
Chapter 10

Roots

By the classification theorem, the “classical” compact Lie groups,
SO(n), SU(n), and Sp(n), together with the five exceptional groups,
form the building blocks of all compact Lie groups. In this chapter,
we will use roots to better understand the Lie bracket operation in
the Lie algebra, g, of a classical or general compact Lie group G.

Let τ denote the Lie algebra of a maximal torus, T , of G. The
roots of G will be defined as a finite collection of linear functions
from τ to R which together determine all brackets [X,V ] with X ∈ τ

and V ⊥ τ . We will eventually discover that the roots determine all
brackets in g, so roots provide an extremely useful method of encoding
and understanding the entire bracket operation in g.

This chapter is organizes as follows. First we will explicitly de-
scribe the roots and the bracket operation for G = SU(n). Next we
will define and study the roots of an arbitrary compact Lie group.
We will then apply this general theory to describe the roots and the
bracket operation for G = SO(n) and G = Sp(n). We will then define
the “Weil Group” of G, and roughly indicate how the theory of roots
leads to a proof of the classification theorem. Finally, we will define
the “complexification” of a Lie algebra, to build a bridge between this
book and more advanced books which typically emphasize roots of a
complexified Lie algebra.
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168 10. Roots

1. The structure of g = su(n)

Let G = SU(n), so g = su(n). In this case, recall that the Lie algebra
of the standard maximal torus equals:

τ = {diag(λ1i, ..., λni) | λ1 + · · ·+ λn = 0}.
For each pair (i, j) of distinct integers between 1 and n, let Hij ∈ τ

denote the matrix with i in position (i, i) and −i in position (j, j).
Let Eij denote the matrix in g with 1 in position (i, j) and −1 in
position (j, i). Let Fij denote the matrix in g with i in positions
(i, j) and (j, i). Notice {H12,H23, ...,H(n−1)n} is a basis for τ , and
that the E’s and F ′s for which i < j together form a basis of τ⊥.
We’ve arrived at a basis for g, which in the case n = 3 looks like:

H12 =




i 0 0
0 −i 0
0 0 0


 , E12 =




0 1 0
−1 0 0
0 0 0


 , E23 =




0 0 0
0 0 1
0 −1 0


 , E13 =




0 0 1
0 0 0
−1 0 0


 ,

H23 =




0 0 0
0 i 0
0 0 −i


 , F12 =




0 i 0
i 0 0
0 0 0


 , F23 =




0 0 0
0 0 i
0 i 0


 , F13 =




0 0 i
0 0 0
i 0 0


 .

The bracket of any pair of these basis elements is given by Table 1.

[·, ·] H12 H23 E12 F12 E23 F23 E13 F13

H12 0 0 2F12 −2E12 −F23 E23 F13 −E13

H23 * 0 −F12 E12 2F23 −2E23 F13 −E13

E12 * * 0 2H12 E13 F13 −E23 −F23

F12 * * * 0 F13 −E13 F23 −E23

E23 * * * * 0 2H23 E12 F12

F23 * * * * * 0 −F12 E12

E13 * * * * * * 0 2H13

F13 * * * * * * * 0
Table 1. The Lie bracket operation for g = su(3)

The *’s below the diagonal remind us that these entries are de-
termined by those above the diagonal, since [A,B] = −[B,A].

Our goal is to summarize the important patterns in Table 1 and
their generalizations to g = su(n). First, define lij := span{Eij , Fij},



1. The structure of g = su(n) 169

so we have an orthogonal direct sum:

su(3) = τ ⊕ l12 ⊕ l23 ⊕ l13.

Here, “orthogonal direct sum,” denoted with the “⊕” symbol, means
that the spaces are mutually orthogonal and together span su(3). For
g = su(n), we have the analagous orthogonal direct sum:

su(n) = τ ⊕ {lij | 1 ≤ i < j ≤ n}.
The spaces lij are called the root spaces of SU(n).

The first two rows of Table 1 show that for each pair (i, j), the
space lij is adτ -invariant. This means that for each X ∈ τ and each
V ∈ lij , we have adX(V ) := [X, V ] ∈ lij . That is, adτ (lij) ⊂ lij . More
generally, for g = su(n), each lij is adτ -invariant.

Choose a fixed pair (i, j). How do matrices in lij bracket with each
other? How do they bracket with elements of τ? These two questions
are related, and their relationship is the key to understanding roots.
The answer to the first question is: [Eij , Fij ] = 2Hij . It is useful to
normalize our basis of lij , and report this answer as:

(10.1) α̂ij :=
[

Eij

|Eij | ,
Fij

|Fij |
]

= Hij .

The answer to the second question is that for all X ∈ τ , we have:

[X, Eij ] = αFij , and [X,Fij ] = −αEij ,

for some α ∈ R, which we write as α = αij(X) to point out that
it depends on X and on the pair (i, j). From the first two rows of
Table 1, we see:

α12(H12) = 2, α23(H12) = −1, α13(H12) = 1,

α12(H23) = −1, α23(H23) = 2, α13(H23) = 1.

By linearlity, the values αij(H12) and αij(H23) determine αij(X) for
any X ∈ τ . For example, with X = H13 = H12 + H23, we add the
above two rows, getting:

α12(H13) = 1, α23(H13) = 1, α13(H13) = 2.

What is the pattern? The most concise answer involves the matrices
α̂ij defined in Equation 10.1; namely, for all X ∈ τ we have:

αij(X) = 〈α̂ij , X〉R.
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Recall that X, α̂ij ∈ su(3) ⊂ M3(C) ∼= C9 ∼= R18, and 〈α̂ij , X〉R
denotes the standard inner product on R18. In particular,

〈diag(λ1i, λ2i, λ3i), diag(µ1i, µ2i, µ3i)〉R = λ1µ1 + λ2µ2 + λ3µ3.

For example, if X = diag(7i, 5i,−12i), then α12(X) = 7 − 5 = 2,
α23(X) = 5− (−12) = 17 and α13(X) = 7− (−12) = 19. So we know,
for example, that [X,E13] = 19 · F13 and [X, F13] = −19 · E13.

Everything above generalizes to g = su(n). In particular, for
each pair (i, j), the matrix α̂ij :=

[
Eij

|Eij | ,
Fij

|Fij |
]

(which equals Hij ∈ τ)
determines how any X ∈ τ brackets with any element of lij , via:

[X, Eij ] = αij(X) · Fij , and [X,Fij ] = −αij(X) · Eij ,

with αij(X) := 〈α̂ij , X〉R.
The functions {αij} are called the roots of SU(n). Each root is

a linear function from τ to R. The corresponding matrices {α̂ij} are
called the dual roots of SU(n); they encode the same information as
the roots. Their definitions:

α̂ij :=
[

Eij

|Eij | ,
Fij

|Fij |
]

and αij(X) := 〈α̂ij , X〉R

make sense for any indices i 6= j (because Eij and Fij make sense).
The ones for which i < j are called positive roots and dual roots;
these were the most relevant in the above discussion. Notice that
α̂ij = −α̂ji (because Eij = −Eji and Fij = Fji), so αij = −αji.

Lastly, we wish to understand how matrices in one of the l’s
bracket with matrices in another. For G = SU(3), Table 1 shows
that [l12, l23] ⊂ l13, [l12, l13] ⊂ l23, and [l23, l13] ⊂ l12. For G = SU(n),
[lij , ljk] ⊂ lik, with individual brackets given by:

[·, ·] Ejk Fjk

Eij Eik Fik

Fij Fik −Eik

Table 2. The bracket [lij , ljk] ⊂ lik in su(n)

Notice that lij = lji, but the table is arranged with the second
index of the first l equalling the first index of the second. To translate
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Table 2 into the block of Table 1 corresponding to [l12, l13] ⊂ l23 or
[l23, l13] ⊂ l12, just use that Eij = −Eji and Fij = Fji as needed. For
su(n) with n > 3, there are pairs of l’s which share no common index.
These pairs bracket to zero. For example, [l12, l34] = 0.

To foreshadow the general theory, we mention that the dual roots
encode the above information about which pairs of l’s bracket into
which. Consider:

(10.2) [lij , ljk] ⊂ lik ←→ α̂ij + α̂jk = α̂ik.

Equation 10.2 can translate facts about brackets of l’s into facts about
sums of dual roots. If you wish to work only with positive dual roots,
you may need to introduce negative signs, as in:

[l23, l13] ⊂ l12 ←→ α̂23 − α̂13 = −α̂12,

obtained from Equation 10.2 via: [l23, l13] = [l23, l31] = l21. Also, the
fact that [l12, l34] = 0 translates into the fact that α̂12 ± α̂34 is not a
dual root.

