivial if and only if m∡A = 0◦ mod 360.

(2) ∡A is a straight angle if and only if m∡A = 180◦ mod 360.

(3) If ∡A is not trivial or a straight angle, then |θ| = m∠A, where θ is
that value of m∡A such that −180◦ < θ < 180◦.

(4) If b, c, d are any three points other than a0, then

m∡ba0d = m∡ba0c+m∡ca0d mod 360.

For each directed angle ∡A there is a unique θ in the collection m∡A which
falls in the range −180◦ < θ ≤ 180◦. This is the directed angle measure
we defined initially. We call this θ the standard measure of ∡A. In what
follows, we will often consider the standard measure θ as the directed angle
measure of ∡A. Although confusing at first, this convention is convenient.

See Exercise 6.7 for properties of directed angle measure at a point a0.

Existence of Directed Angle Measure at a Point. Although we have
defined the meaning of directed angle measure at a point, that does not
prove a directed angle measure actually exists. Fortunately directed angle
measures do exist — exactly two of them:

Proposition 6.16.

Exactly two directed angle measures exist at each point a0 in the Eu-
clidean plane E. Each measure is the negative of the other.

This distinguishes between the two possible directions for rotation at a point.
It may seem so obvious a result that it needs no proof. However, it is
“obvious” only since our intuitive picture for the plane has two rotational
directions at any point. A proof is needed to show that this property actually
follows from our axioms for the Euclidean plane as thus far developed.

Since the statement of Proposition 6.16 is so simple and intuitively believ-
able, the proof may be skipped by readers not interested in so formal a
development of directed angle measure.
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Proof of Proposition 6.16. (Optional.) We first verify that there are at most
two possible directed angle measures at a0. To see this, choose a right angle
∠b0a0c0. Then, if m is a directed angle measure at a0, there are two possible
standard values for m on ∡b0a0c0: 90◦ or −90◦.

c

m∡b0a0c = m∠b0a0c

m∡b0a0c = −m∠b0a0ca0

c0

b0

c

Figure 6.17. One positive right angle fixes all directed angle measures.

We claim the standard value chosen for m∡b0a0c0 determines the measures
of all the other directed angles with vertex at a0. To see this, suppose c is

any point on the same side of
←→
a0b0 as c0, as shown in Figure 6.17. Then the

standard value of m∡b0a0c must be positive for otherwise additivity could
not be true (see Exercise 6.7c). Hence, in view of property (3), the standard
value of m∡b0a0c must equal the ordinary angle measure m∠b0a0c. This
completely determines the value set of m∡b0a0c.

Now consider any point c′ on the opposite side of
←→
b0a0 from c0, also shown in

Figure 6.17. Then the standard measure of the directed angle ∡b0a0c
′ must

be negative, which implies that the standard measure of m∡b0a0c
′ equals

the negative of the ordinary angle measure m∠b0a0c
′. Thus the value set of

m∡b0a0c
′ is completely determined.

Finally, the measure of any directed angle ∡ca0d with vertex a0 is given by

m∡ca0d = m∡ca0b0 −m∡da0b0 mod 360.

Thus specifying one of the two possible standard values for m∡b0a0c0 deter-
mines the measures of all other directed angles at a0, proving there are no
more than two distinct directed angle measure functions at a point a0.

We now show by construction that two directed angle measure functions

do indeed exist. Fix a ray
−−→
a0b0, and let ℓ0 =

←→
a0b0 be the directed line with

positive direction given by
−−→
a0b0. Choose one of the two sides of ℓ0, denoted by

H+
0 , as the positive (or counterclockwise) side. Let H−0 denote the opposite,

or negative, side. For any point x in the plane other than a0, assign a number
to the ray −→a0x in the following way (illustrated in Figure 6.19):
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m(−→a0x) = 0◦ if −→a0x =
−−→
a0b0 (example is x = x0 in Figure 6.19),

= 180◦ if −→a0x is opposite to
−−→
a0b0 (e.g., x = x2),

= m∠b0a0x if x is in H+
0 , the positive side of ℓ0 (e.g., x = x1),

= −m∠b0a0x if x is in H−0 , the negative side of ℓ0 (e.g., x = x3).

Using these numerical assignments for rays beginning at a0, we can define a
measure m for the directed angles at a0 by the following formula:

m∡ca0d = m(
−→
a0d)−m(−→a0c) mod 360. (6.18)

H+

0

m(−−→a0x0) = 0

m(−−→a0x1) = m∠b0a0x1

m(−−→a0x3) = −m∠b0a0x3

a0 b0

x3

x2

x1

x0

m(−−→a0x2) = 180◦

Figure 6.19. Defining a directed angle measure from rays.

An elementary but meticulous verification is required to show that m does
indeed satisfy the four desired properties for a directed angle measure at a0.
This is outlined in Exercise 6.8. Hence, since there are two choices for H+

0 ,

the positive side of the directed line ℓ0 =
←→
a0b0, we have constructed both

possible directed angle measures at a0. �

Exercises I.6

Exercise 6.1.

Show that congruence of angles is an equivalence relation as defined in
§4 following Definition 4.9.

Exercise 6.2.

Supply the details for the proof of Proposition 6.8:

Every angle has exactly one angle bisector.

Exercise 6.3.

According to our definition, two lines are said to be perpendicular if at
least one of the four angles formed at their intersection is a right angle.
In such a case prove that all four angles must be right angles.
Hint: The Vertical Angle Theorem.
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Exercise 6.4.

(a) Suppose x1 and x2 lie on one side of
←→
ab . Prove that x1 is in the

interior of ∠bax2 if and only if 0 < ∠bax1 < ∠bax2.

Hint: The proof of the reverse direction is tricky. A proof by contra-
diction seems advisable, and you may find it helpful to use Propo-
sition 5.6 or Exercise 5.4.

(b) Suppose x1 and x2 lie on opposite sides of
←→
ab . Prove that b is in

the interior of ∠x1ax2 if and only if m∠x1ab + m∠x2ab < 180◦.

Exercise 6.5.

Suppose c and c′ are points on opposite sides of a line ℓ and b, a, b′ are
three points on ℓ such that a is between b and b′— see Figure 6.20. Prove
that c, a, c′ are collinear if and only if ∠bac ∼= ∠b′ac′. (This exercise will
be used in Chapter II when proving reflections are isometries.) Hint:

For the reverse implication, pick c′′ to be a point such that
−→
ac′′ is the

ray opposite to −→ac. Then c, a, c′′ are collinear; show that this implies

∠bac ∼= ∠b′ac′′. Then show that
−→
ac′′ =

−→
ac′ by application of Angle

Axiom M-2, Angle Construction.

a

b

c
ℓ

∠bac

c

′b

∠b ac

Figure 6.20.

Exercise 6.6.

The algebraic properties of equality modulo 360 are as expected for
addition and subtraction but are less well-behaved for multiplication.

(a) If θ = α mod 360, then prove −θ = −α mod 360.

(b) If θ = α mod 360 and ψ = β mod 360, then prove

θ + ψ = α+ β mod 360 and θ − ψ = α− β mod 360.

(c) If θ = ψ + α mod 360, then prove θ − ψ = α mod 360.

(d) If θ = α mod 360 and k is any real number, then is kθ = kα mod 360?
What if k is an integer? Prove those properties which are true and
give counterexamples for those which are false.

(e) If θ = α mod 360 and ψ = β mod 360, then is θψ = αβ mod 360?
Either prove this is true or give a counterexample.
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Exercise 6.7.

Verify the following basic properties of a directed angle measure m at a
point a0. (Assume all points listed below are distinct from a0.)

(a) Prove that m∡ba0c = −m∡ca0b mod 360.

Hint: What can you say about m∡ba0c+m∡ca0b?

(b) Suppose c1 and c2 are points on opposite sides of ℓ0 =
←→
a0b such that

∠ba0c1 ∼= ∠ba0c2. Prove m∡ba0c1 = −m∡ba0c2 mod 360.

(c) Suppose m∡b0a0c0 = 90◦ mod 360 and c is on the same side of the

line
←→
a0b0 as c0. Prove that the standard value ofm∡b0a0c is positive.

Hint: Consider the cases when (i) −−→a0c0 = −→a0c, (ii) c and b0 are on
the same side of ←→a0c0, and (iii) c and b0 are on opposite sides of
←→a0c0. In each situation analyze the consequences of

m∡b0a0c0 = m∡b0a0c+m∡ca0c0 mod 360.

Exercise 6.8.

Suppose ℓ0 =
←→
a0b0, with H+

0 chosen as the positive side of ℓ0 and H−0
chosen as the negative side. Let m be defined by (6.18) on directed
angles with vertex at a0. In this exercise you will verify that m is
indeed a directed angle measure at a0.

(a) Verify conditions (1) and (2) of Definition 6.15. These require simple
case-by-case analyses.

(b) Verify condition (4) of Definition 6.15. This is easy.

(c) Proof of condition (3) of Definition 6.15 requires a case-by-case anal-
ysis. Verify the condition in the following cases:

(i) c, d in H+
0 , with c in the interior of ∠b0a0d.

(ii) c, d in H+
0 , with d in the interior of ∠b0a0c.

(iii) c in H+
0 , d in H−0 , and b0 in the interior of ∠caod.

(iv) c in H+
0 , d in H−0 , and b′0 in the interior of ∠caod, where

−−→
a0b
′
0 is

the ray opposite to
−−→
a0b0.

(d) The four subcases of (c) yield four more subcases when H+
0 and

H−0 are interchanged. Show that condition (3) for each of the new
subcases can be deduced from the old by using c′ = σℓ0(c) and
d′ = σℓ0(d) in conjuction with Exercise 6.7b.

(e) The remaining (singular) cases for condition (3) are those in which
at least two of the points b0, c, d are collinear with a0. Verify
condition (3) in these cases.



46 Revision v2.0 , Chapter I, Foundations of Geometry in the Plane

§I.7 Triangles and the SAS Axiom

We assume a coordinate system for each line in the plane and use these
coordinate systems to define a distance function for E . However, among
our current axioms, only the Plane Separation Axiom requires any “com-
patibility” between coordinate systems on different lines. This results from
relationships established by the axiom linking betweenness on different lines.
We thus have compatibility restrictions between the distance functions along
distinct lines, even if the nature of these restrictions is somewhat obscure.

In this section we add an axiom that explicitly involves the side lengths of
triangles — it will result in greatly strengthen “global” distance relationships
between coordinate systems on different lines.

The axiom gives conditions that imply congruence between two triangles.
As discussed prior to Definition 4.9, the intuitive meaning of congruence for
two geometric figures is that one of the figures can be “moved” onto the
other so that all parts match in an identical fashion, i.e., when “moved,”
the two figures are “identical.” For two triangles to be congruent, there
should be a correspondence between the sides (and hence the angles) so that
corresponding sides have the same length and corresponding angles have the
same angular measure. We formalize this notion in the next definition.

Definition 7.1. Triangle Congruence.

(a) A congruence between two triangles, written △abc ∼= △ABC,
means that corresponding sides are congruent and corresponding
angles are congruent, i.e.,

ab = AB, bc = BC, ac = AC

and

m∠a = m∠A, m∠b = m∠B, m∠c = m∠C.

(b) Triangles are congruent if there exists a congruence between them.

△abc ∼= △ABC
a

b

c

A

B

C

Figure 7.2. △abc ∼= △ABC via the correspondence abc↔ ABC.

We need two parts for Definition 7.1 for the following reason. To say that
the two triangles △abc and △ABC are congruent means that one of the six
possible correspondences between the two triangles must be a congruence,
i.e., one the following six possible congruences must be valid:
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△abc ∼= △ABC, △abc ∼= △ACB,

△abc ∼= △BAC, △abc ∼= △BCA,

△abc ∼= △CAB, △abc ∼= △CBA.

For example, in Figure 7.3 the triangles △abc and △ABC are congruent,
but not via the “standard” correspondence abc ↔ ABC, i.e., it is not true
that △abc ∼= △ABC. The correspondence which does work is abc↔ BCA,
so the congruence which is valid is △abc ∼= △BCA.

△abc ∼= △BCA
a

b

c
A

C
B

Figure 7.3. △abc ∼= △ABC via the correspondence abc↔ BCA.

To prove two triangles are congruent from the definition, one needs to verify
that some correspondence between vertices yields a congruence. This means
verifying six equalities as given in Definition 7.1a. In fact, there are several
standard results in Euclidean geometry that state that a congruence between
triangles can be established by verifying merely three of the six desired
equalities. In other words, if certain collections of three of the equalities are
true, then the other three equalities will automatically be true.

However, these results — known as the Basic Congruence Theorems — are
not consequences of the seven axioms we have assumed thus far — this will
be shown in Exercise 7.3. We must add another axiom. Our method is to
assume one of the desired congruence results as the new axiom.

The SAS (Side-Angle-Side) Axiom.

SAS. Suppose a correspondence between two triangles is such that two
sides and the included angle of the first triangle are congruent to
the corresponding parts of the second triangle. Then the correspon-
dence is a congruence between the two triangles.

a

b

c
A

B

C

Figure 7.4. The SAS Axiom states that in this situation △abc ∼= △ABC.

Stated in symbols, suppose △abc and △ABC are two triangles such that
ab ∼= AB, ∠b ∼= ∠B, and bc ∼= BC, as shown in Figure 7.4. Then the
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SAS Axiom states that the two triangles are congruent via the congruence
△abc ∼= △ABC.

Given the SAS Axiom, we can establish many of the elementary geometry
results concerning triangles. One of the most basic (and important!) is
Euclid’s Pons Asinorum.8

a

b

c

Figure 7.6

Proposition 7.5. Pons Asinorum .
If two sides of a triangle are congruent, then the
angles opposite them are congruent.

Proof. Suppose △abc is such that ab ∼= bc, as shown
in Figure 7.6. We must verify ∠a ∼= ∠c. The trick is
to apply SAS to the correspondence abc↔ cba of the
triangle △abc with itself. In other words, we will use
SAS to verify the congruence △abc ∼= △cba. To do
so, notice that we have the necessary ingredients for
the SAS Axiom: ab ∼= bc, cb ∼= ba, and ∠b ∼= ∠b.

Hence △abc ∼= △cba by the SAS Axiom, and thus the corresponding angles
∠a and ∠c must indeed be congruent, as desired. �

Pons Asinorum concerns isosceles triangles, as we now define.

Definition 7.7.

(a) A triangle is isosceles if at least two sides are congruent.

(b) A triangle is equilateral if all three sides are congruent.

Thus Pons Asinorum says that not only are two sides of an isosceles triangle
congruent, but the two corresponding angles must also be congruent. The
converse is also true: congruence of two angles implies congruence of the
corresponding sides (Exercise 7.1a).

Theorem 7.8. ASA (Angle-Side-Angle).9

Suppose a correspondence between two triangles is such that two angles
and the included side of the first triangle are congruent to the corre-
sponding parts of the second triangle. Then the correspondence is a
congruence between the two triangles.

Stated in symbols, suppose △abc and △ABC are two triangles such that
∠a ∼= ∠A, ac ∼= AC, and ∠c ∼= ∠C, as shown in Figure 7.9. Then ASA states
that the two triangles are congruent via the congruence △abc ∼= △ABC.

8The name Pons Asinorum means “asses’ bridge,” a name derived from a particular diagram
Euclid used in his proof of the result. The proof we give is shorter and does not require Euclid’s
diagram. So we are left with the strange name but without its motivation!

9See the generalization of ASA to be established in Exercise 8.2.
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a

b

c
A

B

C

Figure 7.9. ASA implies △abc ∼= △ABC.

Proof of ASA. From Proposition 4.10 there exists a point B0 on ray
−→
AB

such that ab ∼= AB0 (shown in Figure 7.10). SAS proves △abc and △AB0C
are congruent. Thus, to prove △abc ∼= △ABC, we must show B0 equals B.

AB

a

b

c
A

B

C

B0

ab ∼= 0

Figure 7.10. SAS implies △abc ∼= △AB0C.

From the congruence △abc ∼= △AB0C we know ∠ACB0
∼= ∠acb. But

by assumption we also know ∠acb ∼= ∠ACB. Hence ∠ACB0
∼= ∠ACB.

Therefore, by Angle Axiom M-2, the rays
−−→
CB0 and

−→
CB are equal, and hence

the lines
←−→
CB0 and

←→
CB are the same. But this one line therefore intersects

the (different) line
←→
AB in two points, B and B0. Since two different lines can

intersect in at most one point by Proposition 2.1, we conclude B = B0. �

The third basic congruence result, the SSS Theorem, takes some effort to
establish. An outline of its proof is given in Exercise 7.2.

Theorem 7.11. SSS (Side-Side-Side).
Suppose a correspondence between two triangles is such that the three
sides of the first triangle are congruent to the corresponding sides of the
second triangle. Then the correspondence gives a triangle congruence.

We can now use SAS to generalize Proposition 6.11 to apply to any point p
in the plane. This will be an important result for our subsequent work.

p

ℓ

m
Theorem 7.12.

Suppose ℓ is a line in the plane E and p is any
point in E. Then there exists a unique line m
containing p which is perpendicular to ℓ.

Proof. If p lies on ℓ, then the desired result is merely
Proposition 6.11. So assume p does not lie on ℓ.
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Pick distinct points a and c on ℓ and let H be the half plane with edge ℓ
containing p. Let H′ be the half plane opposite to H. From Angle Axiom
M-2 there exists a point q in H′ such that ∠caq ∼= ∠cap (see Figure 7.13).

p

ℓ a

c

H

q

H

Figure 7.13. Pick q ∈ H′ such that ∠caq ∼= ∠cap.

From Proposition 4.10, Segment Construction, there exists a unique point p′

on the ray −→aq such that ap′ ∼= ap. We claim m =
←→
pp′ is perpendicular to ℓ,

which will prove the existence of the desired perpendicular (see Figure 7.14).

p
ℓ

m

a

c

q

p

Figure 7.14. Pick p′ ∈ −→aq such that ap′ = ap.

To prove that m is perpendicular to ℓ, note that p and p′ are on opposite
sides of ℓ. Hence, from the Plane Separation Axiom, the line segment pp′

intersects the line ℓ at some point d. We now have two cases to consider.

Case (1): The points a and d are distinct (Figure 7.15). We therefore have
two triangles, △adp and △adp′, with congruences ap ∼= ap′, ∠pad ∼= ∠p′ad,
and ad = ad. Hence SAS applies to give △adp ∼= △adp′.

p
ℓ

m

a
d

p

Figure 7.15. Case (1): a 6= d.
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In particular, the two angles ∠adp and ∠adp′ are congruent. However, these
two angles form a linear pair and hence are supplementary by Angle Axiom
M-4. But two angles can be supplementary and congruent only if they both
have angle measure 90◦, i.e, if they are right angles. Aha! This means that

m =
←→
dp and ℓ =

←→
da are perpendicular, as desired.

Case (2): The points a and d are the same (Figure 7.16). Since ∠cap ∼= ∠cap′

by construction, then we have ∠cdp ∼= ∠cdp′.

p

ℓ

m

cda=

p

Figure 7.16. Case (2): a = d.

As in Case (1) we therefore have two angles that are both supplementary
(since they are a linear pair) and congruent, which means they are both

right angles. Hence m =
←→
dp and ℓ =

←→
dc must be perpendicular, as desired.

To finish, we must verify the uniqueness of the line m which contains p and
is perpendicular to ℓ. Suppose m and m0 are two such lines (Figure 7.17).

p

ℓ

m

a
d

m0

d0

Figure 7.17. Suppose m and m0 are both perpendicular to ℓ.

