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This paper will consider possible mathematical models for an n-cell cluster
of inhibitory neurons. It is assumed that at time t = 0 each cell in the
cluster receives an initial burst of activity xi(0). Over a short period of time
0 ≤ t ≤ T the activity xi(t) in the ith cell is assumed to grow logistically, and
is simultaneously damped by the activity in each of the other n− 1 connected
cells. It will be assumed that the activity in the ith neuron of the cluster
satisfies the differential equation

x′
i(t) = Fi(t, x⃗) = xi(t)

(
1− cixi(t)−

∑
k=1..n,k ̸=i

Aikxk(t)

)
, 1 ≤ i ≤ n. (1)

(Note: when these equations are used to model the growth of interacting pop-
ulations the constant 1/ci is called the carrying capacity of the ith population
and refers to the maximum number of individuals in that population that the
environment can sustain).

In the above equation the constant Aik determines the negative effect that
the current activity in cell k has on the activity in cell i. If the Aik are positive
constants this is just the Lotka-Volterra system for n competing species. Much
research has been done on this system (see Hirsch, [2]), and it is known to have
several different types of asymptotic behavior. In Section 1 we will show that
if the interaction coefficients Aij are all positive constants, and a relatively
simple condition is put on the n× n coefficient matrix

M =


c1 A12 A13 · · · A1n

A21 c2 A23 · · · A2n
...

An1 An2 An3 · · · cn

 , (2)
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there will be a single asymptotically stable equilibrium point in the positive
cone ℜn

+ of ℜn, and all trajectories that start in the interior of ℜn
+ will tend

to that equilibrium point as t → ∞.
Since a cluster of neurons that produces the same response to every input

would not be very useful as a pattern recognition device, this paper will explore
some simple changes in the system that cause it to produce a much more
interesting and useful classification of its inputs.

1 The Model with Constant Interaction Co-

efficients

In this section we will examine closely the solution of the system (1) with
constant interaction coefficients Aik.

An equilibrium, or critical point, for the system (1) is a vector x̄ =
(x̄1, x̄2, · · · , x̄n) where each derivative Fi(t, x̄) = 0; that is, it is a state of the
system at which no further change in any of the activity levels can occur. If
none of the x̄i are equal to zero at an equilibrium, this requires that

cix̄i +
∑

k=1..n,k ̸=i

Aikx̄k = 1, 1 ≤ i ≤ n. (3)

Using the matrix M defined in (2) above, this means that for x̄ to be an
equilibrium in the interior of ℜn

+ it must satisfy the condition

Mx̄ =


1
1
...
1

 .

If the matrix M is invertible this means there can exist at most one equilib-
rium point, and if this is a point in the interior of ℜn

+ then its stability can be

determined by the eigenvalues of the Jacobian matrix ∇⃗F =
(

∂Fi

∂xj

)
x=x̄

where

Fi are the functions defined in (1). Differentiating the system equations (1)

we see that ∇⃗F has the form


1− 2c1x̄1 −

∑
k ̸=1 A1kx̄k −A12x̄1 · · · −A1nx̄1

−A21x̄2 1− 2c2x̄2 −
∑

k ̸=2 A2kx̄k · · · −A2nx̄2

...
−An1x̄n −An2x̄n · · · 1− 2cnx̄n −

∑
k ̸=n Ankx̄k

 . (4)
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At the critical point x̄ equation (3) can be used to simplify the diagonal

elements of ∇⃗F to −cjx̄j so that the Jacobian matrix becomes

∇⃗F =


−c1x̄1 −A12x̄1 · · · −A1nx̄1

−A21x̄2 −c2x̄2 · · · −A2nx̄2
...

−An1x̄n −An2x̄n · · · −cnx̄n

 (5)

= −


x̄1 0 · · · 0
0 x̄2 · · · 0
...
0 0 · · · x̄n

 ·M.

Example 1 : Consider a 5-cell cluster with all of the ci equal to 0.25. Using
randomly generated small values for the weights, the coefficient matrix we will
use is:

M =


0.25 0.02 0.06 0.01 0.04
0.05 0.25 0.06 0.02 0.01
0.04 0.02 0.25 0.05 0.07
0.07 0.08 0.02 0.25 0.05
0.04 0.01 0.07 0.08 0.25

 · .