In summary, the bracket [lab, lcd] can be found as follows. If either
α̂ab + α̂cd or α̂ab− α̂cd equals a dual root, α̂ij , (they never both equal
a dual root) then [lab, lcd] ⊂ lij . Otherwise, [lab, lcd] = 0.

2. An invariant decomposition of g

Let G be compact Lie group with Lie algebra g. Let T ⊂ G be a
maximal torus, with Lie algebra τ ⊂ g. In this and the next two
sections, we generalize to G all of the structures and patterns that we
previously observed for SU(n). We will require:

Proposition 10.1. There exists an Ad-invariant inner product, 〈·, ·〉,
on g.

An inner product means a function that associates a real number
to each pair of vectors, satisfying the properties of the standard inner
product on Rn enumerated in Proposition 3.3. This is exactly the
structure needed to define norms (as in Definition 3.1) and angles (as
in Equation 3.4). Recall the Ad-invariant inner product for the classi-
cal groups, previously denoted 〈·, ·〉R. It arose by identifying an n×n
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real, complex or quaternionic matrix with Rn2
, R2n2

or R4n2
, and us-

ing the standard inner product on this Euclidean space. An equivalent
definition, 〈X, Y 〉R := Real(X ·Y ∗), was given in the proof of Proposi-
tion 8.12. Recall that “Ad-invariant” means 〈AdgX, AdgY 〉 = 〈X, Y 〉
for all g ∈ G and all X,Y ∈ g. As in Proposition 8.14, this implies
“infinitesimal Ad-invariance”: for all A,B, C ∈ g,

(10.3) 〈[A,B], C〉 = −〈[A, C], B〉.
We will require the following general facts about maximal tori,

which we previously proved at least for the classical groups. Recall
from Exercise 7.6 that “G0” denotes the identity component of G.

Proposition 10.2 (Summary of properties of a maximal torus).

(1) For every x ∈ G0 there exists g ∈ G0 such that x ∈ g ·T ·g−1.

(2) Every maximal torus of G equals g ·T ·g−1 for some g ∈ G0.

(3) If x ∈ G0 commutes with every element of T , then x ∈ T .

(4) If X ∈ τ commutes with every element of τ , then X ∈ τ .

We now begin to generalize to G the patterns we have observed
for SU(n), beginning with:

Theorem 10.3. g decomposes as an orthogonal direct sum,

g = τ ⊕ l1 ⊕ l2 ⊕ · · · ⊕ lm,

where each li is a 2-dimensional AdT -invariant subspace of g.

The spaces {li} are called the root spaces of G. Each root space
is AdT -invariant, which means that for each g ∈ T and each V ∈ li,
we have Adg(V ) ∈ li. In other words, AdT (li) ⊂ li. By the defini-
tion of the Lie bracket, this implies that each root space li is also
adτ -invariant, which means that adτ (li) ⊂ li.

Since m = 1/2(dim(G) − rank(G)), the theorem implies that
dim(G)− rank(G) is even.

Proof. For each g ∈ T , the linear function Adg : g → g restricts to τ

as the identity function, because T is abelian. Therefore, Adg sends
any vector V ∈ τ⊥ to another vector in τ⊥, since for all X ∈ τ ,

〈AdgV, X〉 = 〈V, Adg−1X〉 = 〈V, X〉 = 0.
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We choose a fixed orthonormal basis, B, of τ⊥, via which we identify
τ⊥ ∼= Rs, where s := dim(τ⊥) = dim(G) − rank(G). For each g ∈ T ,
the map Adg : τ⊥ → τ⊥ can be represented with respect to B as left
multiplication by some matrix in O(s); in this way, we can consider
Ad as a smooth homomorphism Ad : T → O(s).

Since T is a compact abelian path-connected Lie group, so must
be its image under a smooth homomorphism. Theorem 9.5 gener-
alizes to say that any compact abelian path-connected Lie group is
isomorphic to a torus. Thus, the image, Ad(T ) ⊂ O(s), is a torus
in O(s). Let T̃ be a maximal torus of O(s) which contains Ad(T ).
By Proposition 10.2.2, T̃ equals a conjugate of the standard maximal
torus of O(s). Said differently, after conjugating our basis B, we can
assume that T̃ equals the standard maximal torus of O(s).

If s is even, so that s = 2m for some integer m, then we’ll write
this newly conjugated orthonormal basis of τ⊥ as

B = {E1, F1, E2, F2, ..., Em, Fm}.

Our description in Chapter 9 of the standard maximal torus of O(2m)
shows that each of the spaces li := span{Ei, Fi} is invariant under the
left-multiplication map, La, for all a ∈ T̃ . This means that La(li) ⊂ li.
In particular, this holds for all a ∈ T̃ for which La represents Adg for
some g ∈ T . Therefore, each li is AdT -invariant.

It remains to demonstrate that s cannot be odd. If s were odd, so
that s = 2m + 1, then one more element, V ∈ τ⊥, would need added
to the above basis B. It follows from our description in Chapter 9
of the standard maximal torus of O(2m + 1) that La(V ) = V for all
a ∈ T̃ , so Adg(V ) = V for all g ∈ T . Therefore, [X,V ] = 0 for all
X ∈ τ , contradicting Proposition 10.2.4. ¤

3. The definition of roots and dual roots

Decompose g = τ ⊕ l1 ⊕ · · · ⊕ lm, as in Theorem 10.3. For each i, let
{Ei, Fi} be an orthonormal ordered basis for li.

Definition 10.4. For each i, define α̂i := [Ei, Fi], and define the
linear function αi : τ → R such that for all X ∈ τ , αi(X) = 〈α̂i, X〉.
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Notice that αi and α̂i contain the same information. The next
proposition shows that the α’s determine how vectors in τ bracket
with vectors in the root spaces.

Proposition 10.5. For each i, α̂i ∈ τ . Further, for all X ∈ τ ,

[X, Ei] = αi(X) · Fi, and [X,Fi] = −αi(X) · Ei.

Proof. Let X ∈ τ . Since li is adτ -invariant, we know [X, Ei] ∈ li.
Also, [X, Ei] is orthogonal to li’s first basis vector, Ei, since

〈[X,Ei], Ei〉 = −〈[Ei, X], Ei〉 = 〈[Ei, Ei], X〉 = 0,

so [X, Ei] must be a multiple of li’s second basis vector, Fi. That is,
[X,Ei] = λ · Fi. This multiple is:

λ = 〈[X, Ei], Fi〉 = −〈[Ei, X], Fi〉 = 〈[Ei, Fi], X〉 = 〈α̂i, X〉 = αi(X).

Similarly, [X, Fi] = −αi(X) · Ei.

Finally, we prove that α̂i = [Ei, Fi] ∈ τ . Using the Jacobi identity
(Prop. 8.4) we have for all X ∈ τ that:

[X, [Ei, Fi]] = [Ei, [X, Fi]]− [Fi, [X,Ei]]

= −[Ei, αi(X) · Ei]− [Fi, α(X) · Fi] = 0.

Since [Ei, Fi] commutes with every X ∈ τ , we know [Ei, Fi] ∈ τ . ¤

For each i, the linear function αi : τ → R records the initial speed
at which each vector X ∈ τ rotates the root space li. To understand
this remark, notice that the function adX : li → li (which sends
A 7→ [X, A]) is given with respect to the ordered basis {Ei, Fi} as left
multiplication by the “infinitesimal rotation matrix”:

adX =
(

0 −αi(X)
αi(X) 0

)
.

Thus, the function AdetX : li → li is given in this ordered basis as left
multiplication by the rotation matrix:

AdetX = eadX =
(

cos(αi(X)t) − sin(αi(X)t)
sin(αi(X)t) cos(αi(X)t)

)
.

For each index i, let Ri : li → li denote a 90◦ rotation of li which
is “counterclockwise” with respect to the ordered basis {Ei, Fi}. That
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is, Ri is the linear function for which Ri(Ei) = Fi and Ri(Fi) = −Ei.
Notice that for all V ∈ li and all X ∈ τ , we have:

adX(V ) = αi(X) ·Ri(V ),

AdetX V = cos(αi(X)t) · V + sin(αi(X)t) ·Ri(V ).

simply because these equations are true on a basis V ∈ {Ei, Fi}. More
generally, since g = τ ⊕ l1 ⊕ · · · ⊕ lm is an orthogonal decomposition,
each V ∈ g decomposes uniquely as V = V 0 + V 1 + · · · + V m, with
V 0 ∈ τ and with V i ∈ li for each 1 ≤ i ≤ m. For each X ∈ τ , adX

and AdetX act independently on the l’s, so:

adXV =
m∑

i=1

αi(X) ·Ri(V i),(10.4)

AdetX V = V 0 +
m∑

i=1

cos(αi(X)t) · V i + sin(αi(X)t) ·Ri(V i).(10.5)

Thus, the one-parameter group t 7→ AdetX independently rotates
each li with period 2π/|αi(X)|. The rotation is counterclockwise if
αi(X) > 0 and clockwise if αi(X) < 0.