We have to show that m = m0. Let d and d0 be the intersection points of m
and m0 with ℓ, respectively. By Proposition 4.3b we can pick a third point

a on ℓ which is not between d and d0. Hence rays
−→
ad and

−→
ad0 are equal.

From Exercise 6.3 all four angles formed at d by m and ℓ are right angles
(Figure 7.18). Now pick p′ ∈ m on the opposite side of ℓ from p such that
dp′ ∼= dp — this is possible by Proposition 4.10, Segment Construction.
Then consider triangles △adp and △adp′. These must be congruent by the
SAS Axiom since dp ∼= dp′, ∠adp ∼= ∠adp′, and da = da.
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p
ℓ

m

a

d

p

Figure 7.18. SAS implies △adp ∼= △adp′.
Hence, as shown on the left in Figure 7.20, from △adp ∼= △adp′ we obtain

∠dap′ ∼= ∠dap and ap′ ∼= ap. (7.19a)

Repeat the construction of the previous paragraph for m0, giving p′0 ∈ m0

such that p and p′0 are on opposite sides of ℓ and d0p′0
∼= d0p. Then, as

above, we obtain the triangle congruence △ad0p ∼= △ad0p
′
0, which implies

∠d0ap
′
0
∼= ∠d0ap and ap′0

∼= ap, (7.19b)

as shown on the right in Figure 7.20. We now show that the points p′ and
p′0 are the same. This will give the desired equality of m and m0.

d0

m0

p

ℓ

m

a

d

p

ℓ a

p p
0

Figure 7.20. We find that ∠dap′ = ∠d0ap
′
0 and ap′ = ap′0.

Since the point a ∈ ℓ does not lie between d and d0, rays
−→
ad and

−→
ad0 are

equal, and we obtain the following congruences:

∠dap′ ∼= ∠dap from (7.19a),

= ∠d0ap since
−→
ad =

−→
ad0,

∼= ∠dap′0 from (7.19b),
and

ap′ ∼= ap ∼= ap′0 from (7.19ab).

Since both p′ and p′0 lie on the same side of line ℓ =
←→
da , the congru-

ences ∠dap′ ∼= ∠dap′0 and ap′ ∼= ap′0 prove p′ = p′0 by invoking the unique-
ness condition of Proposition 4.10, Segment Construction. But this gives

m =
←→
pp′ =

←→
pp′0 = m0. Hence there is only one line through p which is

perpendicular to ℓ, as desired. �
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Exercises I.7

Exercise 7.1.

(a) Prove the converse of Pons Asinorum: If two angles of a triangle
are congruent, then the sides opposite them are congruent.

(b) As in Definition 7.7 a triangle is called equilateral if all three of its
sides are congruent. Similarly a triangle is called equiangular if all
three of its angles are congruent. Prove that a triangle is equilateral
if and only if it is equiangular.

Exercise 7.2. SSS (Side-Side-Side).

In this exercise you will prove Theorem 7.11, SSS :

Suppose a correspondence between two triangles is such that the
three sides of the first triangle are congruent to the corresponding
sides of the second triangle. Then the correspondence is a congru-
ence between the two triangles.

Stated in symbols, suppose △abc and △ABC are two triangles such
that ab ∼= AB, bc ∼= BC, and ac ∼= AC, as shown in Figure 7.21. Then
△abc ∼= △ABC.

a

b

c A

B

C

Figure 7.21. SSS implies △abc ∼= △ABC.

You will construct a third triangle △ab′c on the side ac of △abc that
you will prove to be congruent to both of the original triangles.

(a) Prove that there exists a point b′ on the opposite side of ℓ = ←→ac
from b such that △ab′c ∼= △ABC. Hint: Construct b′ so that
∠cab′ ∼= ∠CAB as in Figure 7.22.

(b) Prove that the line segment bb′ must intersect the line ℓ = ←→ac at
some point e.

There are now several cases that must be handled separately, depending
on the location of the point e relative to a and c.

(c) Suppose e is strictly between a and c, as shown in Figure 7.22.
Verify that e must be in the interiors of both ∠abc and ∠ab′c (see
Exercise 5.4). Then use this to prove ∠abc ∼= ∠ab′c. Hint: What
type of triangles are △bab′ and △bcb′?
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a

b

c A

B

C
e

b ′

Figure 7.22. The construction of △ab′c.
(d) Continuing with the assumption that e is strictly between a and c,

conclude that△abc ∼= △ab′c, and hence△abc ∼= △ABC, as desired.

(e) Now suppose a is strictly between e and c (the case for c strictly
between a and e is identical). Produce an argument similar to (c)
and (d) to prove △abc ∼= △ABC, as desired.

(f) Now suppose e = a (the case e = c is identical). Prove △abc ∼=
△ABC, as desired. This completes the proof of SSS.

Exercise 7.3.

In this exercise you will show that the SAS Axiom is independent of
the previous seven axioms, i.e., that there is a system in which the first
seven axioms are valid but the SAS Axiom is false. We define such
an “aberrant” system as follows. Suppose E is a set, L a collection
of special subsets of E called lines, each line ℓ ∈ L having a coordinate
system χℓ, andm an angle measure function. Let d be the corresponding
distance function, and assume our axiomatic system satisfies all of the
eight axioms up to and including SAS.

We define a new axiomatic system by altering just one coordinate system
as follows. Pick a specific line ℓ0 in E with coordinate system χ = χℓ0

and define a new coordinate system on ℓ0 by η(p) = 2χ(p) for every point
p on ℓ0 (see Exercise 3.1a). Let ρ denote the new distance function that
results on E by replacing χ with η. You first studied such a distance
function alteration in Exercise 3.3.

(a) Show that, for any two points p and q in E , we have

ρ(p, q) =

{
2d(p, q) if p and q both lie on ℓ0,

d(p, q) in all other cases.

and that the first seven axioms are valid for our new axiomatic
system where η replaces χ and consequently ρ replaces d.
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(b) Show that the SAS Axiom is not always valid for the new distance
function ρ and the original angle measure function m on the set E .
Hint: Consider the triangles△abc and△ABC shown in Figure 7.23.
The side ac lies on the line ℓ0 while none of the other five sides lie
on ℓ0. Assume that ab ∼= AB, bc ∼= BC, and ∠b ∼= ∠B. If the
SAS Axiom were valid, then we would conclude that ac ∼= AC with
respect to the new distance function ρ. Show that this is not true!

a

b

c

A C

B
ℓ0

Figure 7.23. With the distance function of Exercise 7.3, ac 6∼= AC.

Exercise 7.4.

Consider any line segment ab. A line ℓ is a perpendicular bisector

for ab if ℓ is perpendicular to
←→
ab at the midpoint of ab.

(a) Prove that every line segment has a unique perpendicular bisector.

(b) Prove that the perpendicular bisector of ab consists of all the points
c in the plane which are equidistant from a and b, i.e., ac = bc.
Hint: You are asked to prove the equality of two sets. You must
therefore prove that each set is a subset of the other.

(c) Suppose A, B, C are three non-collinear points in the plane and p,
q are two points which are equidistant from A, B, and C, i.e.,

pA = qA, pB = qB, pC = qC.

Prove p = q.

Exercise 7.5.

(a) Suppose A, B, C are three distinct points in the plane for which
there exists another point p that is equidistant from A, B, C, i.e.,
pA = pB = pC. Prove that A, B, C are non-collinear.
Hint: Suppose A, B, C are collinear. Then use Exercise 7.4b and
Theorem 7.12 to obtain a contradiction.

A circle C is a collection of all points equidistance from one fixed point,
i.e., there exists a point c and a real number r > 0 such that

C = Cr[c] = {x ∈ E | cx = r}.
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The point c is the center of the circle Cr[c] and r is its radius. A di-
ameter is any line segment joining two points on the circle and passing
through its center.

(b) Show that two distinct circles cannot intersect at more than two
distinct points. Hint: Suppose Cr1

[c1] and Cr2
[c2] intersect at the

three distinct points A, B, C. Prove that the centers c1 and c2 are
equal by considering the perpendicular bisectors of AB and BC.

§I.8 Geometric Inequalities

Any triangle has three sides. Moreover, each side has two possible directions
— hence any triangle has six oriented sides. For each oriented side we will
obtain an exterior angle for the triangle as shown in Figure 8.1 and formally
defined in Definition 8.2.

a

c

bb

Figure 8.1. ∠cab′ is an exterior angle with remote interior angles ∠b, ∠c.

Definition 8.2.

Consider a triangle △abc and let
−→
ab′ be the ray opposite to

−→
ab. The

angle ∠cab′ is the exterior angle of △abc associated with oriented side
ab, oriented from a to b. The two angles ∠b and ∠c are the remote
interior angles for the exterior angle ∠cab′.

Exterior angles will be useful tools in our development of geometric inequal-
ities, due primarily to the following result.

Theorem 8.3. The Exterior Angle Theorem.
An exterior angle of a triangle is always larger than its two remote
interior angles.

Proof. Consider a triangle △abc. We will first prove that the exterior angle
∠cab′ is greater than the remote interior angle ∠c = ∠acb. The remote
interior angle ∠b = ∠abc will be handled afterwards.

Let d be the midpoint of ac (which exists by Proposition 4.3c), and let
−→
de

be the ray opposite to
−→
db, as shown in Figure 8.4. By Proposition 4.10,

Segment Construction, we can choose the point e such that de = db.



§I.8. Geometric Inequalities 57

a

c

b

d

e

b

Figure 8.4. d is the midpoint of ac,
−→
de is opposite to

−→
db , and de = db.

By SAS we have△cdb ∼= △ade. This follows since cd ∼= ad (d is the midpoint
of ac), db ∼= de (by definition of e), and ∠cdb ∼= ∠ade (from Theorem 6.5,
the Vertical Angle Theorem). Hence ∠c ∼= ∠cae, as shown in Figure 8.5.

a

c

b

d

e

b

Figure 8.5. The angles ∠c and ∠cae are congruent.

However, the point e is in the interior of the angle ∠cab′.10 Hence, by Angle
Axiom M-3, Angle Addition, we see that m∠cab′ = m∠cae+m∠eab′. Thus
the exterior angle ∠cab′ is greater than the remote interior angle ∠c.

Now consider the other remote angle ∠b. By a direct application of the

result established above, ∠b is less than the exterior angle ∠bac′, where
−→
ac′

is the ray opposite to −→ac . This is shown in Figure 8.6.

∠b

a

c

b

c
∠bac

b

Figure 8.6. ∠b is a remote internal angle for exterior angle ∠bac′.

10To rigorously prove that e is in the interior of ∠cab′, first note that b′ and e are both on
the side of ←→ac opposite the point b. Then note that the points c and e are both on the same side

of
←→
ab′ — this follows from observing that all the points (other than a) of −→ac lie on one side of

←→
ab′

(Proposition 5.6), all the points (other than b) of
−→
be lie on one side of

←→
ab′ (Proposition 5.6), and

−→ac and
−→
be intersect at the point d. Hence c, d, and e are all on the same side of

←→
ab′ , as desired.
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But ∠bac′ and ∠cab′ form a vertical pair and hence are congruent by the
Vertical Angle Theorem (Theorem 6.5). Thus ∠b is less than ∠cab′. �

Here is another simple but important property relating inequalities between
side lengths of a triangle with inequalities between corresponding angles.

Theorem 8.7.
Consider any triangle. Then the length of one side is less than the length
of a second side if and only if the measure of the angle opposite the first
side is less than the measure of the angle opposite the second side.

Proof. For any triangle △abc we will prove ab < bc if and only if ∠c < ∠a.

First assume ab < bc and let d be that point on the ray
−→
ba such that

bd = bc (see Figure 8.8). The point d exists by Proposition 4.10, Segment
Construction. We will prove that ∠c < ∠d < ∠a.

Since ab < bc, we know that a is between b and d. Therefore a is in the
interior of ∠bcd by Exercise 5.4, proving that ∠c = ∠bca < ∠bcd by Angle
Axiom M-3, Angle Addition. But since bc ∼= bd, Proposition 7.5 (Pons
Asinorum) gives ∠bcd ∼= ∠d, proving ∠c < ∠d.

a

b

c

d

Figure 8.8. Point d is picked so that bd = bc.

We have only to show ∠d < ∠a. Aha! Since ∠a is an exterior angle of △acd
and ∠d is a remote interior angle, Theorem 8.3 gives ∠d < ∠a.

We now establish the converse direction, i.e., if ∠c < ∠a, then ab < bc.
Suppose this is not the case, i.e., suppose ab ≥ bc. If ab = bc, then Pons
Asinorum would give ∠c ∼= ∠a, a contradiction. Moreover, if ab > bc, then
by what we have just shown, we would have ∠a < ∠c, another contradiction.
Hence we are left with ∠c < ∠a, as desired. �

We now can prove the most famous and important geometric inequality.

Theorem 8.9. The (Strict) Triangle Inequality.

The sum of the lengths of any two sides of a triangle is greater than the
length of the remaining side.

Proof. Consider triangle △abc in Figure 8.10. We will show ac < ab+ bc.
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By Proposition 4.10, Segment Construction, let d be that point on the ray

opposite to
−→
bc such that bd = ba. We claim that the angle ∠dac is greater

than the angle ∠adc. To show this, note that ∠adc ∼= ∠dab by Pons Asino-
rum since bd = ba. But since b is between c and d, b is in the interior of
∠dac by Exercise 5.4. Hence

∠adc ∼= ∠dab < ∠dac

by Angle Axiom M-3, Angle Addition. Thus ∠adc < ∠dac, as we claimed.

a

b

c

d

Figure 8.10. Point d is picked so that bd = ba.

Hence, by Theorem 8.7 applied to △acd, we obtain ac < dc. This implies
dc = db+ bc and db = ab, and hence ac < ab+ bc, as desired. �

Corollary 8.11. The Triangle Inequality.
For any three points a, b, c in the plane, ac ≤ ab+ bc.

Proof. If the points a, b, c are non-collinear, then they form the vertices of
a triangle △abc and the desired inequality follows from Theorem 8.9.

Now suppose a, b, c are collinear. If ℓ is the line containing the three points,
let χ be a coordinate system on ℓ and let x, y, z be the coordinates of a, b,
c, respectively. Then

|z − x| ≤ |y − x|+ |z − y|

is true by the properties of real numbers. However, by the definition of
distance in Definition 3.2 this translates into ac ≤ ab+ bc, as desired. �

Exercises I.8

Exercise 8.1.

Use Theorem 8.3 to give an alternate proof for the uniqueness claim of
Theorem 7.12: Given a point p and a line m there can be at most one
line m containing p that is perpendicular to ℓ.
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Exercise 8.2. SAA (Side-Angle-Angle).

Prove the SAA Theorem, a generalization of ASA (Theorem 7.8):

Suppose a correspondence between two triangles is such that one
side and two angles of the first triangle are congruent to the corre-
sponding side and angles of the second. Then the correspondence is
a congruence between the two triangles.

Hints: If the side is between the two angles, then the desired result is
simply ASA, Theorem 7.8. So assume the side is not between the two
angles. In particular, assume we have two triangles, △abc and △ABC
as shown in Figure 8.12, where ab ∼= AB, ∠b ∼= ∠B, and ∠c ∼= ∠C.

Now choose the point C ′ on
−→
BC such that BC ′ = bc. Prove SAA by

considering the triangle △ABC ′ and using the Exterior Angle Theorem.

a

b

c

A

B

C
C

Figure 8.12. Point C ′ is picked so that bc = BC ′.

Exercise 8.3. A Qualified SSA (Side-Side-Angle).

(a) Consider the SSA Conjecture:

Suppose a correspondence between two triangles is such that
two sides and one angle of the first triangle are congruent to
the corresponding sides and angle of the second. Then the cor-
respondence is a congruence between the two triangles.

Disprove this conjecture by giving a counterexample, i.e., by pro-
ducing a pair of non-congruent triangles that satisfy the hypotheses.

(b) Although the general SSA is false, prove SSA to be true when the
angle under consideration is a right angle or an obtuse angle, i.e.,

Suppose ∠bac ∼= ∠BAC are right or obtuse angles. If ab ∼= AB
and bc ∼= BC, then △abc ∼= △ABC.

Hint: First show that we can assume ac ≤ AC by relabeling (if
necessary) the vertices of the two triangles. Then consider c′ ∈ −→ac
such that ac′ = AC. What can you say about △cbc′?

Exercise 8.4.

Show that the shortest distance between a point p and a line ℓ not
containing p is given by pd, where d is the intersection of ℓ with the line
m containing p and perpendicular to ℓ. Hints: Let b be any point of ℓ

other than d and let
−→
dc be the ray opposite

−→
db , as shown in Figure 8.13.
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How do angles ∠pdc and ∠pbd relate to each other? What does this say
about angles ∠pbd and ∠pdb?

p

b

c

ℓ

d

Figure 8.13.
−→
dc is the ray opposite to

−→
db .

Exercise 8.5.

Show the angle bisector
−→
bd (Definition 6.6) of an angle ∠abc consists

precisely of the point b along with all points in the interior of ∠abc

which are equidistant from the lines
←→
ba and

←→
bc . (The distance from

a point to a line is defined to be the length of the perpendicular line
segment joining the point to the line.)

Exercise 8.6.

(a) Given any triangle △abc and a point e ∈ ac that is between a and
c as shown in Figure 8.14, prove ae+ eb < ac+ cb.
Hint : Use the Strict Triangle Inequality (Theorem 8.9).

(b) Given any triangle △abc and a point d in the interior as shown in
Figure 8.14, prove ad+ db < ac+ cb.
Hint : Apply the Crossbar Theorem (Theorem 5.9) to show that the

ray
−→
bd intersects ac at a point e between a and c.

ab

c

de

ab

c

Figure 8.14. The blue lengths are greater than the red lengths.

Exercise 8.7. The Hinge Theorem .

In this exercise you will prove the Hinge Theorem:

If two sides of one triangle are congruent to two sides of a second
triangle, and the included angle of the first triangle is larger than the
included angle of the second triangle, then the opposite side of the
first triangle is larger than the opposite side of the second triangle.
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A

b

ca

B

C

Figure 8.15. ∠A greater than ∠a implies BC greater than bc.

You will prove this result in a series of steps. Suppose△ABC and △abc
are as in Figure 8.15: AB ∼= ab, AC ∼= ac, ∠A greater than ∠a.

(a) Prove there exists a point B′ such that B′ is in the interior of ∠BAC
and △AB′C ∼= △abc.

(b) Prove there existsD between B andC such that
−→
AD bisects ∠BAB′.

Hint: Use the Crossbar Theorem. It is helpful to obtain a point D′

between B and C such that
−−→
AD′ =

−−→
AB′. See Figure 8.16.

A

B

C

D

b

ca

B

D

Figure 8.16. △AB′C is congruent to △abc, and
−→
AD bisects ∠BAB′.

(c) Prove DB ∼= DB′. Hint: Consider triangles △ADB and △ADB′.
(d) Use (c) to prove bc < BC, thereby verifying the Hinge Theorem.

§I.9 Parallelism

A central concept in Euclidean geometry is that of parallel lines.

Definition 9.1.

(a) Two lines ℓ1 and ℓ2 in the plane E are parallel lines, written ℓ1 ‖ ℓ2,
if they do not intersect or (for convenience) if the two lines are equal.