The equilibrium solution is

x̄ = M−1


1
1
1
1
1

 ≈


2.793641
2.644354
2.370383
1.736378
2.227895

 ,

and the eigenvalues of the Jacobian matrix ∇⃗F can be found using Maple.
The five eigenvalues are −1,−0.34223,−0.57562, and −0.51266 ± 0.04657i,
implying that the equilibrium x̄ is a spiral attractor.

The two graphs below show numerical solutions of the system for 0 ≤
t ≤ 13 for two different initial vectors x⃗(0). Notice that by time t = 13 the
activity in each of the neurons has nearly reached its equilibrium value; that
is, xi(13) ≈ x̄i. The activity levels at time t = 13 are totally independent
of the initial activity received by the cluster even though the value of x1(0)
is changed from a very small value to a significantly large value. Since the
output activity of a neuron cluster with this type of behavior would be of no
use in discriminating between different patterns of input activity Section 2 will
explore the behavior of a slightly more complex and useful network.
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Figure 1: Trajectories of the 5-dimensional system with different initial con-
ditions.

2 The Model with Time-varying Weights

In this section it will be shown that a simple change in the model will enable
it to produce much more interesting information about its input. It will be
assumed that the neurons in the inhibitory cluster have a certain kind of plas-
ticity so that the weights Aik vary over time. In particular we will assume that
the magnitude of the negative effect Aik of neuron k on neuron i increases with
increased simultaneous activity in neurons i and k. This can be thought of
as a type of short-term “learning” or adaptation (see [3, 5, 6] for more infor-
mation). It is easily modelled by making Aik a function of t which averages
the product of the activity levels xi(t)xk(t) over an interval of time from t = 0
to the present. This will be done by writing

Aik(t) =

∫ t

0

w(s, t)xi(s)xk(s)ds

where the function w is a weighting function over the time interval (0, t). A
simple choice for w is the exponential function

w(s, t) =
1

T
e

s−t
T

which weighs the recent past more heavily and uses a parameter T to alter the
extent of the interval over which most of the average is computed.

Writing

Aik(t) =

∫ t

0

1

T
e

s−t
T xi(s)xk(s)ds,

and using the Leibnitz integral rule for differentiating the integral
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d

dt

(∫ b(t)

0

F (s, t)ds

)
= F (b(t), t)

db

dt
+

∫ b(t)

0

∂

∂t
F (s, t)ds

results in a simple differential equation for Aik(t) of the form

A′
ik(t) =

1

T
xi(t)xk(t)−

1

T

∫ t

0

1

T
e

s−t
T xi(s)xk(s)ds =

1

T
[xi(t)xk(t)− Aik(t)] . (6)

This leads to the following system of n2 ordinary differential equations:

x′
i(t) = xi(t)

(
1− cixi(t)−

∑
k=1..n,k ̸=i

Aik(t)xk(t)

)
, 1 ≤ i ≤ n.

A′
ik(t) =

1

T
[xi(t) · xk(t)− Aik(t)] , i = 1..n, k = 1..n, k ̸= i. (7)

Since xi(t) represents the level of activity in a neuron, critical points
x̄ = (x̄1, x̄2, · · · , x̄n) of (7) will be assumed to be vectors in ℜn

+; that is, with all
components greater than or equal to zero. Note that a critical point is com-
pletely determined by the values of the x̄i since requiring A′

ik to be zero means
that at any critical point x̄ the value of Āik must be equal to the product x̄i ·x̄k.
When we consider the stability of the critical points it will be shown that if
any component x̄i is zero, the critical point is not an asymptotically stable
equilibrium; therefore, we can assume that the critical points of interest are
those for which all components x̄i > 0. This also implies that any trajectory
of (7) that starts in ℜn

+ will remain there. We are also going to assume that
the neurons in the cluster all have similar physical properties, and use this to
assume that all of the constants ci have the same value c.

To determine the stability of a critical point of (7) we will write it as an

n2 dimensional vector Y⃗ with components in the order

Y⃗ = (x̄1, x̄2, · · · , x̄n, Ā12, Ā13, · · · , Ā1n, Ā21, Ā23, · · · , Ā2n, · · · , Ān1, Ān2, · · · , Ān,n−1).