We caution that there is generally no basis-independent notion
of clockwise. If we replace the ordered basis {Ei, Fi} with {Ei,−Fi}
(or with {Fi, Ei}), this causes Ri and αi to each be multiplied by
−1, so our notion of clockwise is reversed. Nevertheless, this sign
ambiguity is the only sense in which our definition of αi is basis-
dependent. The absolute value (or equivalently the square) of each
αi is basis-independent:

Proposition 10.6. Each function α2
i : τ → R≥0 is independent of

the choice of ordered orthonormal basis {Ei, Fi} for li.

Proof. Let X ∈ τ . Consider the linear function ad2
X : li → li, which

sends V → adX(adX(V )) = [X, [X, V ]]. By Proposition 10.5, we have
ad2

X(Ei) = −αi(X)2 · Ei and ad2
X(Fi) = −αi(X)2 · Fi. Thus,

ad2
X = −αi(X)2 · Id.

Therefore−αi(X)2 is an eigenvalue of ad2
X , and so is basis-independent.

¤

For our general definition, we will use:
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Definition 10.7. A nonzero linear function α : τ → R is called a root
of G if there exists a 2-dimensional subspace l ⊂ g with an ordered
orthonormal basis {E, F} such that for each X ∈ τ , we have

[X, E] = α(X) · F and [X, F ] = −α(X) · E.

In this case, l is called the root space for α, and the dual root for α

means the unique vector α̂ ∈ τ such that α(X) = 〈α̂, X〉 for all X ∈ τ .

The fact that a unique such dual root vector always exists is
justified in Exercise 10.2.

Notice that if α is a root of G with root space l = span{E,F},
then −α is a root of G with the same root space l = span{F, E}.
Proposition 10.8. The functions ±α1, ...,±αm are all roots of G.

Proof. It only remains to show that each αi is nonzero (not the zero
function). But if αi(X) = 0 for all X ∈ τ , then Ei and Fi would
commute with every element of τ , contradicting Proposition 10.2.4.

¤

Typically, m > dim(τ), so the set {α̂1, ..., α̂m} is too big to be a
basis of τ , but we at least have:

Proposition 10.9. If the center of G is finite, then the dual roots of
G span τ .

Proof. If some X ∈ τ were orthogonal to all of the dual roots, then
[X,A] = 0 for all A ∈ g, and therefore, etA would lie in the center of
G for all t ∈ R. ¤

Recall that SO(n) (when n > 2), SU(n) and Sp(n) have finite
centers according to Proposition 9.10. Even though the dual roots
are typically linearly dependent, we at least have the following result,
whose proof requires representation theory arguments:

Lemma 10.10. No pair of the dual roots {α̂1, ..., α̂m} are equal (or
even parallel) to each other.

We require this lemma to prove that {±α1, ...,±αm} are the only
roots. You will observe in Exercise 10.19 that if the lemma were false,
then there would be other roots.
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Definition 10.11. A vector X ∈ τ is called a strongly regular vector
if the following are distinct non-zero numbers: α1(X)2, ..., αm(X)2.

For example, when G = SU(n), X = diag(λ1i, ..., λni) is strongly
regular if and only if no difference of two λ’s equals zero or equals the
difference of another two λ’s.

Proposition 10.12. The strongly regular vectors of G form an open
dense subset of τ . In particular, strongly regular vectors exist.

Proof. Exercise 10.14, using Lemma 10.10. ¤

Proposition 10.13. If X ∈ τ is strongly regular, then the map
ad2

X : g → g has eigenvalues 0,−α1(X)2,−α2(X)2, ...,−αm(X)2 with
corresponding eigenspaces τ, l1, l2, ..., lm.

This proposition follows from the proof of Proposition 10.6. It
says that if X is strongly regular, then the decomposition of g into
eigenspaces of ad2

X is the same as the roots space decomposition of g

from Theorem 10.3, with τ equal to the kernel of ad2
X .

If X ∈ τ is not strongly regular, then the eigenspace decomposi-
tion of ad2

X is “courser” than the strongly regular one; that is, the root
spaces li for which αi(X) = 0 are grouped with τ to form the kernel of
ad2

X , and each other eigenspace is a root space or a sum of root spaces,
li1 ⊕ · · · ⊕ lik

, coming from repeated values αi1(X)2 = · · · = αik
(X)2.

Since g’s decomposition into root spaces corresponds to the “finest”
of the ad2

X eigenspace decompositions, this decomposition is unique.
We have just established:

Proposition 10.14. The decomposition from Theorem 10.3 is unique,
and therefore {±α1, ...,±αm} are the only roots of G.

4. The bracket of two root spaces

The roots describe exactly how vectors in τ bracket with vectors in
the root spaces. Surprisingly, they also help determine how vectors in
one root space bracket with vectors in another root space. If α̂i + α̂j

equals a dual root, then let l+ij denote its root space; otherwise, let
l+ij := {0}. If α̂i − α̂j equals a dual root, then let l−ij denote its root
space; otherwise, let l−ij := {0}. With this notation:
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Theorem 10.15. [li, lj ] ⊂ l+ij ⊕ l−ij.

In particular, if neither α̂i + α̂j nor α̂i − α̂j equals a dual root,
then [li, lj ] = {0}. For all of the classical groups except SO(2n + 1),
we’ll see that the sum and difference never both equal dual roots, so
any pair of root spaces must bracket to zero or to a single root space:

Corollary 10.16. If G ∈ {SU(n), SO(2n), Sp(n)}, then for any pair
(i, j), either [li, lj ] = 0 or there exists k such that [li, lj ] ⊂ lk. In the
latter case, α̂i ± α̂j = ±α̂k.

Section 10 will contain the standard proof of Theorem 10.15 using
complexified Lie algebras. For now, we offer the following longer but
less abstract proof:

Proof of Theorem 10.15. Let V ∈ li and let W ∈ lj , and define
U := [V, W ]. We wish to prove that U ∈ l+ij ⊕ l−ij . First notice that
U ∈ τ⊥ because for all Y ∈ τ ,

〈U, Y 〉 = 〈[V, W ], Y 〉 = −〈[V, Y ],W 〉 = 〈[Y, V ],W 〉 = 0.

For any X ∈ τ , we can define the path Ut := [Vt,Wt], where

Vt := AdetX V = cos(αi(X)t) · V + sin(αi(X)t) ·Ri(V ),

Wt := AdetX W = cos(αj(X)t) ·W + sin(αj(X)t) ·Rj(W )

are circles in li and lj . Standard trigonometric identities yield:

2Ut = cos((αi(X) + αj(X))t)([V, W ]− [RiV,RjW ])

+ sin((αi(X) + αj(X))t)([RiV, W ] + [V,RjW ])(10.6)

+ cos((αi(X)− αj(X))t)([V, W ] + [RiV, RjW ])

+ sin((αi(X)− αj(X))t)([RiV, W ]− [V,RjW ]).

On the other hand, since

Ut = [AdetX V, AdetX W ] = AdetX [V, W ] = AdetX U,

we can decompose U = U1 + · · · + Um (with U i ∈ li), and Equa-
tion 10.5 gives:

(10.7) Ut =
m∑

k=1

cos(αk(X)t) · Uk + sin(αk(X)t) ·Rk(Uk).

The kth term of this sum, denoted Uk
t , is a circle in lk.
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For any X ∈ τ , the expressions for Ut obtained from Equa-
tions 10.6 and 10.7 must equal each other. We claim this implies that
the first two lines of Equation 10.6 must form a circle in l+ij and the
last two lines must form a circle in l−ij , so in particular Ut ∈ l+ij⊕ l−ij as
desired. This implication is perhaps most easily seen by considering
special types of vectors X ∈ τ , as follows.

First, choose X ⊥ span{α̂i, α̂j}, so αi(X) = αj(X) = 0, so t 7→
Ut is constant. If some Uk 6= 0, then αk(X) = 0, which means that
α̂k ⊥ X. In summary, if Uk 6= 0, then α̂k must be perpendicular to
any X which is perpendicular to span{α̂i, α̂j}. We conclude that if
Uk 6= 0, then α̂k ∈ span{α̂i, α̂j}.