(b) Two line segments ab and cd are parallel line segments if the two

lines
←→
ab and

←→
cd determined by the segments are parallel.

ℓ m1

m2

Here is one simple method to verify parallelism.

Proposition 9.2.

Suppose lines m1 and m2 are both perpendicular
to a line ℓ. Then m1 and m2 are parallel.
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Proof. If m1 and m2 are not disjoint, then they intersect in at least one
point p. From Theorem 7.12 we know there is only one line m containing
p which is perpendicular to ℓ. Hence m1 would have to equal m2, implying
m1 and m2 are parallel. We have thus shown that m1 and m2 are either
disjoint or equal; this proves they are parallel, as desired. �

Proposition 9.3.
Suppose ℓ is a line and p is a point. Then there exists at least one line
ℓ′ containing p which is parallel to ℓ:

ℓ

p

ℓ

Proof. From Theorem 7.12 there exists a line m perpendicular to ℓ and
containing p (see Figure 9.4). Moreover, again by Theorem 7.12 (or Propo-
sition 6.11), there exists a line ℓ′ perpendicular to m and containing p.

ℓ

m

p

ℓ

Figure 9.4. Line m is perpendicular to ℓ, and line ℓ′ is perpendicular to m.

Thus ℓ and ℓ′ are both perpendicular to m. Hence, by Proposition 9.2, ℓ
and ℓ′ are parallel, as desired. (Notice that if p is a point of ℓ, then the line
ℓ′ will have to equal ℓ.) �

Proposition 9.3 is an existence result: given a point p and a line ℓ, there
exists a line ℓ′ containing p that is parallel to ℓ. However, for centuries it
was believed a uniqueness result must also be true, that there is a unique
line ℓ′ containing p which is parallel to ℓ. It was a major revelation when, in
the nineteenth century, it was shown that such a uniqueness result does not
follow from the previous axioms (nor any similar variants of the previous
axioms).

In particular, there are geometric systems that satisfy all the “usual” axioms
for standard Euclidean geometry except that through a point p not on a line
ℓ there are many lines ℓ′ which are parallel to ℓ. One such system is known as
hyperbolic geometry. A model for hyperbolic geometry can be obtained
from the Poincaré disk, Example 2.4. It is not too hard to see that through
any point p not on a Poincaré line ℓ there are an infinite number of Poincaré
lines ℓ′ which do not intersect ℓ. (We will consider this topic in more depth
in Volume II.)
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Thus, in order for our set of axioms to be complete enough to yield the
desired behavior for parallel lines, we need to add another axiom, known
traditionally as the Parallel Postulate. This simply states the uniqueness of
the line ℓ′ through p parallel to the given line ℓ. However, before stating and
using this postulate in the next section, we continue to derive those results
on parallelism which do not require the Parallel Postulate. In this way you
will better appreciate those results which cannot be obtained independent
of the Parallel Postulate.

Alternate Interior Angles. Suppose m1 and m2 are two distinct lines in
the plane. A third distinct line ℓ is said to be a transversal to m1 and m2

if ℓ intersects m1 and m2 in two (different) points p1 and p2, respectively.

ℓ

m1

m2

p2

p1

Figure 9.5. ℓ is transversal to m1 and m2.

In such a case we obtain four interior angles, i.e., the two angles formed
by ℓ and m1 which lie on the side of m1 containing p2 and the two angles
formed by ℓ and m2 which lie on the side of m2 containing p1.

ℓ

1

m1

m2

p2

p1

2

3

4

Figure 9.6. The transversal ℓ produces four interior angles.

We further organize these four angles into two pairs of alternate interior
angles as follows. Let a1 and b1 be two points of m1 which lie on opposite
sides of ℓ, and let a2 and b2 be two points of m2 which lie on opposite sides
of ℓ, with a1 and a2 on the same side of ℓ. Then the four interior angles
come in two pairs of alternate interior angles:

∠1 = ∠a1p1p2 and ∠2 = ∠b2p2p1,

∠3 = ∠b1p1p2 and ∠4 = ∠a2p2p1.

The first pair of alternate interior angles listed above is shown in Figure 9.7.
As can be seen in the figure, the two angles ∠a1p1p2 and ∠b2p2p1 form a



§I.9. Parallelism 65

pair of alternate interior angles if and only if a1 and b2 lie on opposite sides
of the line ℓ =←→p1p2.

ℓ

a1

b1 m1

a2 b2
m2

p2

p1

Figure 9.7. ∠a1p1p2 and ∠b2p2p1 are alternate interior angles.

We summarize these new concepts as follows.

Definition 9.8.

Suppose ℓ, m1, m2 are three distinct lines such that ℓ intersects m1 and
m2 in the two distinct points p1 and p2, respectively. Let a1 and b1 be
two points of m1 which lie on opposite sides of ℓ, and let a2 and b2 be
two points of m2 which lie on opposite sides of ℓ, with a1 and a2 on the
same side of ℓ. Then

∠a1p1p2 and ∠b2p2p1 (∠1 and ∠2)

form a pair of alternate interior angles for the transversal ℓ of the
lines m1, m2. The other pair of alternate interior angles is comprised of

∠b1p1p2 and ∠a2p2p1 (∠3 and ∠4).

We now can state our desired result, a sufficient condition for two lines to
be parallel given in terms of the alternate interior angles of a transversal.

ℓ

m1

m2

p2

p1

1

2

Proposition 9.9.
Suppose ℓ is a transversal for two distinct lines
m1 and m2. If two alternate interior angles are
congruent, then m1 and m2 are parallel.

Proof. Suppose the two lines m1 and m2 are not
parallel. Then they intersect in some point p3.

Let p1 and p2 be the intersection points of ℓ with m1 and m2, respectively,
and consider the triangle △p1p2p3 as shown in Figure 9.10.

ℓ

m1

m2

p2

p1

1

2
p3

Figure 9.10. Suppose ∠1 ∼= ∠2 but m1 and m2 intersect at p3.
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If the two congruent alternate interior angles are denoted by ∠1 and ∠2, then
one of these angles — say ∠1 — will be an exterior angle for△p1p2p3 and ∠2
will be a remote interior angle for ∠1. Hence ∠2 < ∠1 by Theorem 8.3, the
Exerior Angle Theorem. Oops! This is a contradiction since by assumption
we have ∠1 ∼= ∠2. �

The converse of Proposition 9.9 can be proven only after we assume the
Parallel Postulate.

Saccheri Quadrilaterals. A quadrilateral �abcd, as defined in Defini-
tion 5.10, is called a rectangle if the four interior angles ∠a, ∠b, ∠c, ∠d are
all right angles. It may be surprising to learn that our current collection of
axioms does not guarantee that any rectangles exist! This will require the
Parallel Postulate. However, if we apply a rather natural procedure to con-
struct a rectangle, we will obtain a specialized form of quadrilateral known
as a Saccheri quadrilateral. Here is the procedure.

Begin with any line segment ad. At the endpoints a and d use Proposi-
tion 6.11 to construct lines m1 and m2 which are perpendicular to ad and
contain a and d, respectively. On m1 pick a point b distinct from a, and on

m2 pick a point c distinct from d which is on the same side of
←→
ad as b. By

Proposition 4.10, Segment Construction, we can choose c so that ab ∼= cd.
What results is called a Saccheri quadrilateral, as shown in Figure 9.12.

Definition 9.11.

(a) A quadrilateral �abcd is a rectangle if the four interior angles ∠a,
∠b, ∠c, ∠d are all right angles.

(b) A quadrilateral �abcd is a Saccheri quadrilateral if ∠a and ∠d

are right angles, points b and c lie on the same side of
←→
ad , and

ab ∼= cd. The side ad is called the lower base and the side bc is
called the upper base.

m1 m2

a

b c

d

Figure 9.12. A Saccheri quadrilateral

In “ordinary” Euclidean geometry, i.e., when we complete our set of axioms,
the collection of all Saccheri quadrilaterals in the plane will be identical
to the collection of all rectangles in the plane — this will be shown in
Exercise 10.5. However, this is not true without the Parallel Postulate, and
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in such a context the Saccheri quadrilaterals are important objects. This is
particularly true in hyperbolic geometry.

Properties of Saccheri quadrilaterals will be derived in Exercise 9.2. They
will then be used in Exercise 9.3 to prove the following result:

Let △abc be any triangle with interior angles ∠a, ∠b, and ∠c. Then

m∠a+m∠b+m∠c ≤ 180◦.

We will prove in Theorem 10.3 that, given the Parallel Postulate, this in-
equality is actually an equality.

Exercises I.9

Exercise 9.1.

Suppose �abcd is a rectangle, i.e., a Saccheri quadrilateral such that all
four interior angles are right angles. Then prove that opposite sides of
the rectangle are congruent, i.e., ab ∼= cd and bc ∼= ad.
Hint: Split the quadrilateral into two triangles and apply Exercise 8.3.

Exercise 9.2. Saccheri Quadrilaterals.

In this exercise we develop the important properties of Saccheri quadri-
laterals. In particular, do not assume the Parallel Postulate!

(a) Prove that a Saccheri quadrilateral is a convex quadrilateral (Defi-
nition 5.10b). Hints: If �abcd is a Saccheri quadrilateral with lower
base ad, then the only potentially tricky part of verifying that �abcd
is convex is proving that a and d are on the same side of the line←→
bc . To do so, first show that all points between a and d lie on the

same side of
←→
cd as b and on the same side of

←→
ab as c. Then if a and

d are on opposite sides of
←→
bc , prove that b and c are on opposite

sides of
←→
ad , a contradiction.

(b) Prove that the diagonals of a Saccheri quadrilateral are congruent.

(c) In any Saccheri quadrilateral the lower base angles are congruent
since they are both right angles. Prove that the upper base angles
are also congruent (though, in the absence of the Parallel Postulate,
they might not be right angles). Hints: If ad is the lower base of a
Saccheri quadrilateral �abcd, show that △bad ∼= △cda. Use this to
further show that ∠bac ∼= ∠cdb, and then obtain △bac ∼= △cdb.

(d) In any Saccheri quadrilateral, prove that the upper base is never
shorter than the lower base. Outline: This is a challenging exercise!
If �a1b1b2a2 is your Saccheri quadrilateral with lower base a1a2,
then for each positive integer n build a collection of n copies of
the quadrilateral, �akbkbk+1ak+1, k = 1, . . . , n, each sharing a side
with the previous figure. The points a1, . . . , an+1 are all collinear
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and separated by the distance a1a2. Show that all the segments
bkbk+1, k = 1, . . . , n, are congruent. Use this to further show that

n a1a2 = a1an+1 ≤ a1b1 + n b1b2 + a1b1.

This gives a1a2 ≤ b1b2 + (2/n)a1b1 for each positive integer n. Use
this to show that a1a2 ≤ b1b2, as desired.

(e) If �abcd is a Saccheri quadrilateral with lower base ad, prove that
∠bdc ≥ ∠abd. Hint: Use the Hinge Theorem of Exercise 8.7.

Exercise 9.3.

You will use the properties of Saccheri quadrilaterals developed in Ex-
ercise 9.2 to prove that the sum of the measures of the interior angles
of any triangle must be less than or equal to 180◦. We cannot prove
equality in this relationship; this requires the Parallel Postulate, as will
be evident in the next section (also see Exercise 9.4).

(a) Show that the sum of the measures of the interior angles of any right
triangle must be less than or equal to 180◦. Further conclude that
the hypotenuse of a right triangle (the side opposite the right angle)
must be longer than either of the other sides. Hints: Suppose △abd
is the right triangle with right angle ∠dab. Show that there exists a
point c such that �abcd is a Saccheri quadrilateral with lower base
ad. Then apply Exercise 9.2e. The statement about the length of
the hypotenuse will follow from a result in §8.

(b) Suppose △abc has ac as a longest side. If d ∈ ←→ac is the foot of the
perpendicular from b, prove that d lies between a and c.

Hint: Show that the other possibilities lead to contradictions. The
first to consider is d = a, which can be handled by (a).

(c) Generalize (a) by showing that the sum of the measures of the
interior angles of any triangle must be less than or equal to 180◦.

Hint: Let d ∈ ←→ac be the foot of the perpendicular from b. Then
△abc is divided into two right triangles.

Exercise 9.4.

Consider the following two statements. Both are “well known” in ele-
mentary geometry, but neither has yet been established in our work.

Parallel Postulate.
Suppose ℓ is a line and p is a point not on ℓ.
Then there is a unique line ℓ′ parallel to ℓ and containing p.

Triangle Sum Hypothesis.
Let △abc be any triangle with interior angles ∠a, ∠b, and ∠c.
Then m∠a+m∠b+m∠c = 180◦.
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We have not established either of these results because neither one fol-
lows from the axioms we have thus far developed for Euclidean geometry
in the plane.11 However, the two results are equivalent in that assuming
either statement allows us to prove the other. We will show that the
Parallel Postulate implies the Triangle Sum Hypothesis in Theorem 10.3.
You will establish the other implication in this exercise.

(a) Suppose ℓ is a line, p a point not on ℓ, and r a fixed real number,
0 < r < 90◦. Assuming the Triangle Sum Hypothesis, prove there
exist points q0, q ∈ ℓ (where q can be chosen on either side of q0) such
that△pq0q is a right triangle with right angle at q0 andm∠pqq0 < r.

Outline: Show there exists q0 ∈ ℓ such that pq0 is perpendicular to ℓ.
Then choosing a side of ℓ, define the sequence of points q1, q2, · · · ∈ ℓ
on the chosen side of ℓ in the following manner (see Figure 9.13):

Choose q1 so that q0q1 = pq0.
Choose q2 so that q1q2 = pq1 and q1 is between q0 and q2.
If k > 1, choose qk so that qk−1qk = pqk−1 and

qk−1 is between qk−2 and qk.

With θ = 90◦, show that m∠pq1q0 = θ/2, m∠pq2q0 = θ/4, and in
general m∠pqkq0 = θ/2k. Define q = qk for a k such that θ/2k < r.

p

ℓ
q0 q1 q2 q3

Figure 9.13. The construction for Exercise 9.4a.

(b) Prove the Triangle Sum Hypothesis implies the Parallel Postulate.

Outline: Suppose ℓ is a line and p is a point not on ℓ. Let q0 ∈ ℓ
be the point such that pq0 is perpendicular to ℓ (see Figure 9.14).
If ℓ0 is the line perpendicular to ←→pq0 at p, then ℓ0 is parallel to ℓ
by Proposition 9.2. So suppose ℓ′ is any other line containing p.
Since it cannot be perpendicular to ←→pq0, there exists a point a on
ℓ′ such that 0 < m∠q0pa < 90◦. Let r = 90◦ − m∠q0pa, so that
0 < r < 90◦. From (a) pick q ∈ ℓ (with q and a on the same side of
←→pq0) such that △pq0q is a right triangle with right angle at q0 and
m∠pqq0 < r. Show that a is in the interior of ∠q0pq and use this
to prove that ℓ′ must intersect ℓ.

11For many centuries scholars believed that the Parallel Postulate should follow from the
more basic axioms of geometry. The history of the unsuccessful attempts to establish the result
is filled with brilliant mathematics, stupendous errors, and fascinating personalities. We refer
the interested reader to Chapter 23 of George Martin’s The Foundations of Geometry and the

Non-Euclidean Plane, Springer-Verlag, 1982.
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p

ℓq0

a

q

ℓ0

ℓ

Figure 9.14. The construction for Exercise 9.4b.

ℓ

x1

x2

p1

p2p

Exercise 9.5.

Suppose x1 and x2 are points on opposite sides
of a line ℓ such that←−→x1x2 is not perpendicular to
ℓ. Let x1x2 intersect ℓ at p, and let p1 and p2

be those points of ℓ such that x1p1 and x2p2 are
perpendicular to ℓ.

(a) Why do points p1 and p2 exist and why are
they unique?

(b) Why are the three points p1, p, p2 distinct?

(c) Prove that p is between p1 and p2. Hint: Let m be the line through
p which is perpendicular to ℓ. Then x1p1 and x2p2 are parallel to
m (why?) and x1 and x2 are on opposite sides of m (why?).

§I.10 The Parallel Postulate

We now introduce the Parallel Postulate. This merely states the unique-
ness of the parallel line whose existence was proven in Proposition 9.3.

The Parallel Postulate.

PP. Suppose ℓ is a line and p is a point not on ℓ.
Then there exists a unique line ℓ′ parallel to ℓ and containing p:

ℓ

p

ℓ

If p is a point on the line ℓ, then we don’t need the Parallel Postulate to
assert the existence of a unique line ℓ′ containing p which is parallel to ℓ: the
line ℓ itself is the unique ℓ′ that we desire. Hence we state the new axiom
only for points p not on the line ℓ since the result is trivially true if p is on
ℓ. We don’t include as axioms results that follow from other axioms!

Numerous important consequences follow from the Parallel Postulate, as we
now show. The first is the converse to Proposition 9.9.
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ℓ

m1

m2

p2

p1

1

2

Proposition 10.1.
Suppose ℓ is a transversal for two distinct
lines m1 and m2. If m1 and m2 are parallel,
then alternate interior angles are congruent.

Proof. Let p1 and p2 be the intersection points
of m1 and m2 with the line ℓ, respectively.

An interior angle at p1 will be of the form ∠a1p1p2 for a1 a point of m1

other than p1, as shown in Figure 10.2. From Angle Axiom M-2, Angle
Construction, there exists a point b2 on the side of ℓ opposite to a1 such
that the angle ∠p1p2b2 is congruent to ∠a1p1p2.

ℓ

m1

m2
p2

p1

a1

b2

Figure 10.2. b2 is picked so that ∠p1p2b2 ∼= ∠a1p1p2.

But ∠p1p2b2 and ∠a1p1p2 are congruent alternate interior angles for the two

lines m1 and
←→
p2b2 with respect to the transversal ℓ. Hence by Proposition 9.9

the line
←→
p2b2 is parallel to m1, and thus both lines

←→
p2b2 and m2 are parallel

to m1 and contain p2. Aha! By the Parallel Postulate m2 and
←→
p2b2 must

be the same line! In particular, the alternate interior angles for m1 and m2

and the transversal ℓ must be congruent, as desired. �

As promised in the previous section, we now show the Parallel Postulate
implies that the interior angles of a triangle add up to 180◦. (These are
actually equivalent statements. See Exercise 9.4.)

Theorem 10.3.

Let △abc be any triangle with interior angles ∠a, ∠b, and ∠c. Then

m∠a+m∠b+m∠c = 180◦.

ℓ

b

a c

ℓ
ca

Figure 10.4. ℓ′ is the line through b parallel to ℓ.

Proof. Let ℓ = ←→ac . Referring to Figure 10.4, pick ℓ′ through b such that ℓ′

and ℓ are parallel. Let a′ and c′ be points of ℓ′ such that a′ and a are on the
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same side of the line
←→
bc and c′ and c are on the same side of the line

←→
ba .

Then ∠a′ba and ∠a (= ∠bac) are alternate interior angles for the parallel
lines ℓ and ℓ′. Hence, by Proposition 10.1 (a consequence of the Parallel
Postulate) ∠a′ba ∼= ∠a. By an identical argument, we also have the angle
congruence ∠c′bc ∼= ∠c — see Figure 10.5.

ℓ

b

a c

a c
ℓ

Figure 10.5. ∠a′ba ∼= ∠a and ∠c′bc ∼= ∠c.