To be a critical point, each component Ȳi must satisfy dȲi

dt
= 0; therefore,

x̄i is a solution of the equation

1− cx̄i −
∑

k=1..n,k ̸=i

Āikx̄k = 0

and Āik = x̄ix̄k. Defining B =
∑

k=1..n(x̄k)
2 and using Āik = x̄ix̄k implies that

1− cx̄i − x̄i(B − (x̄i)
2) ≡ x̄3

i − (B + c)x̄i + 1 = 0.

5



For any dimension n ≥ 2 there is a unique critical point x̄ with all of the
x̄i equal. The value r of each x̄i is found by setting 1 − cr −

∑
k ̸=i r

2r =

1− cr − (n− 1)r3 = 0. Using a standard formula for the solution of a cubic,
it can be shown that this cubic has a single positive solution

r =

(
1

n− 1

(
1

2
+

√
1

4
+

c3

27(n− 1)

)) 1
3

+

(
1

n− 1

(
1

2
−

√
1

4
+

c3

27(n− 1)

)) 1
3

.

For any integer n > 2 we can assume that (r, r, · · · , r) is a critical point of the
system ( 7).

To find any other critical points we use the fact that each component x̄i

must be a root of the same cubic z3 − αz + 1 where α = c+
∑n

i=1 x̄
2
i . For any

α >

√
3/4

1
3 ≈ 1.89 the cubic z3−αz+1 has two unequal positive roots b > s.

Letting the third root be q, and factoring,

z3 −αz+1 ≡ (z− b)(z− s)(z− q) = z3 − (b+ s+ q)z2 +(bs+ bq+ sq)z− bsq.

Equating coefficients of z2 implies q = −(b+ s) and from the coefficients of z,

α = −(bs+ bq + sq) = −(bs− (b+ s)2) = b2 + bs+ s2. (8)

If n ≥ 3 and the critical point has two or more components equal to the
larger root b then

α = c+
n∑

i=1

x̄2
i > b2 + b2 + s2 > b2 + bs+ s2

which contradicts (8). This means that every critical point x̄ other than
(r, r, ..., r) must be a vector containing exactly one component equal to b
and all of the other components equal to s, where b > s are the two positive
roots of z3 − αz + 1 with α = c+

∑n
k=1 x̄

2
i .

We need to find all vectors that satisfy the two conditions:

1. b > s are the two positive roots of z3 −Gz + 1, and simultaneously

2. G = b2 + (n− 1)s2 + c.

It was shown in an earlier paper [6] that in order for any critical points
other than (r, r, · · · , r) to exist the value of c must be less than a certain value
c∗(n) which depends on the dimension n. The bifurcation value c∗(n) is given
by

c∗(n) =
1

2

(
[(2n− 3)2(32n(n− 3) + 63)2 + 108(n− 1)(n− 2)]

1
2 − (2n− 3)(32n(n− 3) + 63)

) 1
3
.

Some representative values are shown in the table below:
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n c∗(n)

3 0.4147
4 0.3487
5 0.3115
10 0.2315
20 0.1786

Example 2 : As an example, let n = 5 and c = 0.25 < c∗(5). To find all
critical points with exactly one x̄i = b we need to graph the function F (G) =
G − (b(G)2 + 4s(G)2 + c), where b(G) > s(G) are the two positive roots of
z3 − Gz + 1 = 0, and locate any zeros of F (G). At each zero of F (G), the
values of the two positive roots b(G) and s(G) will give us 5 critical points
(b, s, s, s, s), (s, b, s, s, s), · · · , (s, s, s, s, b).

Figure 2: Finding zeros of the function F (G) = G− (b2 + 4s2 + c)

For n = 5 and c = 0.25 a graph of F (G) is shown in Fig.(2). The graph
shows two zero crossings at G1 ≈ 3.577574 and G2 ≈ 13.921975. In the next
seciton we will be able to show that the vectors with b1 ≈ 1.732122 and s1 ≈
0.286062 computed at G1 are all unstable and the vectors using b2 ≈ 3.694770
and s2 ≈ 0.071956 are stable equilibria.