Next, choose X ∈ span{α̂i, α̂j} with αi(X) = 〈α̂i, X〉 = 1 and
αj(X) = 〈α̂j , X〉 = 0, which is possible because α̂i and α̂j are not
parallel, by Lemma 10.10. If some Uk 6= 0, then Equation 10.6 shows
that t 7→ Uk

t has period = 2π, so αk(X) = 〈α̂k, X〉 = ±1, by Equa-
tion 10.7. In summary, if some Uk 6= 0, then α̂k ∈ span{α̂i, α̂j} has
the same projection onto the orthogonal compliment of α̂j as does
±α̂i. Reversing the roles of i and j shows that α̂k also has the same
projection onto the orthogonal compliment of α̂i as does ±α̂j . It
follows easily that α̂k = ±α̂i ± α̂j , so U ∈ l+ij ⊕ l−ij . ¤

For a single V ∈ li and W ∈ lj , suppose we know the bracket
[V, W ] = A+ + A− (with A+ ∈ l+ij and A− ∈ l−ij). This single bracket
determines the entire bracket operation between li and lj . To see
how, let R+ denote the 90◦ rotation of l+ij which is counterclockwise
if α̂i + α̂j = α̂k or clockwise if α̂i + α̂j = −α̂k for some k. Similarly
let R− denote the 90◦ rotation of l−ij which is counterclockwise if
α̂i − α̂j = α̂k or clockwise if α̂i − α̂j = −α̂k. With this notation,
the ideas of the previous proof yield the following generalization of
Table 2:

[·, ·] W RjW

V A+ + A− R+(A+)−R−(A−)
RiV R+(A+)−R−(A−) −A+ + A−

Table 3. The bracket [li, lj ] ⊂ l+ij ⊕ l−ij
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5. The structure of g = so(2n)

Let n > 1 and G = SO(2n), so g = so(2n). Recall that the Lie
algebra of the standard maximal torus of G is:

τ =
{

diag
((

0 θ1

−θ1 0

)
, ...,

(
0 θn

−θn 0

))
| θi ∈ R

}
.

Let Hi ∈ τ denote the matrix with θi = 1 and all other θ’s zero, so
that {H1, ...,Hn} is a basis for τ . Also define:

E :=
(

1 0
0 1

)
, F :=

(
0 1
−1 0

)
, X :=

(
0 1
1 0

)
, Y :=

(
1 0
0 −1

)
.

Think of a matrix in so(2n) as being an n × n grid of 2 × 2 blocks.
For each pair (i, j) of distinct indices between 1 and n, define Eij so
that its (i, j)th block equals E and its (j, i)th block equals -ET and
all other blocks are zero. Similarly define Fij , Xij and Yij . A basis
of g is formed from {H1, ...,Hn} together with all E’s, F ’s, X’s and
Y ’s with i < j. In the case n = 2, this basis looks like:

H1 =




0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


 , E12 =




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 , X12 =




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


 ,

H2 =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


 , F12 =




0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


 , Y12 =




0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


 .

Define lij := span{Eij , Fij} and kij := span{Xij , Yij}. The de-
composition of g into root spaces is:

g = τ ⊕ {lij | i < j} ⊕ {kij | i < j}.

Since [Eij , Fij ] = 2(Hi − Hj) and [Xij , Yij ] = 2(Hi + Hj), the dual
roots are the following matrices (and their negatives):

α̂ij :=
[

Eij

|Eij | ,
Fij

|Fij |
]

=
1
2
(Hi −Hj),

β̂ij :=
[

Xij

|Xij | ,
Yij

|Yij |
]

=
1
2
(Hi + Hj).
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The following lists all sums and differences of dual roots which equal
dual roots. In each case, a sample bracket value is provided:

α̂ij + α̂jk = α̂ik [lij , ljk] ⊂ lik [Eij , Ejk] = Eik

β̂ij − β̂jk = α̂ik [kij , kjk] ⊂ lik [Xij , Xjk] = Eik

α̂ij + β̂jk = β̂ik [lij , kjk] ⊂ kik [Eij , Xjk] = Xik

The brackets of any pair of basis elements can be determined from
the above sample bracket values via Table 3, yielding:

[·, ·] Ejk Fjk

Eij Eik Fik

Fij Fik −Eik

[·, ·] Xjk Yjk

Xij Eik −Fik

Yij Fik Eik

[·, ·] Xjk Yjk

Eij Xik Yik

Fij Yik −Xik

Table 4. The non-zero bracket relations for g = so(2n)

6. The structure of g = so(2n + 1)

Let n > 0 and G = SO(2n + 1), so g = so(2n + 1). Recall that the
Lie algebra of the standard maximal torus of G is:

τ =
{

diag
((

0 θ1

−θ1 0

)
, ...,

(
0 θn

−θn 0

)
, 0

)
| θi ∈ R

}
.

Each of the previously defined elements of so(2n) can be considered
as an element of so(2n + 1) simply by adding a final row and final
column of zeros. In order to complete our previous basis of so(2n) to
a basis of so(2n + 1), we need the following additional matrices. For
each 1 ≤ i ≤ n, let Wi ∈ so(2n + 1) denote the matrix with entry
(2i− 1, 2n + 1) equal to 1 and entry (2n + 1, 2i− 1) equal to −1, and
all other entries equal to zero. Let Vi denote the matrix with entry
(2i, 2n+1) equal to 1 and entry (2n+1, 2i) equal to −1, and all other
entries equal to zero. For n = 2, these extra basis elements are:

W1 =




0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 0




, V1 =




0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0




, W2 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 −1 0 0




, V2 =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 −1 0




.

Define si := span{Vi, Wi}. The root space decomposition is:

g = τ ⊕ {lij | i < j} ⊕ {kij | i < j} ⊕ {si | 1 ≤ i ≤ n}.
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Since [Vi,Wi] = Hi, the added dual roots are the following matrices
(and their negatives):

γ̂i :=
[

Vi

|Vi| ,
Wi

|Wi|
]

=
1
2
Hi.

In addition to those of so(2n), we have the following new sums and
differences of dual roots which equal dual roots. In each case, a sample
bracket value is provided.

α̂ij − γ̂i = −γ̂j [lij , si] ⊂ sj [Eij , Vi] = −Vj

α̂ij + γ̂j = γ̂i [lij , sj ] ⊂ si [Eij , Vj ] = Vi

β̂ij − γ̂i = γ̂j [kij , si] ⊂ sj [Xij , Vi] = −Wj

β̂ij − γ̂j = γ̂i [kij , sj ] ⊂ si [Xij , Vj ] = Wi

γ̂i − γ̂j = α̂ij

γ̂i + γ̂j = β̂ij

}
[si, sj ] ⊂ lij ⊕ hij [Vi, Vj ] = −1

2
Eij +

1
2
Yij

Notice that (γ̂i, γ̂j) is our first example of a pair of dual roots whose
sum and difference both equal dual roots. Using Table 3, the new
bracket relations (in addition to those of Table 4) are summarized in
Table 5.

[·, ·] Vi Wi

Eij −Vj −Wj

Fij Wj −Vj

[·, ·] Vj Wj

Eij Vi Wi

Fij Wi −Vi

[·, ·] Vi Wi

Xij −Wj −Vj

Yij Vj −Wj

[·, ·] Vj Wj

Xij Wi Vi

Yij −Vi Wi

[·, ·] Vj Wj

Vi − 1
2Eij + 1

2Yij
1
2Fij − 1

2Xij

Wi − 1
2Fij − 1

2Xij − 1
2Eij − 1

2Yij

Table 5. The additional bracket relations for g = so(2n + 1)

7. The structure of g = sp(n)

Let n > 0 and G = Sp(n), so g = sp(n). Recall that the Lie algebra
of the standard maximal torus of G is:

τ = {diag(θ1i, ..., θni) | θi ∈ R}.
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For each index i, let Hi denote the diagonal matrix with i in
position (i, i) (and all other entries zero). Let Ji denote the diagonal
matrix with j in position (i, i) (and all other entries zero), and let
Ki denote the diagonal matrix with k in position (i, i). Notice that
Hi ∈ τ and Ji,Ki ∈ τ⊥.

For each pair (i, j) of distinct indices between 1 and n, let Eij

denote the matrix with +1 in position (i, j) and −1 in position (j, i).
Let Fij ∈ g denote the matrix with i in positions (i, j) and (j, i). Let
Aij ∈ g denote the matrix with j in positions (i, j) and (j, i). Let
Bij ∈ g denote the matrix with k in positions (i, j) and (j, i).