By Angle Axiom M-4, Supplements, m∠a′bc+m∠c′bc = 180◦. But a is in the
interior of ∠a′bc, and hence Angle Axiom M-3, Angle Addition, applied to
the first of these angles, gives that m∠a′bc = m∠a′ba+m∠abc. Combining
these two equalities gives

m∠a′ba+m∠abc+m∠c′bc = 180◦.

However, from the previous paragraph we know that the first angle is con-
gruent to ∠a and the third angle is congruent to ∠c. Since the second angle
is ∠b, we have obtained the desired equality of

m∠a+m∠b+m∠c = 180◦. �

A commonly used property of parallel lines in the plane is the transitivity of
parallelism: if ℓ1 is parallel to ℓ2 and ℓ2 is parallel to ℓ3, then ℓ1 is parallel
to ℓ3. It might come as a surprise that the truth of this “basic fact” requires
the Parallel Postulate! The proof makes clear why we have this dependence.

Theorem 10.6.
Parallelism between lines is transitive.

Proof. Suppose ℓ1 is parallel to ℓ2 and ℓ2 is parallel to ℓ3. We need to show
ℓ1 parallel to ℓ3, i.e., ℓ1 and ℓ3 are either disjoint or equal .

If ℓ1 and ℓ3 are not disjoint, then the two lines will intersect, say at p:

p

ℓ1

ℓ2

ℓ3

If p is on ℓ2, then ℓ1 equals ℓ2 since these lines are parallel. The line ℓ3
equals ℓ2 for the same reason. Thus ℓ1 = ℓ3, proving them to be parallel.
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If p is not on ℓ2, then ℓ1 and ℓ3 are both parallel to ℓ2 and contain the point
p. The Parallel Postulate then gives ℓ1 = ℓ3, so the lines are again trivially
parallel! Thus in all cases ℓ1 and ℓ3 are parallel lines, as desired. �

The next result is often useful, especially as it applies to both types of
parallelism: m1 and m2 disjoint or equal. The proof is left to Exercise 10.3.

Proposition 10.7.
Two lines m1 and m2 are parallel if and only if any line ℓ perpendicular
to m1 is also perpendicular to m2:

ℓ m1

m2

The existence of plenty of rectangles is another consequence of the Paral-
lel Postulate — it follows from proving that all Saccheri quadrilaterals are
actually rectangles. The proof of this result is left as Exercise 10.5.

Proposition 10.8.
Every Saccheri quadrilateral is a rectangle.

Parallelograms. Parallelograms will be important in our subsequent work,
especially when developing the important basic properties of translations in
Chapter II. We now establish the basic results concerning parallelograms.
Most of these results require the Parallel Postulate.

From Definition 5.10 a quadrilateral �abcd is the union of the four line
segments ab, bc, cd, and da, where a, b, c, and d are four non-collinear
points such that the four lines segments just listed intersect only at their
endpoints. A parallelogram is merely a special type of quadrilateral.

a

b

c

d

Definition 10.9.

A parallelogram �abcd is a quadrilateral
such that each pair of opposite sides are par-
allel line segments, i.e., ab and cd are parallel
and bc and da are parallel. The line segments
ac and bd are the diagonals of �abcd.
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Proposition 10.10.
(a) A diagonal divides a parallelogram into two congruent triangles. In

particular, given a parallelogram �abcd, △abd ∼= △cdb.
(b) In a parallelogram each pair of opposite sides are congruent.

(c) The diagonals of a parallelogram bisect each other.

Proof of (a): Given a parallelogram �abcd, let m1 =
←→
ab , m2 =

←→
cd , ℓ1 =

←→
ad ,

and ℓ2 =
←→
bc . Then m1 ‖ m2 and ℓ1 ‖ ℓ2. The diagonal bd forms two trian-

gles, △abd and △cdb, that we claim are congruent. We will prove this with
ASA, Theorem 7.8, by verifying the following (see labels in Figure 10.11):

a

b

c

d

m1

m2

ℓ1

ℓ2

∠1

∠2

∠4

∠3

Figure 10.11.

bd ∼= db,

∠1 ∼= ∠2,

∠3 ∼= ∠4.

• Segment congruence is trivial since bd = db.

• The angles ∠1 and ∠2 are alternate interior

angles for the transversal
←→
bd of the parallel

lines m1 and m2. Thus these angles are con-
gruent by Proposition 10.1.

• Similarly, the angles ∠3 and ∠4 are alternate interior angles for the

transversal
←→
bd of the parallel lines ℓ1 and ℓ2. Thus these angles are also

congruent by Proposition 10.1.

Proof of (b): Given a parallelogram �abcd, we wish to show that ab ∼= cd
and ad ∼= cb. However, these congruences follow immediate from the triangle
congruence △abd ∼= △cdb established in part (a).

Proof of (c): This is Exercise 10.10b. �

Future developments — in particular, the definition of translations in Chap-
ter II — will depend on the following important results for parallelograms.

Proposition 10.12. Parallelogram Uniqueness.

Suppose �abcd and �abcd0 are both parallelograms. Then d = d0.

a

b

c

d

m1

m2

ℓ1

ℓ2

d0

m0

2

ℓ0
1

Figure 10.13. The points d and d0 must be the same.
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Proof. Given the parallelogram �abcd, let m1 =
←→
ab , m2 =

←→
cd , ℓ1 =

←→
ad ,

and ℓ2 =
←→
bc . However, we have two additional line segments from the

parallelogram �abcd0: m
0
2 =
←→
cd0 and ℓ01 =

←→
ad0, as shown in Figure 10.13.

The two lines m2 and m0
2 are both parallel to m1 and contain the point c.

Thus m2 = m0
2 by the Parallel Postulate. Similarly, the two lines ℓ1 and ℓ01

are both parallel to ℓ2 and contain the point a. Thus ℓ1 = ℓ01.

The two points d and d0 are therefore on both lines m2 and ℓ1. If the points
are not equal, then m2 and ℓ1 would have to be the same line. But then a
would be a point of intersection of the parallel lines m1 and m2 = ℓ1, giving
m1 = m2. This would mean that all four points a, b, c, and d would be
collinear, which is not possible. Thus d and d0 cannot be distinct points,
giving d = d0, the desired result. �

Theorem 10.14. Parallelogram Existence.
Given three non-collinear points a, b, d in the plane, there exists a
unique point c such that �abcd is a parallelogram.

Proof. Let m1 =
←→
ab and ℓ1 =

←→
ad . Since the points a, b, and d are non-

collinear, the two lines m1 and ℓ1 are distinct and intersect only in the
point a. By Proposition 9.3 there exist two other lines m2 and ℓ2 where m2

contains the point d and is parallel to m1 and ℓ2 contains the point b and is
parallel to ℓ1. All this is shown in Figure 10.15.

a

b

d

m1

m2

ℓ1

ℓ2

Figure 10.15. The point c will be at the intersection of m2 and ℓ2.

We claim that the two new lines m2 and ℓ2 must intersect in a point c. For
suppose no such point exists. Then m2 and ℓ2 would be parallel. However,
ℓ2 is parallel to ℓ1 so the transitivity of parallelism (Theorem 10.6) would
imply that m2 ‖ ℓ1. But this cannot happen since d is on both lines and a is
only on ℓ1 (if a were on m2, then m2 would have to equal m1 and the points
a, b, d would be collinear, contradicting our initial assumptions). Hence
m2 and ℓ2 do indeed intersect in a point c which will therefore give the
existence of a parallelogram �abcd. The uniqueness of the point c follows
from Parallelogram Uniqueness (Proposition 10.12). �
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The point c of Theorem 10.14 that completes the parallelogram �abcd can
be fully characterized in a simple fashion. This is done in the next result,
Parallelogram Construction. Besides the inherent interest of the result itself,
it is a major step of our proof of Desargues’ Little Theorem (Theorem 10.18),
which in turn furnishes a major step in justifying some important results
concerning translations in Chapter II.

Theorem 10.16. Parallelogram Construction.

Given three non-collinear points a, b, d in the plane, the unique point
c that produces a parallelogram �abcd is characterized as follows: c is

that point such that
←→
cd is parallel to

←→
ab , cd = ab, and b and c are on

the same side of
←→
ad .

a

b

c

d

Figure 10.17. The point c will give a parallelogram �abcd.

Proof. There exists a unique point c that makes �abcd a parallelogram from
Parallelogram Existence (Theorem 10.14). That this point c has all the

stated properties is easy to verify:
←→
cd is parallel to

←→
ab from the definition

of parallelogram, cd = ab is just Proposition 10.10b, and since
←→
ad and

←→
bc

are parallel from the definition of a parallelogram, b and c must lie on the

same side of
←→
ad .

Now suppose c0 is a point in the plane with all the stated properties:
←→
c0d

is parallel to
←→
ab , c0d = ab, and b and c0 lie on the same side of

←→
ad . We

have only to show that c0 equals the point c that makes �abcd into a paral-

lelogram. The two lines
←→
cd and

←→
c0d contain the point d and are parallel to←→

ab . Thus, by Axiom PP, the Parallel Postulate, the two lines
←→
cd and

←→
c0d

must be equal. Moreover, since c0 and b lie on the same side of
←→
ad and c

and b also lie on the same side of this line, c and c0 must lie on the same

side of
←→
ad . In particular, the point d cannot lie between c and c0, so the

rays
−→
dc and

−→
dc0 must be identical. However, since dc = ab = dc0, Segment

Construction (Proposition 4.10) gives that c and c0 are indeed the same
point. This finishes the proof. �
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Theorem 10.18. Desargues’ Little Theorem .
Suppose �ABy1x1 and �ABy2x2 are parallelograms with a common side
AB and the parallel sides x1y1 and x2y2 forming distinct lines. Then
�x1x2y2y1 is also a parallelogram.

A

x1

x2

y1

y2

B

Figure 10.19. Parallelograms with a common side.

Desargues’ Little Theorem, as illustrated in Figure 10.19, is an intuitively
appealing result that is surprisingly difficult to prove! We leave the proof to
Exercises 10.13 and 10.14, where all the details are carefully outlined. One
key step in the proof is Parallelogram Construction (Theorem 10.16).

Desargues’ Little Theorem is the basis for many of our fundamental results
concerning translation and directed angle measure. As such it provides the
underpinning for much of this book.

The Independence of the Parallel Postulate. For many centuries
mathematicians were convinced that the Parallel Postulate had to be a con-
sequence of the more basic axioms of standard geometry. And indeed, many
extraordinary scholars (and many not-so-extraordinary would-be scholars)
attempted to prove the Parallel Postulate — the history of this effort is
fascinating. However, their intuition was wrong: in the first half of the
nineteenth century it was shown that the Parallel Postulate was indeed
independent of all the other standard axioms for plane geometry: there
are geometric models in which the Parallel Postulate is true, and there are
models in which the Parallel Postulate is false.

Euclidean geometry in the plane, as modeled by the real Cartesian plane
R2 (Example 2.2), is a system for which the Parallel Postulate is valid.
However, the Poincaré disk P2 (Example 2.4) is a system for which the
Parallel Postulate is false, and in an extreme fashion: for any point p not on
a line ℓ there are an infinite number of lines containing p that are parallel to
ℓ. You can likely convince yourself of the truth of this statement by studying
Figure 2.5. In that picture the point p1 is not on the line ℓ2, but both the
lines ℓ3 and ℓ4 contain p1 yet do not intersect ℓ2. Hence both ℓ3 and ℓ4 are
parallel to ℓ2.
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However, it is not yet obvious that all of our earlier axioms are valid for
P2. In particular, we have not specified the coordinate systems we use on
lines (hence the distance function has not yet been specified), nor have we
produced an angle measure function. We will not go into these matters at
this time, but will simply state that definitions for all of these quantities
can indeed be made so that the Poincaré disk will satisfy all of our previous
axioms. The Poincaré disk is a model for what is known as hyperbolic
geometry, an example of a non-Euclidean geometry since a negation of
the Parallel Postulate is valid for the system. We will study such geometries
in Volume II of this text.

Exercises I.10

Exercise 10.1.

Let m1 and m2 be two distinct lines cut by a transversal ℓ. If ∠x and
∠y are alternate interior angles and ∠y and ∠z are vertical angles, then
∠x and ∠z are corresponding angles. Prove m1 and m2 are parallel
if and only if a pair of corresponding angles are congruent.

Exercise 10.2.

Suppose m1 and m2 are parallel lines and ℓ a third line which intersects
m1 in a single point. Prove ℓ also intersects m2 in a single point and
hence must be a transversal for m1 and m2 if these two lines are distinct.

Exercise 10.3.

(a) Prove the forward direction of Proposition 10.7:

If two lines m1 and m2 are parallel then any line ℓ perpendicular
to m1 is also perpendicular to m2.

Hints: Assume m1 and m2 are parallel and take ℓ to be any line
perpendicular to m1 at a point p ∈ m1. You must show ℓ is perpen-
dicular to m2. Since the case m1 = m2 is trivial you may assume
m1 and m2 are disjoint. To show ℓ ⊥ m2 you must first show that
ℓ actually intersects m2. This is Exercise 10.2.

(b) Prove the reverse direction of Proposition 10.7:

The two lines m1 and m2 will be parallel if whenever a line ℓ is
perpendicular to m1, ℓ is also perpendicular to m2.

Hint: First show there does exist a line ℓ perpendicular to m1.
Then, by our current assumption, ℓ is also perpendicular to m2.

(c) Give a second proof of the transitivity of parallelism (Theorem 10.6)
based on Proposition 10.7.
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Exercise 10.4.

Suppose ℓ and ℓ′ are distinct parallel lines and a is a point on ℓ.

(a) Prove there exists a point a′ ∈ ℓ′ such that aa′ is perpendicular to
ℓ. Further prove a′ is unique and aa′ is also perpendicular to ℓ′.

(b) Prove that the number aa′ is independent of the choice of the point
a on ℓ, i.e., if b is any other point on ℓ and b′ is the corresponding
point on ℓ′ such that bb′ is perpendicular to ℓ, then aa′ = bb′. This
number is called the distance between the parallel lines ℓ and ℓ′.
Does this result depend on the Parallel Postulate? Explain.

Exercise 10.5.

(a) Prove Proposition 10.8: Every Saccheri quadrilateral is a rectangle
when the Parallel Postulate is assumed. Be sure to carefully point
out how your proof depends on the Parallel Postulate.
Hint: In the Saccheri quadrilateral �abcd shown in Figure 9.12 you
need to show that ∠abc and ∠bcd are both right angles. Showing
the first of these angles is a right angle can be accomplished by
verifying that △abc ∼= △cda.

(b) For this exercise let the Rectangle Hypothesis be the statement that
every Saccheri quadrilateral is a rectangle. Without using the Par-
allel Postulate or any result derived from the Parallel Postulate,
prove that the Rectangle Hypothesis implies the Triangle Sum Hy-
pothesis, i.e., that the sum of the measures of the interior angles of
any triangle equals 180◦.
Hint: Modify the arguments of Exercise 9.3. In particular, in part
(a) use Exercise 9.1 in place of Exercise 9.2; parts (b) and (c) require
little alteration.

(c) Show that the Parallel Postulate and the Rectangle Hypothesis are
equivalent as described in Exercise 9.4. Hint: You will need the
result of Exercise 9.4.

Exercise 10.6.

(a) For any triangle △ABC prove that

AB ∼= BC if and only if the angle bisecting ray −→r for ∠B is
parallel to the perpendicular bisector ℓ of AC.

If −→r and ℓ are indeed parallel, further show that −→r ⊂ ℓ.
(b) Prove the following for any triangle △ABC:

If △ABC is a triangle for which AB 6= BC, then the angle
bisecting ray −→r for ∠B intersects the perpendicular bisector ℓ
for AC at a single point O.
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Hints: This is a challenging exercise. Let m be the line containing
the angle bisecting ray −→r . From (a) ℓ and m intersect in a unique

point O. You must prove
−→
BO is the angle bisecting ray −→r for ∠B

(or equivalently, that the point O is interior to the angle ∠B).

Exercise 10.7.

(a) For any triangle, prove that the measure of an exterior angle equals
the sum of the measures of the two remote interior angles.

Recall that circles were defined in Exercise 7.5.

(b) The Theorem of Thales. Suppose AB is a diameter of a circle C and
C is a point on C other than A or B. Prove that ∠ACB is a right
angle. Hint: Suppose p is the center of the circle C. Analyze the
two triangles △ApC and △BpC.

(c) Prove the converse of the Theorem of Thales: Suppose ∠ApB is a
right angle. Then p is on the circle C with diameter AB. Hint :
Let C be the midpoint of AB. Then analyze the angles of the two
triangles △ApC and △BpC.

(d) Challenge Exercise. Prove that the Theorem of Thales is equivalent
to the Parallel Postulate as described in Exercises 9.4 and 10.5.

Exercise 10.8. The Inscribed Angle Theorem .

Let A, B, C be distinct points on a circle C with center P (Exercise 7.5).

intercepted

A

B

C

P
arc

inscribed
angle

central
angle

Figure 10.20. Inscribed angle, central angle, and intercepted arc.

The following objects are illustrated in Figure 10.20.

• ∠ABC is an inscribed angle of the circle C.
• The portion of C which is interior to ∠ABC, along with the points

A and C, is the intercepted arc ÂC for ∠ABC.

• The intercepted arc for ∠ABC defines a central angle ∠cAPC, the
measure of which varies between 0 and 360◦. (The values between
180◦ and 360◦ occur when the intercepted arc comprises more than
half of the circle.) The measure of this central angle is taken to be
the measure of the intercepted arc.
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In this exercise you will prove that the measure of an inscribed angle
∠ABC is half the measure of its intercepted arc. The proof is done in
three steps, covering all possible locations for A, B, and C.

(a) First suppose BC is a diameter of the circle, as shown in the first
frame of Figure 10.21. You must show m∠2 = 2m∠1.

(b) Suppose BD is a diameter of the circle with A and C on opposite
sides as shown in the second frame of Figure 10.21. You must show
m∠4 = 2m∠3. Hint: Two applications of (a).

(c) Again suppose BD a diameter of the circle but this time with A
and C on the same side as shown in the third frame of Figure 10.21.
You must show m∠6 = 2m∠5.

5 6

3 4

A

B C
P

1 2

A

B

C

P

A

B

C

P
D D

Figure 10.21. Cases for proving m∠ABC = 1
2 m∠cAPC = 1

2 m(ÂC).

Exercise 10.9.

Suppose A1, A2, B1, B2 are four points on a circle, ordered so that
�A1A2B2B1 is a quadrilateral:

1

2

A1

A2

B2

B1

A1

A2

B2

B1

(a) Prove that the angles ∠1 = ∠B1A1B2 and ∠2 = ∠B1A2B2 are
congruent. This proves the following important property of circles:

Angles inscribed in the same arc of a circle are congruent.

(b) Show that the opposite interior angles in the inscribed quadrilateral
�A1A2B2B1 are supplementary.

Exercise 10.10.

(a) Prove that a parallelogram is a convex quadrilateral (Definition 5.10).

(b) Prove Proposition 10.10c: The diagonals of a parallelogram bisect
each other. Hint: Recall Proposition 5.13.
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(c) A rhombus is a parallelogram whose four sides are all congruent.
Prove that the diagonals of any rhombus intersect at right angles.

(d) Prove a parallelogram vertex is in the interior of the opposite angle.

Exercise 10.11.

(a) Prove that a convex quadrilateral �abcd whose opposite sides are
congruent (i.e., ab ∼= cd and ad ∼= bc) is a parallelogram.

(b) Prove that every rectangle (Definition 9.11) is a parallelogram.

