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If you think you found an error that is not listed below, please contact Jan Reimann (jan.reimann@psu.edu).

page 54, proof of Theorem 2.12
The proof as written does not work, as it is not guaranteed that the ni will go to infinity. Thanks to
Shamil Asgarli for pointing this out, and for suggesting the following proof.

We simultaneously define, inductively, an infinite path t⃗ ∈ [T ] and a subsequence (s⃗nk
) such that

s⃗nk
→ t⃗ for k →∞. We put t0 = r and s⃗n0 = s⃗0. Note that the set

S0 = {m∶ s0m = t0}

is infinite (every sequence passes through the root node). Now assume we have defined t0 < . . . < tk,
where each ti is in T and an immediate predecessor of ti+1, and a sequence s⃗n0 , . . . , s⃗nk

such that the
set

Sk = {m∶ s0m = t0, . . . , skm = tk}

is infinite. Note that all sequences in Sk have distance at most 2−k from each other in the path metric,
since they all have the same first k elements. Sk is infinite and T is finitely branching, hence by the
pigeonhole principle we can find an immediate successor tk+1 ∈ T of tk such that

Sk+1 = {m∶ s0m = t0, . . . , skm = tk, sk+1m = tk+1}

is infinite. Let nk+1 be the smallest number m ∈ Sk+1 that is greater than nk.

Since all tk are on T , they define an infinite path

t⃗ = t0 t1 t2 . . . ∈ [T ].

By definition of tk, d(t⃗, s⃗nk
) ≤ 2−k, and thus (s⃗nk

) converges to t⃗ in the path metric.

page 75, line 20
The sentence starting with “Pick the ≺-least element . . .” should read: “Pick the ≺-least element xα1 of
Z1 (which must exist since ≺ is a well-ordering) and observe that {y ∈ Z1 ∶ c(x{α1}, y) = red} is again
uncountable.”

[Thanks to Shamil Asgarli for catching this.]

page 158, big formula (formal statement of Ramsey’s theorem)
The last line of the formula is incorrect – we need to check each entry in the argument of the function
whether it is an element of the set coded by z. The line should read as follows:

∀m ≤ l (∀s ≤ p∃i ≤ k(decode(arg(f,m), s) = decode(z, i)) ⇒ val(f,m) = j )

[Thanks to Vineet Gupta and Adnan Aziz for pointing this out.]

page 180, proof of Proposition 4.46
The transition from the formula

N ⊧ ∃x1∀x2 . . .∃xn ψ(a, c⃗, x⃗)

to the ∆0 formula using ”meta”-quantifiers needs further justification. In particular, it does not follow
inductively by simply applying logical equivalences. Instead, the property of indiscernibles has to be
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invoked at this step already. An improved argument is given below. Thanks to Michael Weiss for
bringing up this important issue. Michael has a blog – https: // diagonalargument. com – that I
recommend. Among other entries, there is a series of ”conversations” with John Baez about non-
standard models of PA. Check it out! Michael has also provided a proof of the above transition that
does not use indiscernibility. It is also given below.

Improved argument for proof of Proposition 4.46, starting at top of page 180:
By contracting quantifiers and possibly adding “dummy” variables and expressions like xi = xi, we can
assume that a given formula ϕ is of the form

∃x1 ∀x2 . . . Qxr ψ(y⃗, x1, . . . , xr) (0.1)

or
∀x1 ∃x2 . . . Qxr ψ(y⃗, x1, . . . , xr), (0.2)

where Q is either ∃ or ∀, and ψ is quantifier-free. In the following, we focus on the form given in (0.1).
The argument for the other form is similar.

With any ϕ(y⃗) in prenex normal form (0.1) we associate a ∆0 formula ϕ∗(y⃗, z1, . . . , zr) given as

∃x1 < z1 ∀x2 < z2 . . . Qxr < zr ψ(y⃗, x1, . . . , xr).

Claim: For any formula ϕ in prenex normal form, for any a⃗ ∈ N , and any i0 < i1 < i2 < . . . < ir with
a⃗ < bi0 ,

N ⊧ ϕ[a⃗] ⇔ M ⊧ ϕ[a⃗, bi1 , . . . , bir ]. (0.3)

The claim is proved by induction on the formula length (see also Lemma 4.47, where this technique
was first described). If ϕ has no quantifiers at all, the claim is clear. So assume now ϕ(y⃗) is as in (0.1)
with r ≥ 1. Then the claim is that ϕ[a⃗] holds in N if and only if

∃x1 < bi1 ∀x2 < bi2 . . . Qxr < bir ψ(a⃗, x1, . . . , xr)

holds in M.1

The formula ϕ∗(y⃗, z1, . . . , zr) is

∃x1 < z1 ∀x2 < z2 . . . ∃xr < zr ψ(y⃗, x1, . . . , xr, z1, z2, . . . , zr).