The root space decomposition is:

sp(n) = τ ⊕ {span{Eij , Fij} | i < j} ⊕ {span{Aij , Bij} | i < j}
⊕{span{Ji,Ki} | 1 ≤ i ≤ n}

The dual roots are the following matrices (and their negatives):

α̂ij :=
[

Eij

|Eij | ,
Fij

|Fij |
]

= Hi −Hj

β̂ij :=
[

Aij

|Aij | ,
Bij

|Bij |
]

= Hi + Hj

γ̂i :=
[

Ji

|Ji| ,
Ki

|Ki|
]

= 2Hi

Think of these dual roots initially as unrelated to the dual roots of
SO(2n+1) which bore the same names, but look for similarities. The
only sums or differences of dual roots which equal dual roots are listed
below, with sample bracket values provided:

α̂ij + α̂jk = α̂ik [Eij , Ejk] = 2Eik

β̂ij − β̂jk = α̂ik [Aij , Ajk] = −2Eik

α̂ij + β̂jk = β̂ik [Eij , Ajk] = 2Aik

β̂ij − γ̂i = −α̂ij [Aij , Ji] = 2Eij

β̂ij − γ̂j = α̂ij [Aij , Jj ] = −2Eij

α̂ij − γ̂i = −β̂ij [Aij , Ji] = −2Aij

α̂ij + γ̂j = β̂ij [Eij , Jj ] = 2Aij
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We leave it to the reader in Exercise 10.4 to list all non-zero brack-
ets of pairs of basis vectors, using the above sample values together
with Table 3.

8. The Weil Group

Let G be a compact Lie group with Lie algebra g. Let T ⊂ G be a
maximal torus with Lie algebra τ ⊂ g. In this section, we will define
and study the Weil group of G, which can be thought of as a group
of symmetries of the roots of G.

First, let N(T ) denote the normalizer of T , which means:

N(T ) := {g ∈ G | gTg−1 = T}.
It is routine to check that N(T ) is a subgroup of G and that T is a
normal subgroup of N(T ).

For each g ∈ N(T ), conjugation by g is an automorphism of T ,
denoted Cg : T → T . The derivative of Cg at I is the Lie algebra
automorphism Adg : τ → τ . In fact, it is straightforward to see:

N(T ) = {g ∈ G | Adg(τ) = τ}.
One should expect automorphisms to preserve all of the fundamental
structures of a Lie algebra, including its roots and dual roots.

Proposition 10.17. For each g ∈ N(T ), Adg : τ → τ sends dual
roots to dual roots.

Proof. If α̂ ∈ τ is a dual root with root space l = span{E, F}, then
Adgα̂ ∈ τ is a dual root with root space Adg(l) := span{AdgE, AdgF}.
This is because for all X ∈ τ ,

[X, AdgE] = Adg

(
[Adg−1X,E]

)
= Adg

(〈Adg−1X, α̂〉 · F )

= 〈Adg−1X, α̂〉 ·AdgF = 〈X, Adgα̂〉 ·AdgF.

Similarly, [X, AdgF ] = −〈X, Adgα̂〉 · AdgE, so Adgα̂ is a dual-root
according to Definition 10.7. ¤

Since the conjugates of T cover G, N(T ) is not all of G. In fact,
we expect N(T ) to be quite small. The following shows at least that
N(T ) is larger than T .
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Proposition 10.18. For each dual root, α̂, of G, there exists an
element g ∈ N(T ) such that Adg(α̂) = −α̂, and Adg(X) = X for all
X ∈ τ with X ⊥ α̂.

In other words, we can visualize Adg : τ → τ as a reflection
through the “hyperplane” α̂⊥ := {X ∈ τ | X ⊥ α̂}.

Proof. Let α̂ be a dual root with root space l = span{E, F}. Since
t 7→ etF is a one-parameter group in G, t 7→ AdetF is a one-parameter
group of orthogonal automorphisms of g, with initial derivative equal
to adF . Notice that:

For all X ∈ α̂⊥, adF (X) = −[X, F ] = 〈X, α̂〉 · E = 0,

adF (E) = −[E,F ] = −α̂ = −|α̂| · α̂

|α̂| ,

adF

(
α̂

|α̂|
)

= −
[

α̂

|α̂| , F
]

=
〈

α̂

|α̂| , α̂
〉
· E = |α̂| · E.

Therefore t 7→ AdetF = eadtF is a one-parameter group of orthogonal
automorphisms of g which acts as the identity on α̂⊥ ⊂ τ and which
rotates span

{
α̂
|α̂| , E

}
with period 2π

|α̂| . Thus, at time t0 := π
|α̂| , the

rotation is half complete, so it sends α̂ 7→ −α̂. Thus, the element
g = et0F lies in N(T ) and acts on τ as claimed in the proposition. ¤

We would like to think of N(T ) as a group of orthogonal auto-
morphisms of τ , but the problem is that different elements of N(T )
may determine the same automorphism of τ :

Lemma 10.19. For a pair a, b ∈ N(T ), Ada = Adb on τ if and only
if a and b lie in the same coset of N(T )/T .

Proof.

Ada = Adb on τ ⇐⇒ Ca = Cb on T

⇐⇒ Cab−1 = I on T

⇐⇒ ab−1 commutes with every element of T

⇐⇒ ab−1 ∈ T

¤

Definition 10.20. The Weil group of G is W (G) := N(T )/T .
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So it is not N(T ) but W (G) which should be thought of as a
group of orthogonal automorphisms of τ . Each w = g · T ∈ W (G)
determines the automorphism of τ which sends X ∈ τ to

w ? X := AdgX.

By the previous Lemma, w ? X is well-defined (independent of the
coset representative g ∈ N(T )), and different elements of W (G) de-
termine different automorphisms of τ .

Proposition 10.21. W (G) is finite.

Proof. By the above remarks, W (G) is isomorphic to a subgroup
of the group of automorphisms of τ . By Proposition 10.17, each
w ∈ W (G) determines a permutation of the 2m dual roots of G. If
two elements w1, w2 ∈ W determine the same permutation of the dual
roots, then they determine the same linear map on the span of the
dual roots. The proof of Proposition 10.9 shows that the span of the
dual roots equals the orthogonal compliment in τ of the Lie algebra
of the center of G. Since each element of W (G) acts as the identity on
Lie algebra of the center of G, this shows that w1 and w2 determine
the same automorphism of τ , and therefore w1 = w2. Thus, different
elements of W (G) must determine different permutations of the dual
roots. It follows that W (G) is isomorphic to a subgroup of the group
of permutations of the 2m dual roots, and thus has finite order which
divides (2m)! ¤

Proposition 10.18 guarantees that for each dual root α̂, there
exists an element wα̂ ∈ W (G) such that wα̂ ?α̂ = −α̂ and wα̂ ?X = X

for all X ∈ α̂⊥. It turns out that such elements generate W (G):

Proposition 10.22. Every element of W (G) equals a product of
finitely many of the wα̂’s.

We will not prove this proposition. It implies that W (G) depends
only on the Lie algebra. That is, if two Lie groups have isomorphic
Lie algebras, then they have isomorphic Weil groups. By contrast,
the normalizer of the maximal torus of SO(3) is not isomorphic to
that of Sp(1), even though so(3) ∼= sp(1) (see Exercises 9.12 and 9.13
for descriptions of these normalizers).
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It is useful to derive an explicit formula for the reflection through
the hyperplane α̂⊥:

Lemma 10.23. If α̂ is a dual root, then wα̂ ? X = X − 2 〈α̂,X〉
〈α̂,α̂〉 α̂ for

all X ∈ τ .

Proof. X uniquely decomposes as the sum of a vector parallel to α̂

and a vector perpendicular to α̂ in the following explicit manner:

X = X‖ + X⊥ =
( 〈α̂, X〉
〈α̂, α̂〉 α̂

)
+

(
X − 〈α̂, X〉

〈α̂, α̂〉 α̂

)
.

We have wα̂(X) = −X‖ + X⊥ = X − 2 〈α̂,X〉
〈α̂,α̂〉 α̂. ¤

Proposition 10.24. W (SU(n)) is isomorphic to Sn, the group of all
permutations of n objects.

Proof. Using Lemma 10.23, one can check that wα̂ij ? X is obtained
from X ∈ τ by exchanging the ith and jth diagonal entries. For
example,

wα̂12 ? diag(λ1i, λ2i, λ3i, ..., λni) = diag(λ2i, λ1i, λ3i, ..., λni).

The collection {wα̂ij} generates the group, Sn, of all permutations of
the n diagonal entries, so Proposition 10.22 implies that W (SU(n))
is isomorphic to Sn. ¤

An explicit coset representatives, gij ∈ N(T ) ⊂ SU(n), for each
wα̂ij can be found using the construction in the proof of Proposi-
tion 10.18. For example, in G = SU(3), we can choose:

g23 = e(π/2)E23 =




1 0 0
0 0 1
0 −1 0


 , or g23 = e(π/2)F23 =




1 0 0
0 0 i
0 i 0


 .