Exercise 10.12.

Suppose �ABy1x1 and �ABy2x2 are both parallelograms as shown in
Figure 10.22. Prove x1x2

∼= y1y2 without the use of Desargues’ Little
Theorem! 12 Structure your proof in the following way.

A

x1

x2

y1

y2

B

C

Figure 10.22. Given two parallelograms, prove x1x2
∼= y1y2.

(a) First consider the case where A, x1, and x2 are collinear.

The remaining steps consider when A, x1, and x2 are non-collinear.

(b) Show that x1 and y1 both lie on the same side of the line
←→
AB, and

similarly for x2 and y2.

(c) Assume x1, y1, x2, y2 all lie on the same side of
←→
AB, and let C

be a point on the line
←→
AB such that B is between A and C. Then

apply Exercise 5.5a to ∠x1AC and ∠x2AC, and use Exercise 10.1 to
conclude ∠x1Ax2

∼= ∠y1By2. Show how this implies x1x2
∼= y1y2,

the desired result.

(d) Finish the proof by showing x1x2
∼= y1y2 when x1 and y1 lie on the

side of
←→
AB opposite to x2 and y2.

12It is also true that x1x2 and y1y2 are parallel, but this is surprisingly hard to prove. In
particular, it requires Desargues’ Little Theorem (Theorem 10.18).
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Exercise 10.13. The Ray Separation Theorem.

This result will be needed for the proof of Desarges’ Little Theorem:

Suppose two parallel rays
−−→
a1b1 and

−−→
a2b2 both lie on one side of a

line m which is not parallel to the rays. If ℓ is a line that separates
the rays, then ℓ must be parallel to the rays.

Let m1 and m2 denote lines m1 =
←→
a1b1 and m2 =

←→
a2b2, let m intersect

m1 and m2 at the points d1 and d2, respectively, and let n =←−→a1a2.

(a) Show that the rays
−−→
a1b1 and

−−→
a2b2 are on the same side of n.

Hint: Suppose that the rays
−−→
a1b1 and

−−→
a2b2 are on opposite sides of

n. Then show d1d2 intersects n at some point e. However, show
that e cannot equal a1 or a2 (easy), but neither can it lie between
a1 and a2, nor can it lie on the ray opposite −−→a1a2 (consider sides of
m1) or the ray opposite −−→a2a1 (consider sides of m2).

(b) Prove that ℓ intersects a1a2 at some point e. (Easy!)

(c) Suppose k is any line through e but unequal to n and not parallel
to m1 and m2. Prove that k must intersect m1 and m2 at points
c1 ∈ m1 and c2 ∈ m2 where c1 and c2 are on opposite sides of n.
Hint: The line k intersects n at a point q. Show q must lie between
c1 and c2 by proving that the other locations for q are impossible.

(d) Show ℓ must be parallel to m1 and m2, as desired. Hint: If ℓ is not
parallel to m1 and m2, then use k = ℓ in (c) to contradict (a).

Exercise 10.14. Desargues’ Little Theorem.

Suppose �ABy1x1 and �ABy2x2 are both parallelograms with←−→x1y1 and
←−→x2y2 distinct lines as shown in Figure 10.22. Prove that �x1x2y2y1 is
also a parallelogram. This is Desargues’ Little Theorem (Theorem 10.18).
Structure your proof as follows.

(a) First show that the desired result will follow if you prove y1 and
y2 lie on the same side of ←−→x1x2. Hint: Parallelogram Construction
(Theorem 10.16).

In view of (a) we will now assume y1 and y2 do not lie on the same side
of ←−→x1x2 and work towards a contradiction.

(b) Show −−→x1y1 and −−→x2y2 are on opposite sides of the line ℓ =←−→x1x2.

(c) Consider the case where x1 and x2 are both on the same side of←→
AB. By interchanging the labels of x1 and x2 if necessary, you can
assume ∠BAx2 ≥ ∠BAx1. Prove the parallel rays −−→x1y1 and −−→x2y2

are then on the same side of m =
←→
Ax2. Hint: Show both −−→x1y1 and

−−→x2y2 must lie on the same side of m as
−→
AB.
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(d) Consider the case where x1 and x2 are on opposite sides of
←→
AB.

As in (c), show that (by relabeling if necessary) you can arrange to

have the parallel rays −−→x1y1 and −−→x2y2 on the same side of m =
←→
Ax2.

(e) In all cases you now have (by relabeling if necessary) the parallel
rays −−→x1y1 and −−→x2y2 separated by ℓ = ←−→x1x2 but on the same side of

m =
←→
Ax2. Conclude that this is impossible, and hence y1 and y2

must lie on the same side of x1x2, as desired. Hint: Exercise 10.13,
the Ray Separation Theorem.

§I.11 Directed Angle Measure and Ray Translation

Global Rotational Direction. In §6 we defined the concept of directed
angle measure at each point in the plane. We further observed that at
each point we had a choice of exactly two different directed angle measures,
each one the negative of the other. Essentially, one measure gives a pos-
itive sign to “clockwise” rotation while the other gives a positive sign to
“counterclockwise” rotation. However, we also noted a difficulty: there is
no good definition for clockwise versus counterclockwise. They are simply
the “opposites” of each other.

And herein lies a seriously thorny problem. We wish to consistently choose
a directed angle measure at all points of the plane, say counterclockwise
directed angle measure at every point. But though we are quite sure what
this means intuitively, as just observed, there is no simple, rigorous way to
define “counterclockwise” rotation at a point.

The intuitive meaning of “counterclockwise” suggests a solution. “Counter-
clockwise” means the opposite direction to a clock. In other words, rotations
are classified by comparison against a clock. So pick some object with a fixed
rotational direction (like a clock), arbitrarily designate its rotational direc-
tion as “clockwise,” and then classify all other rotations as clockwise or
counterclockwise via comparison with the fixed, “standard” clock.

However, there is still a difficulty. The comparison process assumes we can
take the “standard” clock and move it to any point p in the plane and
compare its rotation with any other rotation at p. However, how do we
know this process will be consistent, i.e., might the process of “moving the
clock around the plane” actually change the rotational direction of the clock?

There are geometric spaces in which this actually happens! Consider the
Möbius band. To construct a Möbius band take a rectangular strip of
paper which is much longer than it is wide. If you wrap the ends of the strip
around and glue them together in the ordinary fashion, you obtain the side of
a cylinder, as shown in the left half of Figure 11.1. However, if before gluing
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the ends together you give the strip a half-twist, i.e., a rotation of 180◦, you
obtain a Möbius band. This is shown in the right half of Figure 11.1.

A Möbius band has the curious property of being one-sided. To see this,
start with a dot anywhere on the band and move the dot along the band as
though you were going around a cylinder. When you go all the way around,
you will find your dot on the “other side” of the surface! In this way the
Möbius band has only one side.

Figure 11.1. A cylinder compared with a Möbius band.

However, suppose you repeat the movement of the previous paragraph, but
this time not with a simple dot but with a “clockwise angle” of, say, 30◦.
As with the dot, when you move the angle around the band, you will end
up on the “other side” of the surface. However, an idealized surface has no
thickness, so that any collection of points on the surface really exists on both
sides of the surface simultaneously! So our angle can be considered as an
object on both sides of the band, including the side of the band on which the
angle started. However, as can be seen in Figure 11.2, the rotation direction
of the angle has changed from counterclockwise to clockwise! So translating a
rotation on a Möbius band will interchange clockwise and counterclockwise.

Figure 11.2. Going around a Möbius band reverses rotational direction.

We should not expect that moving an angle around in the Euclidean plane
E could produce such a reversal of rotational direction. However, this belief
needs to be verified from our axioms for the Euclidean plane.

The way we handle all the problems in this section is to show that directed
angle measure assignments can be made at each point in the plane that are
translationally invariant, meaning that “parallel translation” of a directed
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angle (i.e., moving it “without rotation”) from one point to another will
not change its directed angle measure. Hence the Euclidean plane does not
behave like a Möbius band. No new axioms need be added to our collection,
i.e., translationally invariant notions of clockwise and counterclockwise are
already inherent in the Euclidean plane.

Translational Invariance. Choose a point a0 in the plane. According to
Proposition 6.16, two directed angle measures exist at a0. Choose one of
these measures, denoted by m, and interpret positive values of m to indicate
counterclockwise rotation and negative values to indicate clockwise rotation.

We wish to choose a “counterclockwise” rotational direction at each point
of the plane which is “consistent” with the choice made at a0. Following
our analogy of moving a clock around from point to point in the plane, the
consistency we desire is translational invariance. To develop this concept,
we first consider the translation of rays, then of directed angles.

Ray Translation. Though the concept of ray translation is intuitively sim-
ple — “move” a ray in the plane without rotating it or changing its length by
expansion or contraction — capturing this concept in a formal definition and
rigorously establishing its properties is far deeper than you would imagine.
The key foundational principle is Desargues’ Little Theorem. However, a
careful development of ray translation yields a rich harvest: the fundamen-
tal properties of directed angle measure, rotations, and translations. We
would have no book without these concepts.

b

a

b

ℓ

a

ℓ

a

b

a

b

ℓℓ =

Figure 11.3. In each picture
−→
ab and

−→
a′b′ are translates of each other.

Definition 11.4.

Two rays
−→
ab and

−→
a′b′ are translates of each other if either

(1) the lines ℓ =
←→
ab and ℓ′ =

←→
a′b′ are distinct parallel lines such that b

and b′ lie on the same side of
←→
aa′ or

(2) one of the rays
−→
ab and

−→
a′b′ is a subset of the other.

The two types of ray translates are shown in Figure 11.3.
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The properties we need of ray translation are intuitive and unsurprising:

given a ray
−−→
a1b1, (1) there exists a unique translate of this ray to any other

point a2 in the plane and (2) if you translate
−−→
a1b1 to

−−→
a2b2 and then translate

this new ray to
−−→
a3b3, the result is the same as translating

−−→
a1b1 to

−−→
a3b3. These

properties are given below in Proposition 11.5 and Theorem 11.6.

Proposition 11.5.

Given a ray
−→
ab and any point a′, there exists exactly one ray

−→
a′b′ with

initial point a′ that is a translate of
−→
ab.

Proof. Case (1). Suppose a′ is not on the line ℓ =
←→
ab . To prove the existence

of a translate ray
−→
a′b′, note that by Parallelogram Existence (Theorem 10.14)

there exists a unique point b′ such that �abb′a′ is a parallelogram. The ray−→
a′b′ is easily seen to be a translate of

−→
ab.

To prove
−→
a′b′ is the unique translate of

−→
ab starting at a′, suppose

−−→
a′b′′ is

another such ray. By Axiom PP, the Parallel Postulate, there exists only

one line ℓ′ through a′ which is parallel to ℓ. Thus the two rays
−→
a′b′ and

−−→
a′b′′

both lie on this line, and thus
−−→
a′b′′ equals

−→
a′b′ or its opposite. However, the

ray opposite to
−→
a′b′ is not a translate of

−→
ab and thus

−−→
a′b′′ must equal

−→
a′b′, as

desired. This proves the desired uniqueness in case (1).

Case (2). Suppose a′ is on the line ℓ =
←→
ab . Using the Ruler Placement

Theorem (Proposition 3.6), choose a coordinate system χ : ℓ → R such
that χ(a) = 0 and χ(b) > 0. In addition, choose a point b′ on ℓ such that
χ(b′) > χ(a′). Then, as in Exercise 4.4, we obtain

−→
ab = {c ∈ ℓ | 0 ≤ χ(c)},
−→
a′b′ = {c ∈ ℓ | χ(a′) ≤ χ(c)}.

Thus, if χ(a′) ≥ 0, then
−→
a′b′ ⊂ −→ab, but if χ(a′) < 0, then

−→
ab ⊂ −→a′b′. In either

case,
−→
a′b′ is a translate of

−→
ab, as desired. Uniqueness of

−→
a′b′ is verified as

follows. Since a′ is on the line ℓ =
←→
ab , any translate of

−→
ab which starts at

a′ will lie on ℓ. But then there are only two possibilities for the translate:−→
a′b′ or its opposite. But the opposite ray, which consists of all the points c

on the line ℓ with χ(c) ≤ χ(a′), cannot contain or be contained in
−→
ab. Thus

the assumed translate ray must be
−→
a′b′, proving the desired uniqueness. �

In view of Proposition 11.5 we see that any ray
−→
ab starting at the point a

can be uniquely translated to any other point a′, by which we mean the ray−→
ab has a unique translate ray

−→
a′b′ starting at a′. However, we need to know

more. In particular, we need to know that translation of rays is transitive.
This is a much deeper result than you would ever suspect!



88 Revision v2.0 , Chapter I, Foundations of Geometry in the Plane

Theorem 11.6. Transitivity of Ray Translation.

Translation of rays is transitive. Thus if
−−→
a1b1 translates to

−−→
a2b2 and−−→

a2b2 translates to
−−→
a3b3, then

−−→
a1b1 translates to

−−→
a3b3.

Proof. For convenience we assume the points b1, b2, b3 have been picked so
that the distances a1b1, a2b2, a3b3 are all equal. This can always be done
by Segment Construction (Proposition 4.10). Since parallelism is transitive

(Theorem 10.6) the lines ℓ1 =
←→
a1b1 and ℓ3 =

←→
a3b3 are parallel to each other

since both are parallel to ℓ2 =
←→
a2b2.

Now assume the generic case where all three lines ℓ1, ℓ2, ℓ3 are distinct. To

show
−−→
a1b1 translates to

−−→
a3b3, we have only to show that b1 and b3 lie on the

same side of the line m =←−→a1a3. See Figure 11.7.

m

ℓ1

ℓ2 ℓ3

a1

b1

a2

b2

a3

b3

Figure 11.7. Need to verify b1 and b3 on the same side of m =←−→a1a3.

However, we know that the two line segments a1b1 and a2b2 are parallel,
have the same length, and have the endpoints b1 and b2 on the same side
of the line m3 = ←−→a1a2. But these are the exact conditions needed in Par-
allelogram Construction (Theorem 10.16) to conclude that �a1b1b2a2 is a
parallelogram. The same argument shows that �a2b2b3a3 is a parallelogram.
Thus, since the three lines ℓ1, ℓ2, and ℓ3 are all distinct, Desargues’ Little
Theorem (Theorem 10.18) gives that �a1b1b3a3 is also a parallelogram,13

proving that the ray
−−→
a3b3 is indeed a translate of the ray

−−→
a1b1.

The various “degenerate” cases, where two or more of the lines ℓ1, ℓ2, ℓ3 are
the same, will be considered in Exercise 11.1. Most are not trivial. �

The rest of this section may be skipped by readers needing only
an intuitive treatment of clockwise/counterclockwise rotation,

ray translation, and directed angle measure.

13Recall that the difficult part of the proof of Desargues’ Little Theorem is that b1 and b3
are indeed on the same side of the line ←−→a1a3. Simple statements are sometimes the most difficult!
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Directed Angle Translation. We translate directed angles by translating
each of the two rays of the angle. Ultimately this will allow us to choose a
“counterclockwise” directed angle measure at one point a0 and then trans-
late this choice to all other points in the plane. However, before we can
carry out this plan, we need some properties of directed angle translation.

Definition 11.8.

Two directed angles ∡abc and ∡a′b′c′ are said to be translates of each
other, denoted by ∡abc ≡τ ∡a′b′c′, if

• −→ba and
−→
b′a′ are translates of each other and

• −→bc and
−→
b′c′ are translates of each other.

Proposition 11.9.
Given a directed angle ∡abc and any point b′, there exists exactly one
directed angle ∡a′b′c′ with vertex b′ that is a translate of ∡abc.

Proof. This is a quick corollary of Proposition 11.5: simply apply that result

to each ray
−→
ba and

−→
bc . �

Proposition 11.10.
Translation of directed angles is an equivalence relation, i.e., the rela-
tionship ≡τ is reflexive, symmetry, and transitive.

Proof. To prove that ≡τ is reflexive means verifying any directed angle is a
translate of itself. This is trivial from the definition of translation.

To prove that ≡τ is symmetric means showing ∡A′ ≡τ ∡A whenever we
have ∡A ≡τ ∡A′. This is easy to verify from the definition of directed angle

translation since if
−→
ab is a translate of

−→
a′b′, then

−→
a′b′ is a translate of

−→
ab.

Transitivity for directed angle translation is a corollary of the transitivity of
ray translation as given in Theorem 11.6. For suppose ∡abc ≡τ ∡a′b′c′ and

∡a′b′c′ ≡τ ∡a′′b′′c′′. Then rays
−→
ba and

−→
b′a′ are translates of each other and

rays
−→
b′a′ and

−−→
b′′a′′ are translates of each other. Thus Theorem 11.6 gives

that
−→
ba and

−−→
b′′a′′ are translates of each other. Similarly rays

−→
bc and

−→
b′c′′ are

translates of each other, proving ∡abc ≡τ ∡a′′b′′c′′, as desired. �

Recall that a trivial directed angle is a directed angle made from two iden-
tical rays, so that any directed angle measure will assign 0 (mod 360) to this
angle. A straight directed angle is a directed angle made from two opposite
rays, so that any directed angle measure will assign 180◦ (mod 360) to such
a directed angle. It is quite natural to expect directed angle translation to
preserve such angles; this is the content of the next proposition. Its proof is
quite easy and is left to Exercise 11.3.
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Proposition 11.11.
A translate of a trivial directed angle is another trivial directed angle.
A translate of a straight directed angle is another straight directed angle.

The next proposition handles translates of non-trivial and non-straight di-
rected angles. It too is a highly intuitive result: translation does not change
(ordinary) angle measure, so that directed angles which are translates of
each other are congruent as (ordinary) angles.

Proposition 11.12.
Non-trivial, non-straight directed angles that are translates of each other
are congruent, i.e., they have the same (ordinary) angle measure.

Proof. Let ∡abc and ∡a′b′c′ be translates of each other where, for conve-
nience, a, c, a′, and c′ are chosen so that ba = b′a′ and bc = b′c′. We first

consider the generic situation:
←→
ba and

←→
b′a′ are distinct parallel lines and

←→
bc

and
←→
b′c′ are distinct parallel lines. If necessary, adjust the length ba = b′a′

so that lines
←→
aa′ and

←→
cc′ are distinct parallel lines. See Figure 11.13.

a

b

c

a

b

c

Figure 11.13. ∡abc and ∡a′b′c′ are translates of each other.

With these choices the definition of ray translation along with Parallelo-
gram Construction (Theorem 10.16) show �b′baa′ and �b′bcc′ to be paral-
lelograms. Then Desargues’ Little Theorem (Theorem 10.18) shows �aa′c′c
to be a parallelogram. In particular, ac = a′c′. Therefore triangles △abc
and △a′b′c′ are congruent by SSS (Theorem 7.11). Thus ∠abc ∼= ∠a′b′c′.

The degenerate cases,
←→
ba =

←→
b′a′ and/or

←→
bc =

←→
b′c′, are in Exercise 11.2. �

Translationally Invariant Directed Angle Measure. As shown in
Propositions 11.11 and 11.12, translation of a directed angle does not change
its ordinary angle measure. However, we would also like its directed angle
measure not to change. For this to be true, we must make consistent choices
of directed angle measure at each point in the plane. So fix a point a0, pick
one of the two choices of directed angle measure at that point, and then
“translate” that choice to all other points by translation of directed angles.
The details follow....
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Definition 11.14.