3 Stability of the Critical Points in an Adap-

tive System

Once all of the critical points for a given n and c are determined their stability

can be tested by finding the eigenvalues of the Jacobian matrix ∇⃗F =
(

∂Y ′
i

∂Yj

)
.

As noted previously, the n2 variables in the system (6) will be listed in the

7



order

Y⃗ = (x1, x2, · · · , xn, A12, A13, · · · , A1n, A21, A23, · · · , A2n, · · · , An1, An2, · · · , An,n−1).

This means that ∇⃗F will be an n2×n2 matrix with i, j−element equal to
∂Y ′

i
∂Yj

. The

Jacobian matrix can be partitioned as shown below.

The n × n submatrix Z contains the elements Z(i, j) =
∂x′

i
∂xj

. It is exactly the

same as the matrix ∇⃗F for the constant weight system (see equation (4) in Section

1). The (n2−n)×(n2−n) matrix D is diagonal with
∂A′

ij

∂Aij
= − 1

T on the diagonal and

zeros elsewhere. The B and C matrices are more difficult to define but beginning
with an n2 × n2 matrix of zeros, the following four loops will create the Jacobian.

Z B

C D

1
1

n

n

n + 1

n + 1

n2

n2

Figure 3: Form of the n2 × n2 Jacobian matrix.

Generate the Z submatrix

for i from 1 to n do for j from 1 to n do

if i = j then F[i, j] := 1-x[i]*(2*c + sum{x[m]^2,m=1..n)}-x[i]^2)

else F[i,j] := -x[i]^2*x[j] fi; od; od:

Generate the B submatrix

for i from 1 to n do k := n+1+(i-1)*(n-1); for j from 1 to n do

if j <> i then F[i, k] := -x[i]*x[j]; k := k+1 fi; od; od:

Generate the C submatrix

for i from 1 to n do k := n+1+(i-1)*(n-1); for j from 1 to n do

if j <> i then F[k, j] := x[i]/T; F[k, i] := x[j]/T; k := k+1 fi; od; od:

Generate the D submatrix

for i from n+1 to n^2 do for j from n+1 to n^2 do

if j = i then F[i, j] := -1.0/T else F[i, j] := 0 fi; od; od:

It can now be seen that if any x̄i in a given critical point is equal to zero
then the ith row of ∇⃗F contains a diagonal element equal to one, and all of
the other elements in the row are zero; therefore, one is an eigenvalue of ∇⃗F
and the critical point is not stable.
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In a previous paper [6] the determinant of the matrix ∇⃗F−λI was analyzed
algebraically. It was shown there that the critical point (r, r, · · · , r) is stable
iff either r2 ≤ c or r2 > c and T < 1.0

r(r2−c)
. This means that if the maximum

activity level 1.0/c is too large then the adaptation time T must be restricted
in order for any solutions to tend asymptotically to (r, r, ..., r). In this paper
the adaptation is assumed to be taking place over a short time period between
when the input to the neurons occurs and the time of measuring their output.

4 Interesting Properties of the Adaptive Model

The ability of the neuron cluster to adapt over time has a very profound effect
on its output. Consider a cluster with n = 5 and c = 0.25 < c∗(5). The value
T = 15 will be chosen arbitrarily. The values b2 ≈ 3.694770 and s2 ≈ 0.071956
were found in Example 2. The positive root r of the cubic r3 + c

n−1
r − 1

n−1
is

0.5969216. We now know there are eleven critical points

(r, r, ...r), (b2, s2, s2, s2, s2), · · · , (s2, s2, s2, s2, b2), (b1, s1, s1, s1, s1), · · · , (s1, s1, s1, s1, b1),

and the Jacobian can be used to show that the first 6 of these are stable attractors. Note
that (r, r, · · · , r) is stable since T = 15.0 < 1

r(r2−c) ≈ 15.76.

What can we expect to happen for a given initial vector x⃗(0)?. After
computing several solutions it became apparent that if one of the inputs xi(0)
is much larger than all of the others the solution will tend to the critical point
with b2 in the ith position. This does not seem very exciting, but it also
appears that if xi(0) is much smaller than the other inputs the system also
converges to the critical point with b2 in the ith position. This is a highly
nonlinear type of response. The cluster detects the input that is most unlike
the others. If there is very little difference in the xi(0), the system converges
to the equilibrium (r, r, · · · , r). This could be a useful mechanism for detecting
anomalies in the input under both light and dark conditions, for example.