Finally, we will determine the Weil groups of the remaining clas-
sical groups. For each of G ∈ {SO(2n), SO(2n + 1), Sp(n)}, we
previously chose a basis of τ , which in all three cases was denoted
{H1, ...,Hn}. These basis elements are mutually orthogonal and have
the same length, l. They are tangent to the circles which comprise
T , so they generate one-parameter groups, t 7→ etHi , with period 2π.
In fact, {±H1, ...,±Hn} are the only vectors in τ of length l which
generate one-parameter groups with period 2π. For any g ∈ N(T ),



188 10. Roots

Adg : τ → τ must preserve this property and therefore must per-
mute the set {±H1, ...,±Hn}. We will think of W (G) as a group of
permutations of this set (rather than of the set of dual roots).

Proposition 10.25. |W (SO(2n + 1))| = |W (Sp(n))| = 2nn!, and
|W (SO(2n))| = 2n−1n!

Proof. For each of G ∈ {SO(2n), SO(2n+1), Sp(n)}, there are dual
roots denoted α̂ij and β̂ij . Using Proposition 10.23, the corresponding
Weil group elements permute the set {±H1, ...,±Hn} as follows:

wα̂ij
sends Hi 7→ Hj , Hj 7→ Hi, Hk 7→ Hk for all k /∈ {i, j},

wβ̂ij
sends Hi 7→ −Hj , Hj 7→ −Hi, Hk 7→ Hk for all k /∈ {i, j}.

For G ∈ {SO(2n+1), Sp(n)} we additionally have dual roots denoted
{γ̂i} which give the following permutations:

wγ̂i sends Hi 7→ −Hi, Hk 7→ Hk for all k 6= i.

By Proposition 10.22, the Weil group is isomorphic to the group of
permutations of set {±H1, ...,±Hn} generated by the above permu-
tations. For G ∈ {SO(2n + 1), Sp(n)}, one can generate any permu-
tation of the n indices together with any designation of which of the n

indices become negative, giving 2nn! possibilities. For G = SO(2n),
the number of negative indices must be even (check that this is the
only restriction), so there are half as many total possibilities. ¤

9. Towards the classification theorem

In this section, we very roughly indicate the proof of the previously-
mentioned classification theorem for compact Lie groups, which stated:

Theorem 10.26. The Lie algebra of every compact Lie group, G, is
isomorphic to the Lie algebra of a product G1×G2× · · · ×Gk, where
each Gi is one of {SO(n), SU(n), Sp(n)} for some n, or is one of the
five exceptional Lie groups: G2, F4, E6, E7 and E8.

It suffices to prove this theorem assuming that G has a finite
center, so we’ll henceforth assume that all of our compact Lie groups
have finite centers. In this case, the dual roots of G are a finite
collection of vectors in τ which form a “root system” according to the
following definition:
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Definition 10.27. Let τ be a real vector space which has an inner
product, 〈·, ·〉. Let R be a finite collection of nonzero vectors in τ

which spans τ . The pair (τ, R) is called a root system if the following
properties are satisfied:

(1) If α ∈ R, then −α ∈ R, but no other multiple of α is in R.

(2) If α, β ∈ R, then wα ? β := β − 2 〈β,α〉
〈α,α〉α ∈ R.

(3) If α, β ∈ R, then the quantity 2 〈β,α〉
〈α,α〉 is an integer.

In this case, the elements of R are called roots, and the dimension of
τ is called the rank of the root system.

In property (2), each a ∈ τ determines the orthogonal endomor-
phism of τ which sends X ∈ τ to the vector wa ? X ∈ τ defined as
wa ? X := X − 2 〈X,a〉

〈a,a〉 a. That is, wa : τ → τ is the reflection through
the hyperplane a⊥. Property (2) says that for each root α, the re-
flection wα sends roots to roots. The Weil group of (τ, R), denoted
W (τ, R), is defined as the group of all endomorphisms of τ obtained
by composing a finite number of the wα’s. As before, W (τ, R) is
isomorphic to a subgroup of the group of permutations of R.

Some representation theory is required to prove that the dual
roots of G satisfy property (3). Interpreting 〈β,α〉

〈α,α〉 as in the proof
of Lemma 10.23, property (3) says that the projection of β onto α

(previously denoted β‖) must be an integer or half-integer multiple
of α, and vice-versa. This implies very strong restrictions on the
angle ∠(α, β) and on the ratio |α|

|β| . In particular, the following is
straightforward to prove using only property (3):

Proposition 10.28. Let (τ, R) be a root system. If α, β ∈ R, then
one of the following holds:

(0) 〈α, β〉 = 0.

(1) |α| = |β| and ∠(α, β) ∈ {60◦, 120◦}.
(2) max{|α|, |β|} =

√
2·min{|α|, |β|} and ∠(α, β) ∈ {45◦, 135◦}.

(3) max{|α|, |β|} =
√

3·min{|α|, |β|} and ∠(α, β) ∈ {30◦, 150◦}.

In fact, the definition of a root system is so restrictive, root sys-
tems have been completely classified:
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Theorem 10.29. Every root system is equivalent to the system of
dual roots for a Lie group of the form G = G1×G2× · · ·×Gk, where
each Gi is one of {SO(n), SU(n), Sp(n)} for some n, or is one of the
five exceptional Lie groups.

In order for this classification of root systems to yield a proof of
Theorem 10.26, it remains only to establish that:

Theorem 10.30. Two compact Lie groups with equivalent systems
of dual roots must have isomorphic Lie algebras.

The notion of equivalence in the previous two theorems is formal-
ized as follows:

Definition 10.31. The root system (τ, R) is said to be equivalent to
the root system (τ ′, R′) if there exists a linear isomorphism f : τ → τ ′

which sends R onto R′ such that for all α ∈ R and X ∈ τ we have:

f(wα ? X) = wf(α) ? f(X).

If f is orthogonal (meaning that 〈f(X), f(Y )〉 = 〈X, Y 〉 for all
X, Y ∈ τ), then the hyperplane-reflection property in this definition
is automatic. An example of a non-orthogonal equivalence is given in
Exercise 10.22.

The proofs of Theorems 10.29 and 10.30 are difficult; see [9] for
complete details. One of the key steps in the proof of Theorem 10.29
involves showing that every root system contains a special type of
basis called a “base,” defined as follows:

Definition 10.32. Let (τ, R) be a root system, and let ∆ ⊂ R be a
collection of the roots which forms a basis of τ , which implies that
every α ∈ R can be written uniquely as a linear combination of el-
ements of ∆. We call ∆ a base of R if the non-zero coefficients in
each such linear combination are integers and are either all positive
(in which case α is called a positive root) or all negative (in which
case α is called a negative root).

For a proof that every root system has a base, see [5] or [10].
The most natural base for the system of dual roots of G = SU(n) is:

∆ = {α̂12, α̂23, ..., α̂(n−1)n}.
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This base induces the same notion of “positive” that was provided in
Section 1; namely, α̂ij is positive if and only if i < j. For example,
α̂25 is positive because α̂25 = α̂23 + α̂34 + α̂45.

A natural base for the system of dual roots of G = SO(2n) is:

∆ = {α̂12, α̂23, ..., α̂(n−1)n, β̂(n−1)n}.
As before, α̂ij is positive if and only if i < j. Also, β̂ij is positive
and −β̂ij is negative for each pair (i, j). For example, when n = 8,
so G = SO(16), we can verify that β̂35 is positive by writing:

β̂35 = α̂34 + α̂45 + 2α̂56 + 2α̂67 + α̂78 + β̂78.

A base for the system of dual roots of G = SO(2n + 1) is:

∆ = {α̂12, α̂23, ..., α̂(n−1)n, γ̂n}.
As before, α̂ij is positive if and only if i < j, each β̂ij is positive, and
each −β̂ij is negative. Further, γ̂i is positive and −γ̂i is negative for
each index 1 ≤ i ≤ n. For example, when n = 8, so G = SO(17), we
can verify that β̂35 and γ̂3 are positive by writing:

β̂35 = α̂34 + α̂45 + 2α̂56 + 2α̂67 + 2α̂78 + 2γ̂8,

γ̂3 = α̂34 + α̂45 + α̂56 + α̂67 + α̂78 + γ̂8.

A base for the system of dual roots of G = Sp(n) is:

∆ = {α̂12, α̂23, ..., α̂(n−1)n, γ̂n}.
As before, α̂ij is positive if and only if i < j, each β̂ij and each γ̂i

is positive, and each −β̂ij and each −γ̂i is negative. For example, in
G = Sp(8), we can verify that β̂35 and γ̂3 are positive by writing:

β̂35 = α̂34 + α̂45 + 2α̂56 + 2α̂67 + 2α̂78 + γ̂8,

γ̂3 = 2α̂34 + 2α̂45 + 2α̂56 + 2α̂67 + 2α̂78 + γ̂8.