A directed angle measure m defined at every point is translationally
invariant if the measure is unchanged under directed angle translation:

if ∡A and ∡A′ are translates of each other, then m∡A = m∡A′.

We finally come to the big result: there exist exactly two translationally
invariant directed angle measures in the plane. These two measures justify
our intuitive notions of clockwise and counterclockwise. We interpret one of
the directed angle measures — denote it as m+ — as measuring directed
angles using a counterclockwise orientation and the other — denote it as
m− — as using a clockwise orientation. Thus, under m+, a positive di-
rected angle measure indicates a counterclockwise turn from the initial ray
to the terminal ray, while a negative value indicates a clockwise turn (also
called a negative counterclockwise turn). For m− the roles of clockwise and
counterclockwise are reversed.

Theorem 11.15.
Exactly two translationally invariant directed angle measures exist in the
Euclidean plane E. Each measure is the negative of the other.

Proof. We first show that there can be at most two translationally invari-
ant directed angle measures on the plane. We already know from Propo-
sition 6.16 that at a given point a0 there are precisely two directed angle
measures. However, the assumed translation invariance of the angle measure
shows that when the directed angle measure values are established at one
point a0, then they are immediately determined at every other point a′ in
the plane. To see this, take any directed angle ∡A′ with vertex at a′ and let
∡A be the translate of ∡A′ with vertex a0. By our construction the directed
angle measure of ∡A′ must equal the directed angle measure of ∡A. Hence
establishing the values of the direct angle measure at a0 also determines the
values at a′. Since there are only two choices for the directed angle measure
at a0, this proves that there can be at most two translationally invariant
directed angle measures in the plane.

To show the existence of the two translationally invariant directed angle
measures, pick a point a0 in the plane. We know from Proposition 6.16 that
there exist precisely two directed angle measures at a0. Pick one of these
directed angle measures at a0, denoting it by m0.

Let a′ be any point in the plane and ∡A′ any directed angle with vertex a′.
Then, letting ∡A0 denote the translate of ∡A′ to the vertex a0 as shown in
Figure 11.17, define the directed angle measure of ∡A′ to be

m∡A′ = m0 ∡A0. (11.16)
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∡A0
a0

∡Aa

Figure 11.17. m∡A′ is defined to be m0 ∡A0.

To finish the proof requires showing that (11.16) definesm to be a translation
invariant directed angle measure. Verifying that at each point a′ we obtain
a directed angle measure is straightforward. However, as we will see, the
fact that m is translationally invariant is a deeper result.

We first verify that m, as defined by (11.16), is a directed angle measure at
a′. We do so by checking the four conditions of Definition 6.15:

(1) Suppose ∡A′ is trivial, i.e., it is one ray starting at a′. Then ∡A0, the
translate of ∡A′ to vertex a0, is also trivial by Proposition 11.11. Hence

m∡A′ = m0∡A0 = 0 mod 360.

(2) Suppose ∡A′ is a straight angle, i.e., it is composed of two opposite rays
starting at a′. Then ∡A0, the translate of ∡A′ to vertex a0, is also a
straight angle by Proposition 11.11. Hence

m∡A′ = m0∡A0 = 180◦ mod 360.

(3) Suppose ∡A′ is a directed angle at a′ that is neither trivial nor straight.
If θ′ is that value of m∡A′ such that −180◦ < θ′ < 180◦, then we wish
to show |θ′| = m∠A′, i.e., that |θ′| is the measure of the (ordinary)
angle ∠A′. By Proposition 11.12, ∡A′ is the translate of a directed
angle ∡A0 with vertex at a0 that is neither trivial nor straight, and the
(ordinary) angles ∠A′ and ∠A0 are congruent. Moreover, by definition
of m, m∡A′ = m0∡A0. Hence θ′ is that value of m0∡A0 such that
−180◦ < θ′ < 180◦. Thus

|θ′| = m∠A0 from (3) of Definition 6.15, m0 a directed angle measure,

= m∠A′ since ∠A0
∼= ∠A′. This is the desired result.

(4) Suppose b′, c′, d′ are any three points other than a′, and let
−→
a0b,

−→a0c,−→
a0d be the translates to a0 of the rays

−→
a′b′,

−→
a′c′,

−→
a′d′, respectively. Then

m∡b′a′d′ = m0∡ba0d by definition of m at a′,

= m0∡ba0c+m0∡ca0d by condition (4) for m0 at a0,

= m∡b′a′c′ +m∡c′a′d′ by definition of m at a′.
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Finally, we must verify that m is translationally invariant. So consider a
directed angle ∡A′ at a point a′ and its translate ∡A′′ to a point a′′ as
shown in Figure 11.18. Thus ∡A′ ≡τ ∡A′′. We must show

m∡A′ = m∡A′′.

To do so, recall that m∡A′ is defined by

m∡A′ = m0 ∡A0,

where ∡A0 is the translate of ∡A′ to the point a0 as shown to the right.
Thus ∡A′ ≡τ ∡A0. However, since directed angle translation is transitive
by Proposition 11.10, ∡A′′ ≡τ ∡A0. Thus

m∡A′′ = m0∡A0 = m∡A′,

proving m∡A′ = m∡A′′, as desired. This finishes the proof that m, as
constructed above, is a translationally invariant directed angle measure. �

a0 ∡A0

a ∡A

∡Aa

Figure 11.18. Proving that m is translationally invariant.

Exercises I.11

Exercise 11.1.

In this exercise you complete the proof Theorem 11.6, the transitivity of

ray translation, by verifying the various degenerate cases. Assume
−−→
a1b1

translates to
−−→
a2b2,

−−→
a2b2 translates to

−−→
a3b3, and (for convenience) b1, b2,

and b3 are chosen so that a1b1 = a2b2 = a3b3. You need to prove
−−→
a1b1

translates to
−−→
a3b3. As in the theorem define lines ℓ1 =

←→
a1b1, ℓ2 =

←→
a2b2,

and ℓ3 =
←→
a3b3. The proof for the generic case, when the three lines are

all distinct, was given in the text. Now handle the other cases:

(a) Assume ℓ1 and ℓ2 are distinct but a3 lies on ℓ2. Then ℓ2 = ℓ3.
Proof sketch: If a2 = a3, then b2 = b3 and the desired result follows.

If a2 6= a3, then either
−−→
a2b2 contains

−−→
a3b3 or

−−→
a3b3 contains

−−→
a2b2.

Assume the second case; the first case is similar. Then a2 is between



94 Revision v2.0 , Chapter I, Foundations of Geometry in the Plane

a3 and b2, and the three points a2, b2, b3 all lie on the same side
of ←−→a1a3 (why?). You must show b1 lies on this same side of ←−→a1a3.
Suppose not. Then show the line segment a1a3 must intersect the

line m =
←→
b1b2, showing a1 and a3 to be on opposite sides of m. But

a2 and a3 must lie on the same side of m (why?), which means a1

and a2 must lie on opposite sides of m. But this is not possible
(why?). Use this to finish the proof.

(b) Assume ℓ1 and ℓ2 are distinct but a3 lies on ℓ1. Then ℓ1 = ℓ3.
Hints: There are two non-trivial cases to consider: b1, a3 on the
same side or on opposite sides of a1. Consider the same side case:

you need to show
−−→
a3b3 ⊆

−−→
a1b1, which will be true if a3 is between

a1 and b3. This is equivalent to showing a1 and b3 are on opposite
sides of m3 = ←−→a2a3. To prove this, first show b1, b2, a3 all lie
on the same side of m1 = ←−→a1a2. However, �a1a2b2a3 is a convex
quadrilateral (Definition 5.10) and so the diagonal line segments
intersect by Proposition 5.13. Use this to show a1 and b3 are on
opposite sides of m3, as desired. Then handle the case where b1 and
a3 are on opposite sides of a1 . . . .

(c) Assume ℓ1 = ℓ2 but a3 is not on this line. Hint: A variant of (a).

(d) Assume ℓ1 = ℓ2 and a3 is on this line. Then ℓ1 = ℓ2 = ℓ3.
Hint: Use a coordinate system on the line as done in Exercise 4.4.

Exercise 11.2.

Proposition 11.12 states that if ∡abc and ∡a′b′c′ are translates of each
other, then ∠abc ∼= ∠a′b′c′. The proof given in the text covered the

generic case, i.e., when
←→
ba and

←→
b′a′ are distinct parallel lines and

←→
bc

and
←→
b′c′ are distinct parallel lines. Complete the proof by handling the

degenerate cases when
←→
ba =

←→
b′a′ and/or

←→
bc =

←→
b′c′.

Exercise 11.3.

Prove Proposition 11.11: A translate of a trivial directed angle is another
trivial directed angle. A translate of a straight directed angle is another
straight directed angle.

§I.12 Similarity

Recall the definition for similar triangles:

Definition 12.1. Triangle Similarity.

(a) A similarity between two triangles, written△abc ∼ △ABC, means
that the ratios of corresponding side lengths are equal and corre-
sponding angles are congruent, i.e.,

AB

ab
=
BC

bc
=
AC

ac
and ∠a ∼= ∠A, ∠b ∼= ∠B, ∠c ∼= ∠C.
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(b) Two triangles are similar if there exists a similarity between them.

A

B

C

a

b

c

Figure 12.2. △abc and △ABC are similar via abc↔ ABC.

It is a well-known theorem of geometry (Angle-Angle-Angle, or AAA) that
two triangles are similar if and only if the three angles of the first triangle
are congruent to the three angles of the second, as shown in Figure 12.3.
In other words, the angle conditions for similarity are enough to imply the
truth of the ratio conditions for the sides.

A

B

C

a

b

c

α

β

γ

α

β

γ

Figure 12.3. Two similar triangles showing the equal angles.

However, deriving this theorem from our previously established results is
more difficult than initially expected: the proof requires a non-trivial pas-
sage from the rational numbers to the real numbers. We isolate this difficult
passage in the Similarity Theorem and then use this result to prove AAA.
Although AAA is the result of most immediate interest, the Similarity The-
orem will play a major role in Chapter IV, Similarities in the Plane.

Theorem 12.4. The Similarity Theorem.
Let ℓ, m be lines not containing the point p. Suppose −→r1 , −→r2 are distinct
rays from p such that −→r1 intersects ℓ and m at x1, y1, respectively, and
−→r2 intersects ℓ and m at x2, y2, respectively. Then the ratios

p

y2

y1

x1

x2

m
ℓ

¡→r1

¡→r2

py1

px1
and

py2

px2

are equal if and only if the lines ℓ and
m are parallel, in which case both of the
ratios equal

y1y2

x1x2
.

Proof . To save time, you may decide to skip the proof—it is not trivial.
Hence we place it as optional reading at the end of the section. �
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Here is the most common method for verifying triangle similarity.

Theorem 12.5. AAA (Angle-Angle-Angle) Similarity .
Two triangles are similar if and only if the three angles of the first
triangle are congruent to the three angles of the second.

Proof. Suppose△ABC and △abc have congruent corresponding angles, i.e.,

m∠BAC = m∠bac = α,

m∠CBA = m∠cba = β,

m∠ACB = m∠acb = γ.

Using Proposition 4.10, Segment Construction, let b′ be that point on the

ray
−→
ab such that ab′ ∼= AB, and let c′ be that point on the ray −→ac such that

ac′ ∼= AC (see Figure 12.6).

A

B

C

a

b

c

α

β

γ

α

β

γ

b

c

Figure 12.6. △ABC and △abc have congruent corresponding angles.

Then, since m∠b′ac′ = α = m∠BAC, SAS proves △ABC and △ab′c′ are

congruent. Thus m∠c′b′a = m∠CBA = β. This shows that the lines
←→
b′c′

and
←→
bc are parallel since they have a congruent pair of corresponding angles

(Exercise 10.1). Hence, from the Similarity Theorem we conclude
ab

ab′
=
ac

ac′
=

bc

b′c′
.

Since △ABC and △ab′c′ are congruent, our equalities can be rewritten as
ab

AB
=

ac

AC
=

bc

BC
,

verifying △ABC and △abc are similar. �

Actually, we have only to check two pairs of angles to verify similarity:

Corollary 12.7. AA (Angle-Angle) Similarity .
Two triangles are similar if and only if two of the three angles of the
first triangle are congruent to two of the three angles of the second.

Proof. AAA (Theorem 12.5) combined with the fact that the measures of
the angles of any triangle add to 180◦ (Theorem 10.3). �
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We can now state and prove what is perhaps the most famous theorem in
all of Euclidean geometry: the Pythagorean Theorem. The proof we give
is based on similarity of triangles via the use of AAA. We will give other
proofs, based on area, in Chapter IX.

Recall that a right triangle is any triangle with a right angle. The hy-
potenuse is the side of the triangle opposite the right angle.

Theorem 12.8. The Pythagorean Theorem .

A

a

B

C
b

c

In any right triangle, the square of the
length c of the hypotenuse is equal to
the sum of the squares of the lengths a
and b of the other two sides. Thus

c2 = a2 + b2.

Proof. Let D be the point on the line
←→
AB such that CD is perpendicular to←→

AB. Since m∠ADC = 90◦, m∠ACD is less than 90◦ since the measures of
all the angles in △ACD sum to 180◦ by Theorem 10.3. Hence D is in the
interior of angle ∠ACB by Exercise 6.4, therefore falling on the line segment
AB between A and B.

Let α = m∠A and β = m∠B. Since the sum of the measures of the angles
of the right triangle △ABC equals 180◦, we obtain α + β = 90◦. However,
this equality implies m∠ACD = β and m∠BCD = α:

A

a

B

C
b

D

α

β
c1

c2

β

α

Hence AAA shows we have similar triangles △CBD ∼ △ABC ∼ △ACD:

β

α

a
c1

B

CD

C

D A

β

α

b

c2A

a

B

C b

D

α

β

β

α

c = c1 + c2

The first similarity implies

c1
a

=
a

c
, which gives c1 =

a2

c
.
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The second similarity implies

c2
b

=
b

c
, which gives c2 =

b2

c
.

Hence c = c1 + c2 =
a2

c
+
b2

c
, which yields c2 = a2 + b2. �

Diagonals of a Parallelogram. There is a useful generalization of the
Pythagorean Theorem to parallelograms. Its proof is left to Exercise 12.5.

Proposition 12.9.

Suppose �ABCD is a parallelogram with side lengths a and b and diag-
onal lengths d1 and d2. Then

2(a2 + b2) = d2
1 + d2

2.

The Trigonometric Functions. Our results on triangle similarity are
needed to justify the usual geometric definitions of the trigonometric func-
tions. We illustrate this procedure with the sine function.

Given a right triangle △ABC with right angle at ∠C, the sine of angle ∠A
is defined to be BC/AB, i.e., the length of the “opposite” side divided by
the length of the hypotenuse.

A

B

C
θ

A major property of the sine of an angle ∠A
is that it should depend only on the angular
measure of ∠A, i.e., only on the value

θ = m∠A.

This property justifies the customary nota-
tion of sin θ for the sine of any angle whose
measure is θ.

To prove our claimed property, suppose △ABC and △A′B′C ′ are two right
triangles with right angles ∠C and ∠C ′, respectively, and m∠A = m∠A′:

θ
A

B

C
θ

A C

B

We wish to show that the sine of ∠A equals the sine of ∠A′, i.e.,

BC/AB = B′C ′/A′B′.
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However, m∠A = m∠A′ by assumption, and m∠C = m∠C ′ since all right
angles have measure 90◦. Thus AA (Corollary 12.7) shows that the two
triangles △ABC and △A′B′C ′ are similar. Hence

BC/B′C ′ = AB/A′B′.

This proves BC/AB = B′C ′/A′B′, so the sine of ∠A does equal the sine of
∠A′, as desired. Hence the sine of an angle depends only on the measure of
the angle.

Justifications for the usual geometric definitions of the other trigonometric
functions are identical to the one just given for the sine — see Exercises 12.8
and 12.9.

Proof of the Similarity Theorem (Optional). The proof of the Simi-
larity Theorem, based on our previously established axioms and theorems,
is rarely given in elementary geometry courses as it involves an intricate,
technically complicated argument proceeding from integer ratios to rational
ratios and finally to real number ratios. To save time, you may simply decide
to accept the truth of the Similarity Theorem and thus skip the following
proof. However, the proof utilizes several beautiful arguments and illus-
trates the central importance of the real number system in our development
of geometry.

Our proof of the Similarity Theorem begins with establishing a slightly re-
duced version of the result: the Basic Similarity Principle. The full theorem
can then be deduced from this principle.

Theorem 12.10. The Basic Similarity Principle.

Let ℓ and m be parallel lines with ℓ not containing the point p. Suppose
L1 and L2 are two lines containing p such that L1 intersects ℓ and m
at x1, y1, respectively, and L2 intersects ℓ and m at x2, y2, respectively.
Then the ratios

p

y2

y1

x1

x2

m
ℓ

L1

L2

py1

px1
and

py2

px2

are equal. In particular, this ratio δ de-
pends only on the choices of p, ℓ, and m,
not on the choice of the line L through p.

Proof. If the parallel lines ℓ and m are equal, then the claims in the theorem
are trivially true (the ratios are all 1). We thus assume that ℓ and m are
distinct parallel lines.

There are various cases to consider, depending on the placement of the point
p relative to the lines ℓ and m. The most trivial case is when p lies on the
line m for then y1 = y2 = p and the ratios in the theorem are equal (since
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they are both zero), as desired. Now consider the case when the point p is
not between the two lines m and ℓ (the case where p is between the two lines
is treated similarly and is left to the reader). By interchanging the labels of
m and ℓ if necessary, we may assume that the point p and the line m are on
opposite sides of the line ℓ, as shown in the diagram with Theorem 12.10.

The difficulty in the proof arises from the possible irrationality of the ratio
δ. The technique of the following proof is to verify the theorem first for
δ = 2, then for δ any integer ≥ 1, then for δ any rational number ≥ 1, then
finally for δ any irrational number ≥ 1.

p

y2

y1

x1

x2

m
ℓ

δ = = 2
py1
px1

Figure 12.11. Setup for the Basic Similarity Principle when δ = 2.

So suppose p, ℓ, m, x1, y1, x2, and y2 are as in the hypothesis of the theorem.
We first assume the ratio δ of py1 to px1 equals 2 as shown in Figure 12.11.
This is equivalent to x1 being the midpoint of py1. We need to show that
the ratio of py2 to px2 also equals 2. This means showing that x2 is between
p and y2 and that px2 = x2y2.

The point x2 lies between p and y2 since ℓ and m are parallel lines.14 Hence
we need only show that px2 = x2y2. To do so, let y0 be that point on m
between y1 and y2 such that x1y0 is parallel to py2. We will then show two
facts (see Figure 12.12):

(1) triangles △px1x2 and △x1y1y0 are congruent, so px2 = x1y0,

(2) the quadrilateral �x1y0y2x2 is a parallelogram; hence x1y0 = x2y2

from Proposition 10.10b.

These two facts give px2 = x2y2, as needed for the case δ = 2.

δ = = 2
py1
px1

p
y2

y1

x1

x2

y0

Figure 12.12. Two congruent triangles and a parallelogram.

14Since p lies on the side of ℓ not containing m, p and y1 are on opposite sides of ℓ, and
hence x1 must lie between p and y1. However, since m is parallel to ℓ, the segment y1y2 remains
on the same side of ℓ. Therefore p and y2 will be on opposite sides of ℓ, proving that x2 is between
p and y2, as desired.
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To prove (1), that △px1x2
∼= △x1y1y0, we employ ASA (Theorem 7.8):

Angle: px2 is parallel to x1y0, so ∠x1px2
∼= ∠y1x1y0 by Exercise 10.1.

