A PDE used in cooking, plus more work with Bessel functions

The following very interesting partial differential equation was brought to the author's attention by Steve Gifford, a computer consultant in San Francisco, California. In a paper, located on the web at
www.douglasbaldwin.com/Baldwin-UGFS-Preprint.pdf,
a method of cooking called "Sous-vide" is described. It involves heating food at a fixed temperature in vacuum-sealed plastic bags for possibly a very long time. The temperature T of the food in the bag is assumed to satisfy the following version of the one-dimensional heat equation:

$$
\frac{\partial T}{\partial t}=\alpha\left(\frac{\partial^{2} T}{\partial r^{2}}+\frac{\beta}{r} \frac{\partial T}{\partial r}\right), T(r, 0)=T_{0}
$$

with boundary conditions

$$
\frac{\partial T}{\partial r}(0, t)=0, k \frac{\partial T}{\partial r}(R, t)=h\left(T_{\text {water }}-T(R, t)\right) ;
$$

where $0 \leq r \leq R$ is the distance from the center of the bag, $t \geq 0$ is time, and $0 \leq \beta \leq 2$ is a geometric factor that makes it possible to adjust for a bag of arbitrary shape, from a large slab $(\beta=0)$ to a long cylinder $(\beta=1)$ to a sphere $(\beta=2) . \quad T_{0}$ is the initial temperature of the food in the bag, and $T_{\text {water }}$ is the constant temperature of the water bath in which it is immersed. The three constants α, k, and h specify the physical properties of the object being cooked. Some characteristic values for the physical constants are given in Appendix A of the pdf cited above.

The object of this project is to see if we can find a series solution for this PDE, and then compare its values with results obtained from a numerical solution. Along the way you will learn some interesting things about Bessel functions.

Exercise 1. Show that if we replace the function $T(r, t)$ by the function $U(r, t) \equiv T(r, t)-T_{\text {water }}$, then the problem in terms of U becomes:

$$
\begin{gathered}
\frac{\partial U}{\partial t}=\alpha\left(\frac{\partial^{2} U}{\partial r^{2}}+\frac{\beta}{r} \frac{\partial U}{\partial r}\right), U(r, 0)=T(r, 0)-T_{\text {water }}=T_{0}-T_{\text {water }} \\
\frac{\partial U}{\partial r}(0, t)=0, \frac{\partial U}{\partial r}(R, t)+\frac{h}{k} U(R, t)=0
\end{gathered}
$$

which is a parabolic PDE with homogeneous boundary conditions.

It should now be possible to solve the problem by separation of variables. Letting $U(r, t)=X(r) Y(t)$, the PDE becomes

$$
X Y^{\prime}=\alpha\left(X^{\prime \prime} Y+\frac{\beta}{r} X^{\prime} Y\right)
$$

Exercise 2.

Separate the variables by dividing both sides of this equation by $\alpha X Y$, and show that the resulting ODEs for X and Y are

$$
Y^{\prime}(t)=-\alpha \lambda Y(t) \text { and } X^{\prime \prime}(r)+\frac{\beta}{r} X^{\prime}(r)+\lambda X(r)=0 .
$$

If the equation

$$
\begin{equation*}
X^{\prime \prime}(r)+\frac{\beta}{r} X^{\prime}(r)+\lambda X(r)=0 \tag{1}
\end{equation*}
$$

is multiplied by r^{β}, it can be seen to be a Sturm-Liouville equation

$$
r^{\beta} X^{\prime \prime}+r^{\beta} \frac{\beta}{r} X^{\prime}+r^{\beta} \lambda X=\frac{d}{d r}\left(r^{\beta} X^{\prime}\right)+\lambda r^{\beta} X=0
$$

with weight factor $w(r)=r^{\beta}$; therefore, if the eigenvalues λ_{n} and the corresponding eigenfunctions $X_{n}(r)$ are found, we know that the family of functions $\left\{X_{n}(r)\right\}_{n=1}^{\infty}$ is an orthogonal family on $0 \leq r \leq R$. This means that

$$
\int_{0}^{R} r^{\beta} X_{j}(r) X_{k}(r) d r=0 \text { whenever } j \neq k
$$

The two boundary conditions on the temperature function $U(r, t) \equiv X(r) Y(t)$ can be used to find boundary conditions on $X(r)$.

Exercise 3. Show that the two boundary conditions on $X(r)$ are
$X^{\prime}(0)=0, X^{\prime}(R)+\frac{h}{k} X(R)=0$.