For a compact Lie group, G, each root space, l, is associated with
two dual roots. A base, ∆, will designate one of them as positive (de-
noted α̂) and the other as negative (denoted −α̂). Therefore, a base
provides a notion of “clockwise” for each l; namely, clockwise with
respect to an ordered orthonormal basis {E, F} of l such that [E,F ]
equals the positive dual root. None of the above bases for the classi-
cal groups are unique, which reflects the lack of a canonical notion of
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clockwise for the individual root spaces. A different base would in-
duce a different division of the roots into positive and negative roots,
and thus different notions of clockwise for the root spaces.

Lemma 10.33. If (τ,R) is a root system, ∆ is a base, and α, β ∈ ∆,
then one of the following holds:

(0) 〈α, β〉 = 0.

(1) |α| = |β| and ∠(α, β) = 120◦.

(2) max{|α|, |β|} =
√

2 ·min{|α|, |β|}, and ∠(α, β) = 135◦.

(3) max{|α|, |β|} =
√

3 ·min{|α|, |β|}, and ∠(α, β) = 150◦.

Proof. By Proposition 10.28, we need only prove that ∠(α, β) is not
acute. For each of the three possible acute angles, it is straightforward
to show that wα?β = α−β or wβ?α = β−α. In either case, α−β ∈ R

is a root whose unique expression as a linear combination of elements
from ∆ has a positive and a negative coefficient, contradicting the
definition of base. ¤

It turns out that to determine the equivalence class of a root
system (τ,R), one only needs to know the angles between pairs of
vectors from a base, ∆, of the root system. A Dynkin diagram is
a graph which encodes exactly this information. The nodes of the
Dynkin diagram are the elements of ∆ (so the number of nodes equals
the rank of the root system). For a pair of nodes representing elements
α, β ∈ ∆, we put 0, 1, 2, or 3 edges between them to represent the
possibilities enumerated in Lemma 10.33. Further, we decorate each
double or triple edge with an arrow from the vertex associated with
the longer root towards the vertex associated with the smaller root.
It can be proven that the Dynkin diagram does not depend on the
choice of base, and that it determines the equivalence class of the root
system. The classification of root systems was achieved by classifying
all possible Dynkin diagrams. The Dynkin diagrams for systems of
dual roots of the classical groups are pictured in Figure 1.
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....

....

Figure 1. The Dynkin diagrams of the classical Lie groups.

10. Complexified Lie algebras

In this section, we will define the “complexification” of a Lie algebra,
to build a bridge between this book and more advanced books which
typically emphasize roots of a complexified Lie algebra.

Definition 10.34. Let V be an n-dimensional vector space over R.
The complexification of V is defined as:

VC := {X + Y i | X, Y ∈ V }.

Notice that VC is an n-dimensional vector space over C, with
vector addition and scalar multiplication defined in the obvious way:

(X1 + Y1i) + (X2 + Y2i) := (X1 + X2) + (Y1 + Y2)i,

(a + bi) · (X + Y i) := (a ·X − b · Y ) + (b ·X + a · Y )i,

for all X, X1, X2, Y, Y1, Y2 ∈ V and a, b ∈ R.

If V has an inner product, 〈·, ·〉, then this induces a natural
complex-valued inner product on VC defined as:

〈X1 +Y1i, X2 +Y2i〉C := (〈X1, X2〉+ 〈Y1, Y2〉)+(〈Y1, X2〉−〈X1, Y2〉)i,
which is designed to satisfy all of the familiar properties of the stan-
dard hermitian inner product on Cn enumerated in Prop. 3.3.
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If G is a Lie group with Lie algebra g, then gC inherits a “complex
Lie bracket” operation defined in the most natural way:

[X1 + Y1i, X2 + Y2i]C := ([X1, X2]− [Y1, Y2]) + ([X1, Y2] + [Y1, X2])i.

This operation satisfies the familiar Lie bracket properties from Propo-
sition 8.4 (with scalars λ1, λ2 ∈ C), including the Jacobi identity.

A potential confusion arises when G ⊂ GL(n,C) or GL(n,H),
since the symbol “i” already has a meaning for the entries of matrices
in g. In these cases, one should choose a different (initially unrelated)
symbol, like “I”, for denoting elements of gC. See Exercises 10.20
and 10.21 for descriptions of so(n)C and u(n)C.

If G is a compact Lie group, then the root space decomposition,
g = τ⊕l1⊕· · ·⊕lm, induces a decomposition of gC which is orthogonal
with respect to 〈·, ·〉C:

gC = τC ⊕ (l1)C ⊕ · · · ⊕ (lm)C.

Notice that τC is an abelian C-subspace of gC (“abelian” means that
every pair of vectors in τC brackets to zero), and is maximal in the
sense that it is not contained in any larger abelian C-subspace of gC.

Each root space li is associated with two roots, called αi and −αi.
We intend to further decompose each (li)C into two 1-dimensional C-
subspaces, one for each of these two roots. That is, we will write:

(10.8) (li)C = gαi ⊕ g−αi
,

with this notation defined as follows:

Definition 10.35. If α is a root of G, and {E, F} is an orthonormal
basis of the corresponding root space, l, ordered so that the correspond-
ing dual root is α̂ = [E, F ], then:

(1) Define the C-linear function α : τC → C so that for all
X = X1 + X2i ∈ τC, we have

α(X) := (−i) · (α(X1) + α(X2)i) = α(X2)− α(X1)i.

(2) Define gα := spanC{E + F i} = {λ(E + F i) | λ ∈ C} ⊂ lC.

If {E,F} is a correctly-ordered basis for α, then one for −α is
{F, E} or {E,−F}. In Equation 10.8, notice that gα = spanC{E+F i}
and g−α = spanC{F + Ei} are orthogonal with respect to 〈·, ·〉C.
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The space gα is well-defined, meaning independent of the choice of
basis {E, F}. To see this, notice that another correctly-ordered basis
would look like {RθE, RθF}, where Rθ denotes a counterclockwise ro-
tation of l through angle θ (this assertion is justified in Exercise 10.7).
Setting λ = e−iθ = cos θ − i sin θ gives:

λ · (E + F i) = ((cos θ)E + (sin θ)F ) + ((cos θ)F − (sin θ)E)i

= (RθE) + (RθF )i.

Thus, spanC{E + F i} = spanC{(RθE) + (RθF )i}.
The motivation for Definition 10.35 is the following:

Proposition 10.36. If α is a root of G, then for each X ∈ τC, the
value α(X) ∈ C is an eigenvalue of the function adX : gC → gC
(which sends V 7→ [X, V ]C), and each vector in gα is a corresponding
eigenvector.

Proof. By C-linearity, it suffices to verify this for X ∈ τ , which is
done as follows:

[X, E + F i]C = [X, E] + [X, F ]i = α(X)(F − Ei)

= (−i · α(X))(E + F i) = α(X) · (E + F i).

¤

For our general definition, we will use:

Definition 10.37. A non-zero C-linear function ω : τC → C is called
a complex root of gC if there exists a non-zero C-subspace gω ⊂ gC
(called a complex root space) such that for all X ∈ τC and all V ∈ gω

we have:

[X,V ]C = ω(X) · V.

In other words, the elements of gω are eigenvectors of adX for each
X ∈ τC, and ω catalogs the corresponding eigenvalues.

The notations “gω” and “gα” are consistent because of:

Proposition 10.38. If α is a root of G, then α is a complex root
of gC, and all complex roots of gC come from roots of G in this way.
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Thus, gC decomposes uniquely as an orthogonal direct sum of complex
root spaces:

gC = τC ⊕ {gω | ω is a complex root of gC}
= τC ⊕ {gα | α is a root of G}
= τC ⊕ gα1 ⊕ g−α1 ⊕ · · · ⊕ gαm

⊕ g−αm
.

One advantage of the complex setting is that αi and −αi corre-
spond to different complex root spaces, so complex roots correspond
one-to-one with complex root spaces. Another advantage is that the
following complexified version of Theorem 10.15 has a short proof:

Lemma 10.39. Suppose that ω1 and ω2 are complex roots of gC. If
V1 ∈ gω1 and V2 ∈ gω2 , then

[V1, V2]C ∈





τ if ω1 = −ω2

gω1+ω2 if ω1 + ω2 is a complex root of gC

{0} otherwise.