Side: px1 = x1y1 by the assumption that δ = 2.

Angle: x1x2 is parallel to y1y0, so ∠px1x2
∼= ∠x1y1y0 by Exercise 10.1.

To prove (2), that �x1y0y2x2 is a parallelogram, we have only to observe
that each pair of opposite sides of the quadrilateral are comprised of parallel
lines. This proves the Basic Similarity Principle when the ratio δ equals 2.

Now suppose the ratio δ of py1 to px1 equals n, a positive integer. Then
select those n−1 points which divide the line segment py1 into n equal pieces
(such points exist as a consequence of the coordinate system on L1 =←→py1).
The first of these segments will be px1 (see Figure 12.13).

p

y2

y1

x1

x2

δ = n

(n = 5 is shown)

Figure 12.13. Analyzing the case δ = n, an integer.

From each of the points just selected in py1 construct two lines: one parallel
to py2 and the other parallel to y1y2. In this way the line segment py2 is
itself divided up into n pieces, the first of which is px2 (see Figure 12.14).
We must show that all these new line segments in py2 are the same length.
When this is done, we will have that py2 = n px2, the desired relationship
between these two distances.

p

y2

y1

x1

x2

δ = n

(n = 5 is shown)

Figure 12.14. Subdivisions for the case δ = n, an integer.

Along the line segment py1 we now have n − 1 small overlapping triangles
like those considered in the previous case where δ = 2. One such triangle is
shown in yellow in Figure 12.15.
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p

y2

y1

x1

x2

δ = n

(n = 5 is shown)

Figure 12.15. Any two adjacent line segments in py2 are of equal length.

From the previous case of δ = 2 we see that the two line segments comprising
the base of the small yellow triangle in Figure 12.15 (parallel to py2) are of
equal length. Moreover, each of these line segments is the top side of a
parallelogram (shaded in blue and red) whose opposite side is one of the line
segments of py2 constructed above. Hence the two line segments in py2 so
picked out (the bottom sides of the blue and red parallelograms) must be of
equal length.

Since this relationship holds for each of the n − 1 overlapping triangles, all
of the line segments constructed in py2 are of equal length, as desired. Thus
the theorem is verified for the case δ = n.

Now suppose the ratio δ of py1 to px1 equals n/m, a rational number ≥ 1.
Select those n − 1 points which divide the line segment py1 into n equal
pieces. The first m of these segments will comprise px1 (see Figure 12.16).

p

y2

y1

x1

x2

δ =
n

m

(n = 5, m = 3 is shown)

Figure 12.16. Analyzing the case δ = n/m, a rational number.

From each of the points just selected in py1 construct two lines: one parallel
to py2 and the other parallel to y1y2. In this way the line segment py2 is
itself divided up into n pieces, the first m segments of which comprise px2

(see Figure 12.17).

p

y2

y1

x1

x2

δ =
n

m

(n = 5, m = 3 is shown)

Figure 12.17. Subdivisions for the case δ = n/m, a rational number.
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However, from the case δ = n just considered, we see immediately that all
the line segments in py2 are of equal length. Hence

py2 = n (px2/m) = δ px2,

proving the theorem for the case δ = n/m.

Finally suppose the ratio δ = py1/px1 equals a real number ≥ 1. We will
use the following important fact about the relationship between the rational
and real numbers. Suppose χ1 and χ2 are two real numbers such that

• if r is a rational number such that r < χ1, then r < χ2, and

• if r is a rational number such that r > χ1, then r > χ2.

From Exercise 1.2 we can conclude χ1 = χ2, i.e., χ1 and χ2 are the same
real number. For the case at hand we apply this result to the two numbers

χ1 =
py1

px1
and χ2 =

py2

px2
.

So suppose r = n/m is a rational number such that

χ1 =
py1

px1
> r.

Then divide py1 into n equal pieces, and take the first m of them, starting
at p. The new line segment so formed will have an endpoint x∗1, and this
point x∗1 will be (slightly) further away from p than is x1 (see Figure 12.18).
This comes from the following computation:

px∗1 = m (
py1

n
) =

1

r
py1 > px1.

p

y2

y1

x1

x2

δ irrational, r =
n

mx
1

x
2

(n = 5, m = 3 is shown)

Figure 12.18. The general case, when δ is a real number ≥ 1.

Let x∗2 be that point on py2 such that x∗1x
∗
2 is parallel to x1x2 (again, see Fig-

ure 12.18). According to the previous case, where δ was a rational number,
we have that

py2

px∗2
=
py1

px∗1
=

n

m
= r.

But since x1 is between p and x∗1 and x∗1x
∗
2 is parallel to x1x2, x2 is between

p and x∗2. In particular, px2 is less than px∗2. Thus

χ2 =
py2

px2
>
py2

px∗2
= r.
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Hence we have shown that if r is any rational such that r < χ1, then r < χ2.
Demonstrating the corresponding result for r > χ1 is done in a similar
fashion. This shows that χ1 = χ2, or

py1

px1
=
py2

px2
,

as was desired. Hence we have finally verified the Basic Similarity Principle
in its full generality. (We told you it was complicated....) �

The Basic Similarity Principle will now give the Similarity Theorem.

Proof of Theorem 12.4, the Similarity Theorem. Notice that −→r1 and −→r2
cannot be opposite rays. For if they were, then p, x1, and x2 would be
collinear, contradicting the assumption that ℓ does not contain p. In par-
ticular, x1 6= x2, and similarly y1 6= y2. However, we allow the case ℓ = m,
which is equivalent to x1 = y1 and x2 = y2.

First consider the reverse direction of the theorem, i.e., assume the lines
ℓ = ←−→x1x2 and m = ←→y1y2 are parallel. According to the Basic Similarity
Principle the following two ratios are equal:

py1

px1
and

py2

px2
.

Hence we have only to show that the above two ratios are also equal to
y1y2/x1x2 in order to finish the proof of this direction of the theorem.

If ℓ and m are the same line, then all the ratios are equal to 1 and we are
done. So we now assume ℓ and m are distinct parallel lines. In particular,
interchanging labels if necessary, we can assume that x2 is between p and
y2, so that px2 < py2. We now show y1y2/x1x2 is equal to the two (equal)
ratios py1/px1 and py2/px2.

To do this, we perform a little trick: we apply the Basic Similarity Principle
about the point y2. This is done by introducing the point y0 on the line m
between y1 and y2 such that the line L =←−→x2y0 is parallel to the line M =←→py1

(see Figure 12.19).15

15Such a point y0 exists for the following reasons. By Proposition 9.3 there exists a line L

through x2 parallel to ←→py1. However, L cannot be parallel to m =←−→y1y2 since m cannot be parallel
to ←→py1. Hence L must intersect m in a unique point, which we label y0. Since by assumption x2

is between p and y2, then p and y2 are on opposite sides of L = ←−→x2y0. Moreover, M = ←→py1 is
parallel to L, and thus the points p and y1 are on the same side of L. Hence y1 and y2 are on
opposite sides of L, implying that the intersection point y0 of L and m = ←−→y1y2 must lie between
y1 and y2. This establishes the existence and desired properties for y0. Whew!
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p

y2

y1

x1

x2

y0
L

M

Figure 12.19. Preparing to use the Basic Similarity Principle about y2.

The Basic Similarity Principle applied to the point y2, the intersecting lines
L1 =←→y2p, L2 = m =←→y2y1, and the parallel lines M =←−→x2y0, L =←→py1 shows

y2y0

y1y2
=
y2x2

py2
. (12.20)

We will now use this result to prove the desired equality

x1x2

y1y2
=
px2

py2
. (12.21)

First note that the quadrilateral �x1y1y0x2 is constructed from two pairs of
parallel lines and is therefore a parallelogram. Hence the lengths x1x2 and
y1y0 are equal by Proposition 10.10b. A little algebra now gives (12.21):

x1x2

y1y2
=
y1y0

y1y2
since �x1y1y0x2 is a parallelogram,

=
y1y2 − y2y0

y1y2
since y1y0 + y0y2 = y1y2 (y0 is between y1 and y2),

= 1− y2y0

y1y2

= 1− y2x2

py2
by (12.20),

=
py2 − y2x2

py2

=
px2

py2
since px2 + x2y2 = py2.

This establishes the desired (12.21).

We now must establish the forward direction of the Similarity Theorem, i.e.,
that the equality of the two ratios

py1

px1
=
py2

px2
(12.22)

guarantees that the two lines ℓ = ←−→x1x2 and m = ←→y1y2 are indeed parallel.
There certainly is some point y0 on ←→px2 such that the line m0 = ←→y1y0 is
parallel to ℓ =←−→x1x2. We wish to show y0 = y2 (see Figure 12.23).
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p

y2

y1

x1

x2 y0

Figure 12.23. Prove ℓ =←−→x1x2 and m =←→y1y2 parallel by showing y0 = y2.

From the Basic Similarity Principle we have

py1

px1
=
py0

px2
.

When combined with (12.22), this shows py0 = py2. Hence, since y0 and
y2 must be on the same side of p, Segment Construction (Proposition 4.10)
gives y0 = y2. This completes the proof of the Similarity Theorem. �

Exercises I.12

Exercise 12.1.

A

B

C
B0

Given a triangle △ABC, the line from

vertex B which intersects side
←→
AC per-

pendicularly is called the altitude from
vertex B. Let B0 be the point of inter-
section of the altitude from B to the
line

←→
AC. The length of the line seg-

ment BB0 is the height of the trian-
gle from vertex B, and the length AC
is the base opposite B.

A

B

C
B0

C0

(a) Use similar triangles to prove that for
△ABC the base times the height is the
same no matter which vertex you choose.
Hint: Let C0 be the point of intersection

of the altitude from C to the line
←→
AB.

You need to show AC ·BB0 = AB ·CC0.
To do so, consider two triangles with A
as a common vertex.

(There is a case to consider separately: when m∠BAC = 90◦.)

(b) We have not yet developed the concept of area — this will be done
in Chapter IX. However, assuming the high school formulas for area,
give an area-based proof for the result of part (a).
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Exercise 12.2. SSS Similarity Theorem.

Prove the SSS Similarity Theorem:

If the ratios of corresponding side lengths in triangles △ABC and
△abc are all equal, then the triangles are similar.

Hint: According to Definition 12.1 you need to show that the corre-
sponding angles in the two triangles are congruent, i.e., ∠A ∼= ∠a,

∠B ∼= ∠b, and ∠C ∼= ∠c. On the ray
−→
ab let b′ be that point such that

ab′ = AB, and on the ray −→ac let c′ be that point such that ac′ = AC.
Then compare triangles △abc, △ab′c′, and △ABC.

Exercise 12.3. SAS Similarity Theorem.

Prove the SAS Similarity Theorem:

Given a correspondence between two triangles, suppose two pair of
corresponding side lengths are proportional and the included angles
are congruent. Then the triangles are similar.

Hint: Suppose the two triangles are △ABC and △abc, with ∠A ∼= ∠a

and
AB

ab
=
AC

ac
. Start by choosing b′ on

−→
ab such that ab′ = AB, and

let c′ be that point on −→ac such that b′c′ is parallel to bc.

Exercise 12.4.

Prove the converse of the Pythagorean Theorem:

Suppose a triangle ∆ has side lengths a, b, c where c2 = a2 + b2.
Then ∆ has a right angle opposite the side of length c.

Exercise 12.5.

In this exercise you will prove Proposition 12.9:

Suppose �ABCD is a parallelogram with side lengths a and b and
diagonal lengths d1 and d2. Then 2(a2 + b2) = d2

1 + d2
2.

Hints: First verify the proposition if �ABCD is a rectangle. If not a
rectangle, then label the parallelogram so that a ≤ b, a = AD = BC,
b = AB = CD, d1 = AC, and d2 = BD. Assume m∠BAD < 90◦.
(Show how the case m∠BAD > 90◦ can be reduced to m∠BAD < 90◦

via another relabeling of the parallelogram.) Drop a perpendicular from

D to
←→
AB, meeting

←→
AB at X. Prove that X must lie between A and B,

and let c = AX, h = DX. Drop another perpendicular, this one from

C to
←→
AB, meeting

←→
AB at Y . Show that B is between A and Y and that

CY = h. Then apply the Pythagorean Theorem.

Exercise 12.6. Varignon’s Theorem

Prove that the midpoints of the sides of any quadrilateral are the vertices
of a parallelogram. Hint : Consider the diagonals of the quadrilateral.
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Exercise 12.7. Deception!

Consider a triangle △ABC where AB 6= BC. Let D be the midpoint of
AC and let O be the point of intersection of the perpendicular bisector
of AC and the angle bisector of ∠ABC (as shown below). The point O

must exist from Exercise 10.6b. From O drop lines perpendicular to
←→
AB

and
←→
CB, intersecting

←→
AB and

←→
CB at the points E and F , respectively:

A

B

C

O

E F

D

(a) Prove that △BOE ∼= △BOF .
Hint: Use a result from Exercises I.8.

(b) Prove that either △DOA ∼= △DOC or O = D.

(c) Use (a) and (b) to prove △EOA ∼= △FOC.

(d) From (a) and (c) you obtain BE = BF and EA = FC. It thus
appears that BA = BE+EA = BF +FC = BC, contradicting the
assumption BA 6= BC. Hence you have “proven” that any triangle
△ABC is isosceles! What is wrong with this “proof”?!

Exercise 12.8.

(a) For a right triangle △ABC with right angle at ∠C give the natural
geometric definitions of the cosine and tangent of the angle ∠A.
Then show these quantities depend only on the angle measure θ of
∠A. We can therefore employ the usual notations cos θ and tan θ.

(b) Prove that sin2 θ + cos2 θ = 1 for any angle measure in the domain
0 < θ < 90◦.

(c) Determine a formula for tan θ in terms of sin θ and cos θ.

(d) Define the secant for any 0 < θ < 90◦ by sec θ = 1/ cos θ. Deter-
mine a simple formula expressing sec θ in terms of tan θ.

Exercise 12.9. Trigonometry with Directed Angles.

The definitions given in §12 and Exercise 12.8 for sin θ, cos θ, tan θ,
and sec θ apply only to ordinary (non-directed) angle measures in the
domain 0 < θ < 90◦. In this exercise you will expand these definitions
to directed angle measures of any value.
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As discussed in §11 (in particular, Theorem 11.15), fix a directed an-
gle measure function with counterclockwise orientation at each point in
the plane. Fix a directed angle ∡XOY with m∡XOY = 90◦ mod 360
where, for convenience, we pick X and Y so that OX = OY = 1 as
shown in Figure 12.24. Furthermore, place coordinate systems χ and

η on the lines ℓx =
←→
OX and ℓy =

←→
OY , respectively, so that χ(O) = 0,

χ(X) = 1, η(O) = 0, and η(Y ) = 1. Finally, let C denote the circle with
center O and radius 1. We will refer to C as the unit circle.

XO

Y

1

ℓx

ℓy

χ(X) = 1

C

90 ◦

η(Y ) = 1

1

Figure 12.24. A unit circle given coordinate axes.

(a) Show that any fixed ray
−→
OQ starting at O must intersect the unit

circle C in exactly one point P as shown in Figure 12.25.

X

O

Y

1

Q

P
Py

Px

x = χ(Px)

y = η(Py)

Figure 12.25.
−→
OQ intersects circle C in a unique point P .

(b) Show that any point P on the unit circle uniquely determines two

points, Px ∈ ℓx and Py ∈ ℓy, such that the line
←−→
PPx is perpendicular

to ℓx and the line
←→
PPy is perpendicular to ℓy.

(c) With P , Px, Py as in (b), the ordered pair of real numbers

(x, y) = (χ(Px), η(Py))

is called the set of xy-coordinates for the point P . Determine the
value of x2 + y2 and justify your answer.
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For any θ ∈ R let
−−→
OQθ be the unique ray such that the directed angle

measure of ∡XOQθ equals θ mod 360. From (a) this ray intersects the
unit circle in a unique point Pθ and, from (b) and (c), Pθ has a unique
set of xy-coordinates (xθ, yθ). Define the sine and cosine of θ by

(cos θ, sin θ) = (xθ, yθ) = the xy-coordinates of Pθ.

(d) Show that, for 0 < θ0 < 90◦, the definitions just given for sin θ0
and cos θ0 agree with the original definitions given following Propo-
sition 12.9 and in Exercise 12.8. Then define the tangent and cotan-
gent for any directed angle measure value θ. What difficulty arises
with the definitions of tan θ and cot θ?

(e) Compute the sine, cosine, tangent, and secant of 60◦, 90◦, 120◦,
180◦, 215◦, 495◦, −60◦, −90◦, and −300◦. Interpret the results as
best you can in terms of side lengths of triangles. Use both pictures
and verbal descriptions.

(f) Do the various trigonometry identites of Exercise 12.8, developed
for 0 < θ < 90◦, remain valid for all values of θ? Prove your claims.

(g) Suppose a and b are real numbers such that a2 + b2 = 1. Prove
there exists a unique (mod 360) directed angle measure θ such that

a = cos θ and b = sin θ.

§I.13 Circles

Under what conditions do three given positive numbers a, b, c form the side
lengths of a triangle? The answer to this is given in the Triangle Theorem,
a simple and fundamental result that can, in some ways, be viewed as the
converse of the Triangle Inequality.

Under what conditions do two circles in the plane intersect? This is an
important question whose answer is given in the Two Circle Theorem. By
considering the centers of the two circles and a potential point of intersection,
the proof of the Two Circle Theorem will reduce to an application of the
Triangle Theorem.

We will use the Two Circle Theorem in Chapter IV to give a geometric proof
of the existence of a fixed point for a “strict similarity.”

Theorem 13.1. The Triangle Theorem
Suppose a, b, and c are positive numbers. If each of these numbers is less
than the sum of the other two, then a triangle exists with side lengths
a, b, and c.

Proof. We label the three side lengths so that a ≥ b ≥ c > 0. Then the
condition that each of the numbers is less than or equal to the sum of the
other two simply becomes b+ c > a.
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In order to guide our construction, first suppose △ABC is a triangle with
the desired side lengths, as shown in Figure 13.2.

A

a
BC

b c

x

h

a− xD

Figure 13.2. A triangle △ABC with the desired side lengths.

Let D be the foot of the altitude from A, with CD = x and AD = h. Then
the Pythagorean Theorem gives

x2 + h2 = b2,

(a− x)2 + h2 = c2.

These equations are easily solved to give

x =
a2 + b2 − c2

2a
,

h =
√
b2 − x2.

Now return to the situation where no triangle is given and we need to con-
struct △ABC with the desired side lengths a, b, and c. Begin by choosing
two points B and C such that BC = a. Then, guided by our previous
computations, define the number x by

x =
a2 + b2 − c2

2a
.

Since a ≥ b ≥ c > 0, then x > 0. Moreover, simple algebra shows

a− x =
a2 − b2 + c2

2a
,

which must be positive since a ≥ b ≥ c > 0. Thus, since 0 < x < a = BC,
we know there exists a point D between B and C such that CD = x, as
shown in Figure 13.2.