Let θ(y⃗, x1) be
∀x2 . . . Qxr ψ(y⃗, x1, . . . , xr),

so ϕ(y⃗) = ∃x1θ(y⃗, x1). As θ is a shorter formula, by inductive hypothesis the claim has already been
verified for θ.

Let a⃗ ∈ N and assume i0 < i1 < . . . < ir are such that a⃗ < bi0 . ϕ[a⃗] holds in N iff there exists a c ∈ N such
that θ[a⃗, c] holds in N . Pick j1 < j2 < . . . < jr such that i0 < j1 and c < bj1 . By inductive hypothesis,

N ⊧ θ[a⃗, c] iff M⊧ θ∗[a⃗, c, bj2 , . . . , bjr ].

If we write it out, the expression on the right is

M⊧ ∀x2 < bj2 . . . Qxr < bjr ψ(a⃗, c, x2, . . . , xr).

By choice of b1, this is equivalent to

M⊧ ∃x1 < bj1 ∀x2 < bj2 . . . Qxr < bjr ψ(a⃗, x1, . . . , xr),
1The notation in the preceding formula is, of course, a little sloppy, as the bi and a⃗ are not variables but elements of the

structure over which we interpret. But we feel this notation improves readability.
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in other words, it is equivalent to
M⊧ ϕ∗[a⃗, bj1 , . . . , bjr ].

As i0 < j1 and the (bi) are diagonal indiscernibles for all ∆0 formulas in M, the last expression is
equivalent to

M⊧ ϕ∗[a⃗, bi1 , . . . , bir ],
which proofs the claim.

We can finally show that N satisfies induction. Recall that (Ind) is equivalent to the least number
principle (LNP), as we saw in Section 4.1. Suppose N ⊧ ϕ[a, c⃗], where ϕ(v, w⃗) is given in prenex
normal form as

∃x1 ∀x2 . . . Qxn ψ(v, w⃗, x⃗), with ψ quantifier free.

As before, we choose i0 such that a, c⃗ < bi0 . We can apply property (0.3) established in the Claim
above and obtain the equivalence

N ⊧ ϕ[a, c⃗] iff M⊧ ∃x1 < bi0+1 ∀x2 < bi0+2 . . . Qxn < bi0+n ψ(a, c⃗, x⃗).

Since induction (and hence LNP) holds in M, there exists a least â < bi0 such that

M⊧ ∃x1 < bi0+1 ∀x2 < bi0+2 . . . Qxn < bi0+n ψ(â, c⃗, x⃗).

By the definition of N , the existence of â ∈ N , and the equivalence above, it follows that N ⊧ ϕ[â, c⃗].
Finally, â has to be the smallest witness to ϕ in N , because any smaller witness would also be a smaller
witness in M. This concludes the proof of Proposition 4.46.

Alternative proof of the equivalence (on page 180) of

N ⊧ ∃x1∀x2 . . .∃xn ψ(a, c⃗, x⃗)

and
∃i1 > i0 ∀i2 > i1 . . . ∃in > in−1 N ⊧ ∃x1 < bi1 ∀x2 < bi2 . . . ∃xn < bin ψ(a, c⃗, x⃗).

by Michael Weiss (diagonalargument. com )

First do the equivalence

N ⊧ ∀x ∃y ψ(x, y, c⃗)
⇔ ∀p∃qN ⊧ ψ(p, q, c⃗)
⇔ ∀i1>i0 ∀p<bi1 ∃i2>i1 ∃q<bi2 N ⊧ ψ(p, q, c⃗)
⇔ ∀i1>i0 ∀p<bi1 ∃i2>i1 ∃q<bi2 M⊧ ψ(p, q, c⃗)

Now that we are in M, a model of PA, we can use the collection axioms. Define a function F by

F (x, u⃗) =
⎧⎪⎪⎨⎪⎪⎩

µy[ψ(x, y, u⃗)] if ∃y ψ(x, y, u⃗)
0 otherwise

The definition can be formalized in the language of PA (although it is not Σ1). Using the collection
axioms in M, max0≤z≤x F (z, u⃗) exists for all x and u⃗, and is attained at some z in the segment
[0, x]. If x and u⃗ belong to N , then so does the maximum, since it is attained at some z ∈ N and
N ⊧ ∀u⃗∀x∃yN ⊧ ψ(x, y, u⃗). Using the cofinality of the b’s in N , we conclude that F is bounded on
the segment [0, p] by some bi, and we are entitled to switch the quantifiers.

page 182, Definition 4.48
The definition should read:
Let X ⊆ N, n ≥ 1, and suppose f ∶ [X]n → N. A set M ⊆ X with ∣M ∣ > n is min-homogeneous if for
every s, t ∈ [M]n,

min s = min t ⇒ f(s) = f(t).
[Thanks to Vineet Gupta and Adnan Aziz]
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page 186/187, proof of Lemma 4.52
At several places [W ]n+1 should be [Y ]n+1: page 186, lines 3, 6, last line of the second last paragraph,
and page 187, line 2.

[Thanks to Vineet Gupta and Adnan Aziz]
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