Proof. Omitting the “C” subscripts of Lie brackets for clarity, the
complexified version of the Jacobi identity gives that for all X ∈ τC:

[X, [V1, V2]] = −[V1, [V2, X]]− [V2, [X,V1]]

= −[[X, V2], V1] + [[X, V1], V2]]

= (ω1(X) + ω2(X))[V1, V2],

from which the three cases follow. ¤

Alternative proof of Theorem 10.15. For distinct indices i, j,

g±αi = spanC{Ei ± Fii} and g±αj = spanC{Ej ± Fji}.
Lemma 10.39 says that following two brackets

[Ei + Fii, Ej + Fji]C = ([Ei, Ej ]− [Fi, Fj ]) + ([Ei, Fj ] + [Fi, Ej ])i,

[Ei + Fii, Ej − Fji]C = ([Ei, Ej ] + [Fi, Fj ]) + (−[Ei, Fj ] + [Fi, Ej ])i

lie respectively in gαi+αj and gαi−αj . The convention here is that
gω := {0} if ω is not a complex root. Write l+ij = span{E+

ij , F
+
ij } and
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l−ij = span{E−
ij , F

−
ij }, where these basis vectors may be zero. For the

sum of the above two vectors, we have:

2[Ei, Ej ] + 2[Fi, Ej ]i ∈ gαi+αj ⊕ gαi−αj

= gαi+αj
⊕ gαi−αj

= spanC{E+
ij + F+

ij i} ⊕ spanC{E−
ij + F−ij i}.

Thus,
2[Ei, Ej ] ∈ span{E+

ij , F
+
ij , E−

ij , F
−
ij } = l+ij ⊕ l−ij .

¤

11. Exercises

Unless specified otherwise, assume that G is a compact Lie group
with Lie algebra g, and T ⊂ G is a maximal torus with Lie algebra
τ ⊂ g.

Ex. 10.1. For each G ∈ {SU(n), SO(2n), SO(2n + 1), Sp(n)}, how
many roots does G have?

Ex. 10.2. For any linear function α : τ → R, prove there exists a
unique vector α̂ ∈ τ such that for all X ∈ τ , α(X) = 〈α̂,X〉.
Hint: Define α̂ in terms of an orthonormal basis of τ .

Ex. 10.3. If one begins with a different maximal torus of G, show
that this does not effect the equivalence class of the system of dual
roots of G or the isomorphism class of W (G).

Ex. 10.4. Create tables describing all non-zero brackets of basis
elements of sp(n), as was done in this chapter for the other classical
groups.

Ex. 10.5. If G = G1 × G2, describe the roots and dual roots and
Weil group of G in terms of those of G1 and G2.

Ex. 10.6. If α̂ is a dual root with root space l = span{E, F}, prove
that span{E, F, α̂} is a subalgebra of g which is isomorphic to su(2).

Ex. 10.7. If {E, F} is an ordered orthonormal basis of the root space
l, then any other ordered orthonormal basis of l will of be of the form
{E′ = LgE, F ′ = LgF} for some g ∈ O(2). Show that α̂ = [E, F ] and
α̂′ = [E′, F ′] are equal if and only if g ∈ SO(2); otherwise α̂′ = −α̂.
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Ex. 10.8. Prove that the center of G equals the intersection of all
maximal tori of G.

Ex. 10.9. Define the centralizer of g ∈ G as

C(g) := {x ∈ G | xg = xg}.
Let C0(g) denote the identity component of C(g), as defined in Ex-
ercise 7.6. Prove that C0(g) equals the union of all maximal tori of
G which contain g.

HINT: if x ∈ C0(g), then x belongs to a maximal torus of C0(g),
which can be extended to a maximal torus of G.

Ex. 10.10. If a, b ∈ T are conjugate in G, prove that they are
conjugate in N(T ). That is, if g · a · g−1 = b for some g ∈ G, prove
that h · a · h−1 = b for some h ∈ N(T ).

HINT: If g ·a · g−1 = b, then T and g ·T ·g−1 are two maximal tori of
C0(b), so one is a conjugate of the other inside C0(b). That is, there
exists x ∈ C0(b) such that xg · T · g−1x−1 = T . Now choose h = xg.

Ex. 10.11. When we studied double covers in Section 8.7, we
claimed:

sp(1) ∼= so(3), sp(1)× sp(1) ∼= so(4), sp(2) ∼= so(5), su(4) ∼= so(6).

For each of these Lie algebra isomorphism, show that the correspond-
ing pair of Dynkin diagrams are identical. Show that no other pair of
Dynkin diagrams of classical groups is identical, and thus that there
are no other classical Lie algebra isomorphims.

Ex. 10.12. Draw the root systems for the classical rank 2 groups:
SU(3), SO(4), SO(5), Sp(2). The only other rank 2 root system is
pictured below:

Ex. 10.13. Prove that every rank 2 root system is one of the root
systems from the previous exercise.

Hint: The minimal angle, θ, between any pair of roots must be 30◦,
45◦, 60◦, or 90◦. If α, β1 are roots which achieve this minimal angle,
prove that for any integer n, there exists a root βn which forms an
angle of nθ with α, for example β2 = −wβ1 ? α. Show |βn1 | = |βn2 | if
n1 and n2 are either both odd or both even.



11. Exercises 199

Figure 2. The root system of the exceptional group G2.

Ex. 10.14. Prove Proposition 10.12, which says that the strongly
regular vectors of G form an open dense subset of τ .

Ex. 10.15. Let (τ, R) be a root system and let α, β ∈ R. If ∠(α, β)
is acute, prove that α − β ∈ R. If ∠(α, β) is obtuse, prove that
α + β ∈ R.

Hint: See the proof of Lemma 10.33. Note: From the dual root system
of G, one can reconstruct its entire Lie algebra and bracket operation,
which at least requires knowing which dual roots add or subtract to
which dual roots. This exercise give a glimpse of how such information
can be obtained just from data about the angles between dual roots.

Ex. 10.16. Prove that the Lie algebra of the center of G equals

z(g) := {A ∈ g | [A,X] = 0 for all X ∈ g},

which is called the center of g.

Ex. 10.17. For each of G ∈ {SU(n), SO(2n), SO(2n + 1), Sp(n)},
check that W (G) acts transitively on the set of dual roots of a fixed
length. That is, if α̂, β̂ are dual roots with the same length, then
there exists w ∈ W (G) such that w ? α̂ = β̂.

Ex. 10.18. Let ∆ = {α1, ..., αt} be a base of the root system (τ, R).
Prove that for any w ∈ W (τ, R), w ? ∆ := {w ? α1, ..., w ? αt} is also
a base of the root system. It is also true that every base of the root
system equals w ? ∆ for some w ∈ W (τ, R).

Ex. 10.19. If Lemma 10.10 were false, so that for example α̂1 = α̂2,
which is equivalent to α1 = α2, show that this would allow multiple
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ways for the 4-dimensional space l1 ⊕ l2 to split into a pair of 2-
dimensional AdT -invariant spaces, for example:

l1 ⊕ l2 = span{E1 + E2, F1 + F2} ⊕ span{E1 − E2, F1 − F2}.
Thus, the decomposition of Theorem 10.3 would not be unique, and
we would therefore have extra roots and dual roots corresponding to
the extra possible AdT -invariant decompositions of g.

Ex. 10.20. An element of so(n)C has the form X = X1 + X2i for
some X1, X2 ∈ so(n). Interpret such an X as an element of

so(n,C) := {A ∈ Mn(C) | A + AT = 0} ⊂ Mn(C).

Via this interpretation, show that the complexified Lie bracket op-
eration in so(n)C becomes identified with the following operation in
so(n,C): [A,B]C = AB −BA.

Ex. 10.21.

(1) Prove that every X ∈ gl(n,C) can be uniquely expressed as
X = X1 + X2i for X1, X2 ∈ u(n). Further, X ∈ sl(n,C) if
and only if X1, X2 ∈ su(n).

Hint: X = X−X∗
2 + X+X∗

2i i.

(2) Use the above decomposition to identify u(n)C ∼= gl(n,C)
and su(n)C ∼= sl(n,C). Show that the complex Lie bracket
operations in u(n)C and su(n)C become identified with the
operations in gl(n,C) and sl(n,C) defined as:

[A,B]C = AB −BA.

Ex. 10.22. Recall the injective function ρn : Mn(C) → M2n(R) from
Chapter 2.

(1) Show that ρn(SU(n)) is a subgroups of SO(2n) which is
isomorphic to SU(n).

(2) Show that ρn(su(n)) is a subalgebra of so(2n) which is iso-
morphic to su(n).

(3) Show that 〈ρn(X), ρn(Y )〉 = 2·〈X,Y 〉 for all X, Y ∈ Mn(C),
so ρn provides an non-orthogonal equivalence between the
system of dual root of su(n) and a subsystem of the system
of dual root of so(2n).