Now consider the quantity b− x. Simple algebra gives

b− x =
c2 − (a− b)2

2a
.
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However, the condition b + c > a ≥ b becomes c > a − b ≥ 0, showing
b > x. Hence we can define the positive number h by h =

√
b2 − x2 and

find a point A such that AD is perpendicular to BC and AD = h. This
is shown in Figure 13.2. Applying the Pythagorean Theorem to each of the
right triangles △ACD and △ABD gives

AC =
√
x2 + h2 = b,

AB =
√

(a− x)2 + h2

=
√

(a2 − 2ax+ x2) + (b2 − x2)

=
√
a2 − (a2 + b2 − c2) + b2 = c.

Hence △ABC has the desired side lengths. �

We first defined circles in Exercise 7.5. We now give this definition a number
and prove a fundamental result about such sets.

Definition 13.3.

A circle C in the plane is a collection of all points equidistance from
one fixed point, i.e., there exists a point P and a real number r > 0 such
that C = {x ∈ E | Px = r}. The point P is the center of the circle and
r is the radius. A chord is any line segment joining two points on the
circle. A diameter is any chord containing the center of the circle.

Theorem 13.4. The Two Circle Theorem
Let C1 and C2 be circles with radii r1 and r2, respectively, with c > 0
the distance between their centers. Then C1 and C2 intersect if and only
if each of the numbers r1, r2, c is less than or equal to the sum of the
other two. In particular, we have the following.

(a) C1 and C2 intersect in two distinct points p and p̄ if and only
if each of the numbers r1, r2, c is strictly less than the sum of the
other two. In this case p and p̄ are the reflections of each other in
the line of centers for the two circles.

(b) C1 and C2 intersect in exactly one point p if and only if one of
the numbers r1, r2, or c equals the sum of the other two. In this
case p lies on the line of centers for the two circles.

(c) In all other cases C1 and C2 do not intersect.

Proof. We label the circles C1 and C2 so that r1 ≥ r2. Let q1 and q2 be the
centers of C1 and C2, respectively.

Suppose one of the numbers r1, r2, c is greater than the sum of the other
two. Then the circles C1 and C2 cannot intersect, as shown in Figure 13.5.
For if there were a point p of intersection, then consider the three points p,
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q1, and q2. Two of these points would be such that the distance between
them would be strictly greater than the sum of the distances between the
remaining two pair of points. This would contradict the Triangle Inequality,
Corollary 8.11. This establishes (c).

C1
C2

q1 q2
r1 r2

c

<r1+r2 c

C1
C2

q1 q2 r1

r2c

<c+r2 r1

Figure 13.5. Case (c) of the Two Circle Theorem — no intersection.

Now suppose one of the numbers r1, r2, or c equals the sum of the other two.
By our assumption r1 ≥ r2 we have either r1+r2 = c or c+r2 = r1. In either
case there exists one point p0 on the line←→q1q2 that is on both circles, as seen
in Figure 13.6. However, there cannot be another point of intersection, for
if p were such a point, then the side lengths of the triangle △q1pq2 would
violate the Strict Triangle Inequality, Theorem 8.9. Hence the circles have
exactly one point of intersection, verifying (b).

c+r2 = r1r1+r2 = c

C1
C2

q1 q2
r1 r2

c

C1
C2

q1 q2 r1

r2c

p0
p0

Figure 13.6. Case (b) of the Two Circle Theorem — a single intersection.

Finally, consider the case where each of the numbers r1, r2, c is strictly
less than the sum of the other two. Then by the Triangle Theorem, Theo-
rem 13.1, there exists a triangle △Q1PQ2 such that PQ1 = r1, PQ2 = r2,
and Q1Q2 = c. We can construct a copy of this triangle on the line segment
q1q2 in the following manner.

Let −→q1p be the ray such that ∠q2q1p ∼= ∠Q2Q1P and q1p = Q1P . Since
q1q2 = c = Q1Q2, SAS gives △q1pq2 ∼= △Q1PQ2. In particular,

pq1 = PQ1 = r1,

pq2 = PQ2 = r2.

This proves that p is on both circles C1 and C2, as shown in Figure 13.6.
Moreover, choose p̄ to be the point on the side of ←→q1q2 not containing p such
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that ∠q2q1p̄ ∼= ∠q2q1p and q1p̄ = q1p = r1. By SAS , △q1p̄q2 ∼= △q1pq2. In
particular, p̄q1 = pq1 = r1 and p̄q2 = pq2 = r2, proving p̄ is a second point
of intersection of the two circles C1 and C2.

C1
C2

q1 q2

r1 r2

c

p

r1 r2

p̄

r1 r2

c

P

Q1 Q2

Figure 13.7. Case (a) of the Two Circle Theorem — a double intersection.

Suppose p′ is a third point of intersection. Then △q1p′q2 ∼= △q1pq2 by SSS.

Hence ∠q2q1p
′ ∼= ∠q2q1p, and q1p

′ = q1p = r1. Thus the ray
−→
q1p
′ must equal

either −→q1p or
−→
q1p̄, and since q1p

′ = r1, the point p′ must equal either p or p̄.
This proves that C1 and C2 have exactly two points of intersection, p and p̄,
where p and p̄ are the reflections of each other across the line ←→q1q2. �

Corollary 13.8.
Let C1 and C2 be circles of radius r1 and r2, with c the distance between
their centers. Label the circles so that r1 ≥ r2. Then C1 and C2 intersect
if and only if

r1 + r2 ≥ c ≥ r1 − r2.

Proof. Exercise 13.2. Notice that in this result we allow c = 0.

Exercises I.13

Exercise 13.1. The Line-Circle Theorem .

A line is said to be tangent to a circle if the line and the circle intersect
in exactly one point. This point is called the point of contact.

(a) A radius segment for a circle is a line segment from the center of
the circle to a point on the circle. If a line ℓ is perpendicular to a
radius segment of a circle C at its endpoint on the circle, prove that
ℓ is tangent to the circle.

(b) Suppose a line ℓ is tangent to a circle C with point of contact x.
Prove ℓ is perpendicular to the radius segment with endpoint x.

(c) The Line-Circle Theorem. Suppose a line ℓ intersects the inte-
rior of a circle C, i.e., ℓ contains a point whose distance to the center
of C is less than the radius of C. Prove that ℓ intersects the circle
in exactly two points.
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Exercise 13.2.

Prove Corollary 13.8 from Theorem 13.4. Hint: First consider the case
c = 0. Then consider the case c > 0 and apply the Two Circle Theorem.

Exercise 13.3.

(a) Prove that three circles in the plane whose centers A, B, and C are
non-collinear can intersect in at most one point p — see the left
panel of Figure 13.9.

(b) Explain the relevance of the two frames of Figure 13.9 to (a) and
to Exercise 7.4c.

p

A

B

C
q

p

A

B
C

Figure 13.9. Intersections of three circles.

§I.14 Bolzano’s Theorem

In §1 we stated Bolzano’s Theorem (Theorem 1.4) for later use in the text.
We now prove this result, showing it to be a direct consequence of the
completeness of the real number system. The techniques of this proof will
not be needed to understand the uses we make of Bolzano’s Theorem. As
a consequence, readers unfamiliar with the rigorous formulations of limits
and convergence may find it best to skip this discussion.

A sequence {xn}∞n=1 of real numbers is said to converge to x if the terms
in the sequence become arbitrarily close to x as the index n becomes large.
Formulated in precise terms, given any ǫ > 0, there exists an integer N > 0
such that |x− xn| is less than ǫ whenever n is greater than N .

A sequence {xn}∞n=1 is bounded if all the elements of the sequence are
contained in a bounded interval, i.e., there exists a bounded interval [a, b]
such that a ≤ xn ≤ b for all n. A sequence can be bounded but not converge.
However, the completeness of the real number system implies that every
bounded sequence has a convergent subsequence. This is Bolzano’s Theorem.

Theorem 1.4. Bolzano’s Theorem.
Every bounded sequence in R has a convergent subsequence.
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Proof. Suppose {xn}∞n=1 is a bounded sequence in R. Then the sequence is
contained in a bounded interval [a0, b0].

Let c0 be the midpoint of this interval, i.e., c0 = (a0 + b0)/2. Since there is
an infinite number of terms in the original sequence, at least one of the two
intervals [a0, c0] and [c0, b0] must also contain an infinite number of terms
of the sequence. Choose one of these intervals that does indeed contain an
infinite number of terms of the sequence and for convenience relabel this
interval as [a1, b1]. Then choose xn1

to be any element of the sequence that
lies in [a1, b1].

Let c1 be the midpoint of the new interval [a1, b1]. Since there is an infinite
number of terms of the original sequence in [a1, b1], at least one of the
intervals [a1, c1] and [c1, b1] also contains an infinite number of terms of the
sequence. Choose one such interval and relabel it [a2, b2]. Then choose xn2

to be any element of the sequence that lies in [a2, b2] such that n1 < n2.

Continue in this way generating a subsequence {xnk
}∞k=1 of the original

sequence {xn}∞n=1 and a nested sequence of closed intervals

[a0, b0] ⊇ [a1, b1] ⊇ [a2, b2] ⊇ · · · ⊇ [ak, bk] ⊇ · · ·

such that xnk
∈ [ak, bk] for each integer k ≥ 1. We claim the subsequence

{xnk
}∞k=1 must converge, which will prove Bolzano’s Theorem.

From the completeness of R (Theorem 1.2) there is at least one real number
x contained in all the closed intervals [a0, b0], [a1, b1], [a2, b2], . . . . We claim
the subsequence {xnk

}∞k=1 converges to x. To verify this claim, let ǫ > 0 be
any arbitrarily small number. We know the length |bk − ak| of each interval
[ak, bk] is half that of its predecessor. Thus the lengths |bk−ak| shrink closer
and closer to zero (with zero as the limit) and, in particular, become less
than the chosen ǫ > 0 when k is sufficently large, say when k > K for some
integer K. Since the interval [ak, bk] contains all the subsequence points xnk

for k > K as well as the point x, then the distances |x − xnk
| must all be

less than ǫ when k is greater than K. This proves that the subsequence
{xnk

}∞k=1 converges to x, finishing our proof of Bolzano’s Theorem. �

Later in the text certain desired results will require not only the completeness
of R but also the completeness of the Euclidean plane E . This result is a
consequence of our set of axioms for E , primarily the existence of a coordinate
system for each line, which directly applies the completeness of R to every
line in E .

A sequence {pn}∞n=1 of points in the plane E is bounded if all the points of
the sequence are contained in the interior of a circle. The sequence is said to
converge to the point p if the points in the sequence become arbitrarily
close to p (“within ǫ of p” for any small ǫ > 0) as the index n becomes large



§I.14. Bolzano’s Theorem 117

(“whenever n > N” for some large N). If this is the case, then the sequence
{pn}∞n=1 converges and p is the limit point of the sequence.

More generally, any subset C of the plane is bounded if it is contained in
the interior of a circle. A subset C of the plane is said to be closed if it
contains the limit point of every convergent sequence of points of C, i.e., if
{pn}∞n=1 is a sequence of points of C which converges to a point p, then p
would also have to be in C if C is a closed set. Intuitively a closed set C
contains all its “boundary points.”

A sequence of non-empty bounded closed sets in E , C0, C1, C2, . . . is nested
if each set contains the next one as a subset, i.e.,

C0 ⊇ C1 ⊇ C2 ⊇ · · · ⊇ Cn ⊇ · · · .
One way to characterize the completeness of E is to prove that every such
nested sequence of non-empty bounded closed sets has at least one point
p that belongs to all the sets. This is the same way we characterized the
completeness of the real number system in §1.
Theorem 14.1. The Completeness of E.

For any nested sequence of non-empty bounded closed sets in E there
will always exist a point p that belongs to all the sets (i.e., p is in the
intersection of all the sets).

Proof. Suppose C0 ⊇ C1 ⊇ C2 ⊇ · · · is a nested sequence of non-empty
bounded closed sets in E . From each of these sets Ck select a point pk. We
will show that there is a convergent subsequence {pkj

}∞j=0 of the sequence

{pk}∞k=0 which converges. The limit point p will have to be in each of the
original sets Ck since these sets are closed. Here are the details.

Since C0 is bounded, there exists a closed solid square S0 which contains C0

(and hence all the Ck) in its interior. Let L be the side length of S0, and
choose the first subsequence point to simply be the first point in the original
sequence, i.e., choose pk0

to equal p0.

Divide S0 into four closed solid subsquares, each with side length L/2. At
least one of these subsquares contains an infinite number of the entries of
the original sequence {pk}∞k=0. Let S1 be such a subsquare, and choose the
second subsequence point from the original sequence with index greater than
k0 = 0, i.e., choose pk1

from {pk}∞k=0 to be a point in S1 such that k1 > k0.

Continue in this way, generating a nested sequence of closed solid squares
S0 ⊇ S1 ⊇ S2 ⊇ · · · and a corresponding sequence of points pk0

∈ S0,
pk1
∈ S1, pk2

∈ S2, . . . , where k0 < k1 < k2 < . . . .

We first claim that there does indeed exist a point p in the intersection of
all the closed solid squares S0 ⊇ S1 ⊇ S2 ⊇ · · · . This will require careful use
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of coordinate systems. Choose a side of S0 (call this the base of S0). Then
use the Ruler Placement Theorem (Proposition 3.6) to place a coordinate
system χ on the line containing the base of S0 such that the χ coordinates
range from 0 to L on the base.

Each subsquare S1, S2, . . . has a base, defined to be that side parallel to
the base of S0 which is the closest to the base of S0. Then each subsquare
has a “left side,” defined to be the side which forms a directed angle with
(counterclockwise) measure 90◦ from the base. Extend the left side of each
square Sj to a line ℓj that intersects the base of S0 perpendicularly at a χ
coordinate xj . Then each pair of numbers {xj−1, xj} are the endpoints of
a bounded closed interval Ij in R of length L/2j . Moreover, these bounded
closed intervals form a nested sequence in R, so that the completeness of R

(Theorem 1.2) implies that there exists a number x in all these intervals. In
particular, x must be the χ coordinate of a point px in the base of S0.

Now select a line ℓ through px which is perpendicular to the base of S0.
By the construction of px the line ℓ must intersect each of the closed solid
squares Sj, j = 0, 1, 2, . . . , in a closed bounded interval of length L/2j .
Moreover, these intervals are nested. Using the Ruler Placement Theorem
(Proposition 3.6) to place a coordinate system η on ℓ and in that way iden-
tifying ℓ with the real number system R, the completeness of R shows that
there exists a point p in all these closed subintervals of ℓ. Hence p is indeed
a point contained in all the subsquares S0, S1, S2, . . . , as we desired.

We claim p is the limit point of the subsequence {pkj
}∞j=0. This is easy to

show since both p and pkj
are in the closed solid square Sj and the distance

between any two points in Sj is less than 2(L/2j) = L/2(j−1). Since this
distance goes to zero as j increases toward infinity, this proves p is the limit
of the subsequence {pkj

}∞j=0.

However, for each non-negative integer k this implies that p is the limit point
of the subsequence {pkj

}∞j=k, i.e., the subsequence starting at the k-th point,
and all the points of such a sequence lie in the closed set Ck. Hence p must
also lie in Ck by the definition of closed set. Thus p lies in all the sets Ck,
k = 0, 1, 2, . . . , as desired. This finishes the proof of Theorem 14.1. �

If you examine the proof of Theorem 14.1, you will see that we actually
proved a version of Bolzano’s Theorem for the Euclidean plane E . For sup-
pose {pk}∞k=1 is a bounded sequence in E . Then let S0 be a closed solid square
containing the sequence. The argument in our proof then goes through with-
out change, showing that there exists a convergent subsequence {pkj

}∞j=0.
This is the conclusion of Bolzano’s Theorem.

Theorem 14.2. Bolzano’s Theorem for E.
Every bounded sequence in the plane E has a convergent subsequence.
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Exercises I.14

Exercise 14.1.

(a) Consider the sequence

{1
2
,−1

2
,
2

3
,−2

3
,
3

4
,−3

4
,
4

5
,−4

5
, . . . }

from Exercise 1.5a. Starting with the interval [a0, b0] = [−1, 1],
illustrate the proof of Bolzano’s Theorem by making explicit choices
for [a1, b1], [a2, b2], [a3, b3], . . . and xn1

, xn2
, xn3

, . . . .

(b) Consider the sequence

{1,−1, 1.4,−1.4, 1.41,−1.41, 1.414,−1.414, 1.4142,−1.4142, . . . }
from Exercise 1.5b. Starting with the interval [a0, b0] = [−2, 2],
illustrate the proof of Bolzano’s Theorem by making explicit choices
for [a1, b1], [a2, b2], [a3, b3], . . . and xn1

, xn2
, xn3

, . . . .

Exercise 14.2.

Bolzano’s Theorem is actually equivalent to the completeness of the real
number system, i.e., Bolzano’s Theorem is not only a consequence of
the completeness of R, it also implies the completeness of R. Prove this
result, i.e., show that if every bounded sequence in R has a convergent
subsequence, then R must be complete in the sense of Theorem 1.2.
Hint: You must begin with a nested sequence of closed intervals

[a0, b0] ⊇ [a1, b1] ⊇ [a2, b2] ⊇ · · · ⊇ [ak, bk] ⊇ · · ·

and show that there is at least one real number x which is an element
of all the intervals. To do so, consider the sequence of left endpoints,
i.e., {xn}∞n=0 = {an}∞n=0.

§I.15 Axioms for the Euclidean Plane

For convenience we list all the axioms we have developed for the Euclidean
plane. Although we will not verify the details, this axiom system is indeed
consistant, i.e., there are specific models in which all of the axioms can be
shown to be true. The most important model used for this purpose is R2,
the real Cartesian plane, as introduced in Example 2.2. However, adding
all the necessary structures (such as angle measure) to this model involves
some tedious technical details.16

16The interested reader is referred to Chapter 26 in Moise, Elementary Geometry from an

Advanced Standpoint, for this development (though in fact even Moise does not develop the angle
measure function).
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Assume the existence of E (a set of points), a distinguished collection of
subsets L (the collection of lines), a coordinate system on each line in L
that defines a distance function d : E × E → R applicable to any pair of
points (p, q) ∈ E × E , and an angle measure function m : A → R applicable
to any angle in A (the collection of angles) that satisfy the following axioms.

Incidence Axioms.

I-1. The plane E contains at least three non-collinear points.

I-2. Given two points p 6= q, there is exactly one line ←→pq containing
both.

The Plane Separation Axiom.

PS. If a line ℓ is removed from the plane E , the result is a disjoint union
of two non-empty convex sets H1

ℓ and H2
ℓ such that if p ∈ H1

ℓ and
q ∈ H2

ℓ , then the line segment pq intersects ℓ.

Angle Measure Axioms.

M-1. For every angle ∠A, 0 < m∠A < 180◦.

M-2. Angle Construction. Suppose
−→
ab is a ray on line ℓ andH is one of the

two half planes with edge ℓ. Then for every number 0 < r < 180◦

there is a unique ray −→ac, with c in H, such that m∠bac = r.

M-3. Angle Addition. If c is in the interior of ∠bad, then

m∠bad = m∠bac+m∠cad.

M-4. Supplements. If two angles ∠bac and ∠cad form a linear pair, then
they are supplementary, i.e., m∠bac+m∠cad = 180◦.

The SAS (Side-Angle-Side) Axiom.

SAS. Suppose a correspondence between two triangles is such that two
sides and the included angle of the first triangle are congruent to
the corresponding parts of the second triangle. Then the correspon-
dence is a congruence between the two triangles.

The Parallel Postulate.

PP. Suppose ℓ is a line and p is a point not on ℓ.
Then there exists a unique line ℓ′ parallel to ℓ and containing p.