To find the general solution of (1), make the substitutions $\tau=\sqrt{\lambda} r$ and $Z(\tau) \equiv X(r)$. Then (1) becomes

$$
\lambda\left(Z^{\prime \prime}(\tau)+\frac{\beta}{\tau} Z^{\prime}(\tau)+Z(\tau)\right)=0
$$

This is not quite Bessel's equation of order 0 , because of the parameter β; but using Maple, the general solution is found to be

$$
Z(\tau)=C_{1} \tau^{\frac{1}{2}(1-\beta)} \mathcal{J}_{\frac{1}{2}(\beta-1)}(\tau)+C_{2} \tau^{\frac{1}{2}(1-\beta)} \mathcal{Y}_{\frac{1}{2}(\beta-1)}(\tau)
$$

where \mathcal{J}_{ν} and \mathcal{Y}_{ν} are Bessel functions of the first kind. As $\tau \rightarrow 0^{+}$, the function $\mathcal{Y}_{\nu}(\tau)$ tends to $-\infty$ for any order ν, so in order to make the temperature finite at $r=0$, it is necessary to set $C_{2}=0$. Thus the required solution of (1) is any constant multiple of

$$
X(r)=Z(\tau)=Z(\sqrt{\lambda} r)=(\sqrt{\lambda} r)^{\frac{1}{2}(1-\beta)} \mathcal{J}_{\frac{1}{2}(\beta-1)}(\sqrt{\lambda} r)
$$

To find the eigenvalues λ_{n}, we need to make $X(r)$ satisfy the two boundary conditions. Letting $p=\frac{1}{2}(\beta-1)$ and $\tau=\sqrt{\lambda} r$, we can use the known series for the Bessel function \mathcal{J}_{p} to write

$$
X(r)=\tau^{-p} \mathcal{J}_{p}(\tau)=\tau^{-p} \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{\tau}{2}\right)^{2 n+p}}{n!\Gamma(1+n+p)}=\sum_{n=0}^{\infty} \frac{(-1)^{n} \tau^{2 n}}{2^{2 n+p} n!\Gamma(1+n+p)},
$$

and since this is a Taylor series in powers of τ^{2}, it can be seen that $X^{\prime}(0)=0$ as required. The series can also be used to compute $X(0)=\frac{1}{2^{p} \Gamma(1+p)}$.
The Gamma Function $\Gamma(z)$
The Gamma function is a continuous extension of the factorial function. For any positive real number z it is
defined by

$$
\Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} d x .
$$

For $z>0$ it satisfies the equation $\Gamma(z+1)=z \cdot \Gamma(z)$. One very useful value is $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.

The second boundary condition requires that $\frac{X^{\prime}(R)}{X(R)}=-\frac{h}{k}$. To find the derivative of the function $X(r)$, we can use a known formula which states that for any order $p, \mathcal{J}_{p}^{\prime}(\tau)=\frac{1}{2}\left(\mathcal{J}_{p-1}(\tau)-\mathcal{J}_{p+1}(\tau)\right)$. Using this, with $\tau=\sqrt{\lambda} r$ and $p=\frac{1}{2}(\beta-1)$, the chain rule for differentiation implies that

$$
X^{\prime}(r)=\frac{d}{d r}\left(\tau^{-p} \mathcal{J}_{p}(\tau)\right)=\frac{d}{d \tau}\left(\tau^{-p} \mathcal{J}_{p}(\tau)\right) \frac{d \tau}{d r}
$$

Therefore, by the product rule,

$$
X^{\prime}(r)=\left(-p \tau^{-p-1} \mathcal{J}_{p}(\tau)+\tau^{-p}\left(\frac{\mathcal{J}_{p-1}(\tau)-\mathcal{J}_{p+1}(\tau)}{2}\right)\right) \sqrt{\lambda}
$$

and

$$
\frac{X^{\prime}(r)}{X(r)}=\frac{X^{\prime}(r)}{\tau^{-p} \mathcal{J}_{p}(\tau)}=\left(\frac{-p}{\tau}+\frac{1}{2}\left(\frac{\mathcal{J}_{p-1}(\tau)-\mathcal{J}_{p+1}(\tau)}{\mathcal{J}_{p}(\tau)}\right)\right) \sqrt{\lambda} .
$$

We can then set

$$
\frac{X^{\prime}(R)}{X(R)}=\left(\frac{-p}{\sqrt{\lambda} R}+\frac{1}{2}\left(\frac{\mathcal{J}_{p-1}(\sqrt{\lambda} R)-\mathcal{J}_{p+1}(\sqrt{\lambda} R)}{\mathcal{J}_{p}(\sqrt{\lambda} R)}\right)\right) \sqrt{\lambda}=-\frac{h}{k} .
$$

Exercise 4. Use algebra to show that this results in the requirement that

$$
\frac{1}{2}\left(\frac{\mathcal{J}_{p-1}(z)-\mathcal{J}_{p+1}(z)}{\mathcal{J}_{p}(z)}\right)=\left(p-\frac{h}{k} R\right) \frac{1}{z}, \text { where } z=\sqrt{\lambda} R
$$

