A PDE used in cooking, plus more work with Bessel functions

The following very interesting partial differential equation was brought to
the author’s attention by Steve Gifford, a computer consultant in San Fran-
cisco, California. In a paper, located on the web at

www.douglasbaldwin. com/Baldwin-UGFS-Preprint.pdf,

a method of cooking called “Sous-vide” is described. It involves heating food
at a fixed temperature in vacuum-sealed plastic bags for possibly a very long
time. The temperature T" of the food in the bag is assumed to satisfy the
following version of the one-dimensional heat equation:
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where 0 < r < R is the distance from the center of the bag, ¢ > 0 is time,
and 0 < 8 < 2 is a geometric factor that makes it possible to adjust for a bag
of arbitrary shape, from a large slab (8 = 0) to a long cylinder (8 = 1) to
a sphere (8 = 2). Tj is the initial temperature of the food in the bag, and
Twater 18 the constant temperature of the water bath in which it is immersed.
The three constants «, k, and h specify the physical properties of the object
being cooked. Some characteristic values for the physical constants are given
in Appendix A of the pdf cited above.

The object of this project is to see if we can find a series solution for this
PDE, and then compare its values with results obtained from a numerical
solution. Along the way you will learn some interesting things about Bessel
functions.

Exercise 1. Show that if we replace the function T'(r,¢) by the function
U(r,t) =T(r,t) — Tyater, then the problem in terms of U becomes:
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which is a parabolic PDE with homogeneous boundary conditions. ([l



It should now be possible to solve the problem by separation of variables.
Letting U(r,t) = X (r)Y (t), the PDE becomes
XY' =« (X”Y + EX/Y) :
r
Exercise 2.

Separate the variables by dividing both sides of this equation by a XY, and
show that the resulting ODEs for X and Y are

Y'(t) = —aAY (t) and X"(r) + gX’(r) +AX(r) = 0.
0J
If the equation
X"(r) + gX’(r) +AX(r)=0 (1)

is multiplied by r?, it can be seen to be a Sturm-Liouville equation
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with weight factor w(r) = r7; therefore, if the eigenvalues ), and the corre-

sponding eigenfunctions X,,(r) are found, we know that the family of functions

{X,(r)}>2, is an orthogonal family on 0 < r < R. This means that

R
/ 77 X;(r) Xy, (r)dr = 0 whenever j # k.
0

The two boundary conditions on the temperature function U(r,t) = X (r)Y (¢)
can be used to find boundary conditions on X (7).

Exercise 3. Show that the two boundary conditions on X (r) are

X'(0) =0, X'(R)+ %X(R) — 0. 0.

To find the general solution of (1), make the substitutions 7 = v/Ar and
Z(1) = X(r). Then (1) becomes

B

A (Z"(T) +22(r) + Z(T)) ~ 0.
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This is not quite Bessel’s equation of order 0, because of the parameter 3; but
using Maple, the general solution is found to be

Z(r) = Cir2 P Jy ) (7) + Cor2 OV 4 (7),

where J, and ), are Bessel functions of the first kind. As 7 — 0T, the function
Y, (1) tends to —oo for any order v, so in order to make the temperature finite
at r = 0, it is necessary to set Cy = 0. Thus the required solution of (1) is any
constant multiple of

X(r) = Z(r) = Z(Vxr) = (VA2 Ty 0 (Vi)

To find the eigenvalues \,,, we need to make X (r) satisfy the two boundary
conditions. Letting p = (8 — 1) and 7 = VAr, we can use the known series
for the Bessel function 7, to write

X(T‘) = T_Pj =T Pi ( 1 )2n+p f: (_1)n7_2n
bl «nll'(1 +n+p) £ 22t pll(1+n +p)’

n=

and since this is a Taylor series in powers of 72, it can be seen that X'(0) =0

as required. The series can also be used to compute X (0) = m.

The Gamma Function I'(z)

The Gamma function is a continuous extension of the factorial function. For any positive real number z it is
defined by

F( _ Rl | —zg
z) = A T e .

For z > 0 it satisfies the equation I'(z + 1) = z - I'(z). One very useful value is I (%) = /.

