
An Introduction to Backpropagation Networks

A simple backpropagation network consists of three or more layers of cells:
an input layer, an output layer, and one or more hidden layers. Every cell in
a layer (except the input layer) has a weighted connection from all of the cells
in the layer below it. A system with N cells in the input layer, M cells in the
output layer, and a single hidden layer with L cells is shown in Figure 1.

The basic idea is to train the network by randomly presenting a fixed set of
input vectors X⃗p = (xp1, xp2, · · · , xpN) together with their desired outputs Y⃗p =
(yp1, yp2, · · · , ypM). After each input, the weights between cells are incremented
in a way that minimizes the mean-square error

E =
M∑
k=1

(ypk − opk)
2,

where opk is the computed output at the kth output cell when the input X⃗p is
presented to the input layer. This is an example of “supervised learning”.

x��������

�
�

��

PPPPPPPPPPP

@
@
@@h h h h

xPPPPPPPPPPPPPPPP

�����������x
,

,
,

,
,

,,x x
1 · · ·2 i · · · N

1 2 j· · · L· · ·
wh

ji

wo
kj

k1 M

x6 x6 x6
op1 opk opM· · · · · ·

OUTPUT LAYER

INPUT LAYER

HIDDEN
LAYER

Figure 1: 3-layer network

Before deriving a formula for incrementing the weights, it needs to be de-
cided how the output at each cell depends on its input. To keep quantities
from growing out of bounds, each cell is treated like an “integrate and fire”
neuron which takes in weighted inputs from other cells and produces a re-
sponse close to one if the total input is greater than a certain threshold value,
and otherwise has output close to zero. This could be accomplished by using
a step function

H(z) =

{
0 if z < 0
1 if z ≥ 0

.

Then H(input− θ) would be the desired output function for a cell. Unfortu-
nately, the method used to minimize the error function E requires that the



output function be differentiable, so in place of H(z) the function

f(z) =
1

1 + e−z
(1)

is used. The function f is called a sigmoidal function, and has a stylized
S-shape like a smoothed version of the function H(z). If z is the input to a
cell, the function f(z − θ) shown in Figure 2 has the desired shape for the
output. Notice that if C is a large positive constant, the function f(C(z− θ))
lies even closer to the step function H.

The function f has an easily computable derivative:

f ′(z) =
d

dz
((1 + e−z)−1) = −(1 + e−z)−2 d

dz
(e−z)

=
e−z

(1 + e−z)2
=
(

1

1 + e−z

)(
e−z

1 + e−z

)
= f(z)(1− f(z)).

Figure 2 compares the graphs of H(z − θ) and f(z − θ) with θ arbitrarily
chosen to be 2.

Figure 2: Graphs of H(z − 2) and f(z − 2)

The method used for minimizing the error function E is called the Method
of Steepest Descent. If G is a differentiable function of n variables, say
G = G(v1, v2, · · · , vn), then at any point (v1, v2, · · · , vn), it can be shown

mathematically that the gradient vector ∇⃗G =
(

∂G
∂v1

, ∂G
∂v2

, · · · , ∂G
∂vn

)
points in

the direction of greatest increase in the function G. To go in the direction of
greatest decrease in the function, one would go in the direction of −∇⃗G. Since
the aim is to make the error as close to zero as possible, and the mean square
error is always positive (a sum of squares), it makes sense to go a small way

in the direction of −∇⃗G after each presentation of a test vector. Going too
far could possibly take you beyond the minimum, so letting each variable be
incremented by the formula vi = vi− η ∂G

∂vi
is done by choosing a small positive

constant for η and experimenting to see how it works.
We will now apply this method to minimize the error function Ē = 1

2
E.

The multiplier 1
2
is used to simplify the calculation, and minimizing a positive

quantity 1
2
E is equivalent to minimizing E. The function Ē depends on all of

the weights: wh
rs, 1 ≤ r ≤ L, 1 ≤ s ≤ N and wo

rs, 1 ≤ r ≤ M, 1 ≤ s ≤ L.



The computation of ∂Ē
∂wrs

is most efficient if it is done first for the weights
in the upper level layer and then for the layers below. Some quantities are
reused. This is why the method was given the name “back” propagation.

To derive the formulas for incrementing the weights, we are going to need
the following definitions. These hold each time an input vector X⃗p is presented
at the input layer. Note that the function f is the sigmoidal function (1)
defined above.

nethpj =
N∑
i=1

wh
jixpi = input to cell j in layer h.

ipj = f(nethpj) = output at cell j in layer h.

netopk =
L∑

j=1

wo
kjipj = input to cell k in layer o.

opk = f(net0pk) = output of cell k in layer o.

Incrementing the weight matrix between layer h and layer o

Let the error function be Ē = 1
2

∑M
k=1(ypk − opk)

2.
For each weight wo

rs in the matrix

Wo =


wo

11 wo
12 · · · wo

1L

wo
21 wo

22 · · · wo
2L

...
...