Notice that for $\beta=0,1,2$ the constant $p=\frac{1}{2}(\beta-1)$ has the three possible values $-\frac{1}{2}, 0, \frac{1}{2}$. The function $\frac{\mathcal{J}_{p-1}(z)-\mathcal{J}_{p+1}(z)}{\mathcal{J}_{p}(z)}$ has vertical asymptotes at the zeros of $\mathcal{J}_{p}(z)$, and these are known to approach the zeros of $\cos \left(z-\frac{p}{2} \pi-\frac{\pi}{4}\right)$ as $z \rightarrow \infty$; therefore, if it can be shown that the function \mathcal{J}_{p}^{\prime} is monotonically increasing or monotonically decreasing in each open interval between the asymptotes, there will be exactly one intersection z_{n} between $\left(n-\frac{3}{4}+\frac{p}{2}\right) \pi$ and $\left(n+\frac{1}{4}+\frac{p}{2}\right) \pi$ for each integer $n=1,2, \cdots$. These intersections can be found using the Maple command fsolve. The graph in Figure 1 shows the first 5 intersections, using the parameter values $\beta=2 \rightarrow p=\frac{1}{2}, h=100, k=$ $0.5, R=0.04$. With $\beta=2$, the first three intersections are $z_{1} \approx 2.76536, z_{2} \approx$ 5.60777, $z_{3} \approx 8.54057$.

Figure 1: Intersections z_{1}, \cdots, z_{5} with $\beta=2$
Try to make an argument to show that the function \mathcal{J}_{p}^{\prime} is monotonically increasing or monotonically decreasing between zeros of \mathcal{J}_{p}. Think about the fact that \mathcal{J}_{p} has the shape of a damped cosine function. If you would like to learn more about Bessel functions, you could try writing this up as a formal proof.

Once the z_{n} are found, we can set $\lambda_{n}=\left(\frac{z_{n}}{R}\right)^{2}$. For each $n=1,2, \cdots$ the functions $Y_{n}(t)$ can then be found by solving the equation $Y_{n}^{\prime}(t)=-\alpha \lambda_{n} Y_{n}(t)$.

This first-order differential equation has solutions $Y_{n}(t)=C e^{-\alpha \lambda_{n} t}$, and the product $U_{n}(r, t)=X_{n}(r) Y_{n}(t)$ is a solution of the partial differential equation for each integer $n=1,2, \cdots$. Since the pde is linear, its general solution can be written in the form of an infinite series:

$$
\begin{aligned}
& U(r, t)=\sum_{n=1}^{\infty} A_{n} U_{n}(r, t)=\sum_{n=1}^{\infty} A_{n} e^{-\alpha \lambda_{n} t}\left(\sqrt{\lambda_{n}} r\right)^{-p} \mathcal{J}_{p}\left(\sqrt{\lambda_{n}} r\right) . \\
& \lambda_{n}=\left(\frac{z_{n}}{R}\right)^{2}, \quad p=\frac{1}{2}(\beta-1)
\end{aligned}
$$

The initial condition on $U(r, t)$ required that, at time $t=0$,

$$
U(r, 0)=\sum_{n=1}^{\infty} A_{n} X_{n}(r) Y_{n}(0)=\sum_{n=1}^{\infty} A_{n}\left(\sqrt{\lambda_{n}} r\right)^{-p} \mathcal{J}_{p}\left(\sqrt{\lambda_{n}} r\right)=T_{0}-T_{\text {water }}
$$

Since the functions $X_{n}(r)$ form an orthogonal set on $[0, R]$ with weight function r^{β}, the coefficients are

$$
A_{n}=\frac{\int_{0}^{R} U(r, 0) X_{n}(r) r^{\beta} d r}{\int_{0}^{R}\left(X_{n}(r)\right)^{2} r^{\beta} d r}=\frac{\int_{0}^{R}\left(T_{0}-T_{\text {water }}\right)\left(\sqrt{\lambda_{n}} r\right)^{-p} \mathcal{J}_{p}\left(\sqrt{\lambda_{n}} r\right) r^{\beta} d r}{\int_{0}^{R}\left(\left(\sqrt{\lambda_{n}} r\right)^{-p} \mathcal{J}_{p}\left(\sqrt{\lambda_{n}} r\right)\right)^{2} r^{\beta} d r} .
$$

Example 1 Using the parameter values $h=100 \mathrm{~W} / \mathrm{m}^{2} K, k=0.5 \mathrm{~W} / \mathrm{mK}, R=$ 0.04 m , and $\alpha=1.4 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{sec}$., compare the time it takes for the temperature in the center of the food package to rise close to the temperature of the water bath for $\beta=0,1$, and 2 .