The second boundary condition requires that ((g)) = —%. To find the

derivative of the function X (r), we can use a known formula which states that
for any order p, J)(7) = 5(Jp-1(7) — Tps1(7)). Using this, with 7 = Vr and
p= (6 — 1), the chaln rule for differentiation implies that

X'(r) = - (7P 5(0)) = = (g, (m) T

Therefore, by the product rule,

X'(r) = (—pT_p_ljp(T) + 7P (jpl(ﬂ ;%+1(7))) VA

and

fa()) - Xj(f) = (}p 3 <7p—1<7> —TJpH(r))) /i
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We can then set

X _ (= 1 (FalAR) =GR 5
X(R)  \VAR 2 T,(VAR)

h
S

Exercise 4. Use algebra to show that this results in the requirement that

% (‘71’—1("*}_2‘7%’“(2)) _ (p _ %R) 2 where z = VAR
(%)

O

Notice that for 8 = 0, 1,2 the constant p = %(6 — 1) has the three possible
Ip-1(2)=Tp+1(2)
Ip(2)
zeros of J,(z), and these are known to approach the zeros of cos (Z —br— %)
as z — oo; therefore, if it can be shown that the function J is monotoni-
cally increasing or monotonically decreasing in each open interval between the
asymptotes, there will be exactly one intersection z, between (n - % + g) s
and (n + i + g) 7 for each integer n = 1,2,---. These intersections can be
found using the Maple command fsolve. The graph in Figure 1 shows the
first 5 intersections, using the parameter values § =2 — p = %, h =100,k =
0.5, R = 0.04. With § = 2, the first three intersections are z; ~ 2.76536, z5 ~

5.60777, z3 ~= 8.54057.

values —%,O, % The function has vertical asymptotes at the
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Figure 1: Intersections zq,--- , 25 with § =2

Try to make an argument to show that the function J is monotonically
increasing or monotonically decreasing between zeros of J,. Think about the
fact that J, has the shape of a damped cosine function. If you would like to
learn more about Bessel functions, you could try writing this up as a formal
proof.

Once the z, are found, we can set A\, = (%")2. For each n = 1,2,--- the
functions Y;,(¢) can then be found by solving the equation Y/ (t) = —a\, Y, (t).
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This first-order differential equation has solutions Y,,(t) = Ce=**! and the
product U, (r,t) = X,,(r)Y,(t) is a solution of the partial differential equation
for each integer n = 1,2,---. Since the pde is linear, its general solution can
be written in the form of an infinite series:

U(r,t) = 3252 AnUn(r,t) = 3202, Ane™ M (VA1) T (VAGT).

The initial condition on U(r,t) required that, at time ¢ = 0,

ZA X ZA \/_7" jp \/_7’ = To — Twater-

Since the functions X, (r) form an orthogonal set on [0, R] with weight function
r8, the coefficients are

A fo X (r)rPdr fo (To—Twater) (VAnr) P Tp(V Anr)rPdr
" fo (r))2rBdr fo (VAnr) =P Tp (v AnT))2rPdr

Example 1 Using the parameter values h = 100W/m?K, k = 0.5W/mK, R =
0.04m, and o = 1.4 x 107"m?/sec., compare the time it takes for the temper-
ature in the center of the food package to rise close to the temperature of the
water bath for § = 0,1, and 2.
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The graphs in the above figure were generated by the Maple program shown
below. Remember that the actual temperature of the food is T'(r,t) = U(r,t)+
Twater- Realistic values for the heat transfer coefficient h and the thermal



conductivity of the food k were taken from Appendix A in the web article cited
on page 1. The radius of the package was arbitrarily chosen to be R = 0.04m =~
1.5in. Note that the constant p — %R is dimensionless, since R is in meters.
To have time ¢ in hours, the thermal diffusivity a = 1.4 x 107"m?/sec was
multiplied by 3600. The temperatures used are Ty = 5°C and T4 = 100°C.
It can be seen that a spherically shaped package requires the least amount of
time for the temperature in the center to reach the desired value.