...
...

wo
M1 wo

M2 · · · wo
ML


we need to compute ∂Ē

∂wo
rs
. It is clear that the only term in Ē that contains the

variable wo
rs is the term 1

2
(ypr − opr)

2. For all of the other terms, the partial
with respect to wo

rs is zero. Therefore, using the chain rule for differentiation,

∂Ē

∂wo
rs

= −1

2
· 2(ypr − opr) ·

∂opr
∂wo

rs

.

Using the formula

opr = f(netopr) = f(wo
r1ip1 + wo

r2ip2 + · · ·+ wo
rsips + · · ·wo

rLipL)

we see, using the chain rule for differentiation once more, that

∂opr
∂wo

rs

= f ′(netopr) · ips = f(netopr)(1− f(netopr)))ips = opr(1− opr)ips.

This implies that

∂Ē

∂wo
rs

= −(ypr − opr)opr(1− opr)ips.



We will define the quantities δopr = (ypr − opr)opr(1 − opr), r = 1 · · ·M and

save them in a vector δ⃗, since they will be used in incrementing the lower level
weights.

Note that we want to move in the negative gradient direction, and there is
a minus sign in ∂Ē

∂wo
rs
; therefore, the formula for incrementing the weight wo

rs is

wo
rs(t+ 1) = wo

rs(t) + ηδoprips.

DO NOT ADD THESE INCREMENTS TO THE WEIGHTS yet. The
increments to the lower level weights need to use the current values of all of
the weights.

Incrementing the weights between layer i and layer h

Now consider a weight wh
st on the connection from cell t in the input layer

to cell s in the hidden layer. We want to compute ∂Ē
∂wh

st
. Writing

Ē =
1

2

(
(yp1 − op1)

2 + (yp2 − op2)
2 + · · ·+ (ypM − opM)2

)
,

it is clear that each term in the sum has wh
st in it, because each output cell

is connected to neuron s in layer h, and hence to neuron t in the input layer.
This implies that

∂Ē

∂wh
st

= −2 · 1
2

M∑
k=1

(ypk − opk)
∂opk
∂wh

st

.

Using opk = f(
∑L

j=1w
o
kjipj) and applying the chain rule for differentiation

once more,

∂opk
∂wh

st

= f(
L∑

j=1

wo
kjipj)(1− f(

L∑
j=1

wo
kjipj))

∂(
∑L

j=1w
o
kjipj)

∂wh
st

.

This makes

∂Ē

∂wh
st

= −
M∑
k=1

(ypk − opk)opk(1− opk)
∂

∂wh
st

 L∑
j=1

wo
kjf

(
N∑
i=1

wh
jixpi

) .

The only term in the final sum that contains wh
st is the term with j = s and

i = t; that is, the term

T =
∂

∂wh
st

(
wo

ksf

(
N∑
i=1

wh
sixpi

))
.

One more use of the chain rule, using the fact that wh
st only appears in one

term in the inner sum, gives

T = wo
ksips(1− ips)xpt.



Therefore, the desired increment for the weight wh
st can be written as

− ∂Ē

∂wh
st

= ips(1− ips)xpt

(
M∑
k=1

(ypk − opk)opk(1− opk)w
o
ks

)
.

Using the stored values δopk = (ypk−opk)opk(1−opk), this means that we should

increment wh
st by

∆wh
st =

(
M∑
k=1

δopkw
o
ks

)
ips(1− ips)xpt;

that is,
wh

st(t+ 1) = wh
st(t) + η∆wh

st.

Training the system

Two matrices, anM×LmatrixW o and an L×N matrixW h, can be defined
and initialized. One suggested way to initialize the individual weights is by
setting each one equal to a random value drawn from a normal distribution
with mean equal to 0.5. Given a set of P input vectors X⃗p together with their
desired outputs Y⃗ p, these are presented randomly to the system. The values
of i⃗p and o⃗p are each obtained by a single matrix multiplication and a single
application of the function f to each element of the resulting vector product.
For example,

i⃗p =


ip1
ip2
...
ipL

 =


f(nethp1)
f(nethp2)

...
f(nethpL)

where


nethp1
nethp2
...

nethpL

 = W hX⃗p.

Similarly, applying f to the elements of the vector W o⃗ip produces the output
vector o⃗p.

After updating the weight matrices W o and W h, the error Ē can be com-
puted. The labeled inputs should be randomly presented, and the weights
incremented, until the value of Ē stabilizes (hopefully at a very small value).
At that point the system can be used to recognize the given patterns. It may
also recognize patterns which are slight variations of the patterns it was trained
on.

Remember that the small constant η, used in the learning process, can be
varied to see if better results can be obtained. Other ways to improve the
results involve increasing the size of the hidden layer. With a fair amount of
work, additional hidden layers may be added to the system. This has led to
the idea of “deep learning systems”.