Example 3 Figure 4 below shows six different solutions of the 5-cell system
with c = 0.25 and T = 15. The initial values x⃗(0) = (x1(0), 0.7, 0.8, 0.9, 0.93)
are equal except for the value of x1(0) which varies from 0.1 in the top left
graph to 4.0 on the bottom right.

The dashed horizontal lines denote the values of s ≪ r ≪ b. It would be
very easy to set a threshold on the output of each neuron to detect which, if
any, of the neurons received a most unusual input. In each of the 6 solutions
the initial weights were all set equal to a very small value. Because of the
symmetry it is clear that the same result would occur if any of the five neurons
had been given the unusual value at t = 0.
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Figure 4: Increasing values of x1(0)

It would be very interesting to see if a mathematical explanation could be
found to explain this type of behavior.

A simulation was also run to see what happens when T > 1
r(r2−c)

, so that the

critical point (r, r, r, r, r) becomes unstable. With nearly equal initial values
in x(0), the result is shown in Figure 5.

It appears that when T = 16 there is a limit cycle around the critical point
(r, r, r, r, r).

The eigenvalues of the three cases T = 15, 15.75747, 16 were calculated,
and it was seen that in each case seventeen of the eigenvalues were real and
negative, and there were fours sets of complex roots. The real part of these
complex roots were all equal to −0.0016 at T = 15, equal to zero at T =
15.75747 , and equal to 0.00004809 at T = 16.0. The graph in Figure 5 suggests
that a Hopf bifurcation occurs when T passes through the value 1

r(r2−c)
. It

might also be of interest to study stability of the other equilibrium points.
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Figure 5: The solution with T = 16 and initial values X(0) =
(0.85, 0.7, 0.8, 0.9, 0.93)

5 Introduction of a Time-delay into the Adap-

tive System

Another interesting question is “ how would a delay in the feedback between
neurons affect the behavior of the adaptive system?” On the next page solu-
tions of the differential-delay system

x′
i(t) = xi(t)

(
1− cixi(t)−

∑
k=1..n,k ̸=i

Aik(t)xk(t− τ)

)
, 1 ≤ i ≤ n.

A′
ik(t) =

1

T
(xi(t) · xk(t− τ)− Aik(t)) , i = 1..n, k = 1..n, k ̸= i. (9)

are shown.

11



τ = 0.1 τ = 0.2 τ = 0.5

Figure 6: Solutions of the delay system with x1(0) = 0.1, 1.0, 4.0 and delays
τ = 0.1, 0.2, 0.5.

The parameters n = 5, c = 0.25 and T = 15.0 are the same as in the
previous example, but a delay τ is assumed to occur in the feedback between
any two neurons. For three of the initial conditions the resulting solutions
with τ = 0.1, 0.2, and 0.5 are shown. It appears that the interesting nonlinear
behavior is not affected for the small value of τ , but may disappear for larger
delays, possibly due to instability of the critical points (b, s, · · · , s). This could
definitely be studied using known results on stability of critical points of a
differential-delay system. For more information on this topic, see [1, 4].
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Some questions for further study:

1. What equilibrium point will the adaptive system approach if exactly 2 of
the 5 initial inputs xi(0) are much larger than the other 3? For example let
x⃗(0) = (4.0, 1.0, 4.0, 1.0, 1.0). Elaborate on this point using values of n > 5.

2. Run the adaptive model on a large set of inputs x⃗(0). Choose a threshold
value θ and an end time T . Assign value k to x⃗(T ) if the output is (s, ..., b, ..s)
with b in position k, and k = 0 if the output is (r, r, ..., r). Try to give a
meaningful statistical description of the result.

3. How is the stability of the critical points affected by a delay in the system?

4. Note that the system of equations considered in this paper was originally
derived to model the behavior of a set of competing species in a particular
ecosystem. The type of adaptation described in Section 2 could represent a
population’s increased ability to prey on another species due to its increased
level of interaction with that species. Speculate about what the results imply
on the ability of a population with very few members to become the dominant
species over time.

5. Come up with a question of your own about the behavior of an inhibitory
cluster. Try to answer it.
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