SERIES SOLUTION FOR U(r,t)

h:=100: k:=0.5: alpha:=1.4E-7%*3600: R:=0.04: TO:=5: Twater:=100:
beta:=2; p:=(beta-1.0)/2.0: Nterms:=50:
for n from 1 to Nterms do
z[n] :=fsolve((BesselJ(p-1,z)-BesselJ(p+1,z))/Bessell(p,z)=
2.0%(p-h*R/k)/z,2z=(n-0.75+p/2.0) *Pi. . (n+0.25+p/2.0) *Pi) ;
lam[n]:=(z[n]/R)"2;
A[n] :=int ((TO-Twater) *(z[n] *r/R) " (-p) *BesselJ(p,z[n] *r/R) *
r~(beta) ,r=0..R)/
int (((z[nl*r/R) "~ (-p)*BesselJ(p,z[n]*r/R)) "2
*r~ (beta),r=0..R); od:

U:=proc(r,t) local S; global A,lam,alpha,p,z,R,Nterms;
if r=0 then
S:=sum(A[j]*exp(-alpha*lam[j]*t),j=1..Nterms)/
(2.0"p*xGAMMA (p+1.0));
else S:=sum(A[j]l*exp(-alpha*lam[j]*t)*(z[jl*r/R)"~(-p))
*BesselJ(p,z[jl*r/R),j=1..Nterms);

fi: S:
end proc:
U(0,1) = -16.1542
U(0,2) = -1.45323

For small values of ¢, the series for U converges very slowly, and it is useful
to compare values of U(r, t) obtained by this method with those obtained using
a numerical method. Problem 5 below will ask you to do this.

Additional Exercises:
1. Using the parameter values from Example 1, run the Maple program to
find the series solution U(r,t). For each value § = 0,1, and 2, compute

the temperatures U (0, 1),U(0,2),U(0,4), and U(0, 6).
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. Define cooking time G3(X) to be the time in hours that it takes for
a package of radius X inches to go from T5C to (Tyater — 2)°C, using
a given set of parameters. Draw graphs of G3(X) for 5 =0,1,2 on the
interval 0.5in < X < 5in. Choose your own set of parameters from the
values given in Appendix A for some specific type of food.

ou

. The equation %+ = « (32U B oU

or? T or

o ) can be approximated by the differ-

ence equation
U(r,t + At) = U(r,t)
At
. U(r + Ar,t) —2U(r,t) + U(r — Ar,t) N B (U(T—I—Ar,t)—U(r,t))]

(Ar)? r Ar

Solve this equation for U(r,t + At) in terms of values of U at time ¢.

. How would you express the two boundary conditions %—Z(O, t) = 0 and

%U(R, t)+ LU(R,t) = 0 as difference formulas in U? Be careful at the
end r = 0, since the PDE contains a term with r in the denominator.

. Check that the Maple program below solves the difference equation in
Problem 2 with the boundary conditions given in Problem 3. Explain
how the program handles the two boundary conditions.

NUMERICAL SOLUTION FOR U(r,t)

h:=100: k:=0.5: alpha:=1.4E-7%*3600: R:=0.04: T0:=5: Twater:=100:
beta:=2: (this constant needs to be set to 0, 1, or 2)
N:=16: delr:=R/N: delt:=0.005:

C:=alphax*delt/delr~2; C2:=betaxdelr/2.0: C3:=2.0%h*delr/k:
for i from 0 to N+1 do uli,0] :=TO-Twater; od:
for j from O to 2000 do

for i from 1 to N do

uli,j+1]:=uli, jl+Cx(uli+1,jl-2*%uli, jl+uli-1,j1+ (C2/(i*delr))*(uli+1,jl-uli-1,31));

od;

ul0,j+1]:=ul1,j+1];

wN+1,§+1] :=u[N-1, j+1]1-C3*u[N, j+1];
od:

With g = 2, this program produced the values
U(0,1) = u(0,200) ~ —16.1105
U(0,2) = u(0,400) ~ —1.44300

. Choose appropriate values for N (number of intervals in the partition
of the r-axis) and At, and compute the numerical solution w[i, j| on the
interval 0 < ¢ < 10 hours. In order for the numerical method to be stable,
the constant C' = « diji@ must be less than 0.5. For each § = 0,1, and

2, compare the values you get for U(0,1),U(0,2),U(0,4), and U(0,6) to




the values found in Exercise 1 (in each program, the values of U(0, 1) and
U(0,2), generated by the program with 8 = 2, are shown). Remember
that in the numerical program r = i * Ar and t = j * At. State what
values you needed to use for N and At to get all of the results, for the
two different types of solution, to agree in the first decimal place.

. Assume you are a numerical analyst working for a company that makes
sous-vide cookers. You have been assigned to write a procedure (numeric
or analytic, your choice) that will produce the cooking time for food in
the cooker, given the values of 3, h, k, a, Ty, and Tyuser- This should be
the simplest procedure that quickly produces the time it will take the
temperature in the center of the food to reach (Tyater —2)°C. Justify all
of the choices that you make.