The graphs in the above figure were generated by the Maple program shown below. Remember that the actual temperature of the food is $T(r, t)=U(r, t)+$ $T_{\text {water }}$. Realistic values for the heat transfer coefficient h and the thermal
conductivity of the food k were taken from Appendix A in the web article cited on page 1 . The radius of the package was arbitrarily chosen to be $R=0.04 \mathrm{~m} \approx$ 1.5in. Note that the constant $p-\frac{h}{k} R$ is dimensionless, since R is in meters. To have time t in hours, the thermal diffusivity $\alpha=1.4 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{sec}$ was multiplied by 3600 . The temperatures used are $T_{0}=5^{0} \mathrm{C}$ and $T_{\text {water }}=100^{\circ} \mathrm{C}$. It can be seen that a spherically shaped package requires the least amount of time for the temperature in the center to reach the desired value.

SERIES SOLUTION FOR $U(r, t)$

```
h:=100: k:=0.5: alpha:=1.4E-7*3600: R:=0.04: T0:=5: Twater:=100:
beta:=2; p:=(beta-1.0)/2.0: Nterms:=50:
for n from 1 to Nterms do
    z[n]:=fsolve((BesselJ(p-1,z)-BesselJ (p+1,z))/BesselJ (p,z)=
        2.0*(p-h*R/k)/z,z=(n-0.75+p/2.0)*Pi..(n+0.25+p/2.0)*Pi);
    lam[n]:=(z[n]/R)^2;
    A [n]:=int((T0-Twater)*(z[n]*r/R)^(-p)*BesselJ (p,z[n]*r/R)*
        r^(beta),r=0..R)/
        int(((z[n]*r/R)^(-p)*\operatorname{BesselJ}(p,z[n]*r/R) )^2
            *r^(beta),r=0..R); od:
U:=proc(r,t) local S; global A,lam,alpha,p,z,R,Nterms;
    if r=0 then
            S:=sum(A[j]*exp(-alpha*lam[j]*t),j=1..Nterms)/
                (2.0^p*GAMMA (p+1.0));
    else S:=sum(A[j]*exp(-alpha*lam[j]*t)*(z[j]*r/R)^(-p))
            *BesselJ(p,z[j]*r/R),j=1..Nterms);
    fi: S:
end proc:
U(0,1) = -16.1542
U(0,2) = -1.45323
```

For small values of t, the series for U converges very slowly, and it is useful to compare values of $U(r, t)$ obtained by this method with those obtained using a numerical method. Problem 5 below will ask you to do this.

Additional Exercises:

1. Using the parameter values from Example 1, run the Maple program to find the series solution $U(r, t)$. For each value $\beta=0,1$, and 2 , compute the temperatures $U(0,1), U(0,2), U(0,4)$, and $U(0,6)$.
2. Define cooking time $G_{\beta}(X)$ to be the time in hours that it takes for a package of radius X inches to go from $T_{0}^{\circ} C$ to $\left(T_{\text {water }}-2\right)^{\circ} C$, using a given set of parameters. Draw graphs of $G_{\beta}(X)$ for $\beta=0,1,2$ on the interval $0.5 i n \leq X \leq 5 i n$. Choose your own set of parameters from the values given in Appendix A for some specific type of food.
3. The equation $\frac{\partial U}{\partial t}=\alpha\left(\frac{\partial^{2} U}{\partial r^{2}}+\frac{\beta}{r} \frac{\partial U}{\partial r}\right)$ can be approximated by the difference equation

$$
\begin{gathered}
\frac{U(r, t+\Delta t)-U(r, t)}{\Delta t} \\
=\alpha\left[\frac{U(r+\Delta r, t)-2 U(r, t)+U(r-\Delta r, t)}{(\Delta r)^{2}}+\frac{\beta}{r}\left(\frac{U(r+\Delta r, t)-U(r, t)}{\Delta r}\right)\right] .
\end{gathered}
$$

Solve this equation for $U(r, t+\Delta t)$ in terms of values of U at time t.
4. How would you express the two boundary conditions $\frac{\partial U}{\partial r}(0, t)=0$ and $\frac{\partial}{\partial r} U(R, t)+\frac{h}{k} U(R, t)=0$ as difference formulas in U ? Be careful at the end $r=0$, since the PDE contains a term with r in the denominator.
5. Check that the Maple program below solves the difference equation in Problem 2 with the boundary conditions given in Problem 3. Explain how the program handles the two boundary conditions.

```
NUMERICAL SOLUTION FOR U(r,t)
h:=100: k:=0.5: alpha:=1.4E-7*3600: R:=0.04: T0:=5: Twater:=100:
beta:=2: (this constant needs to be set to 0, 1, or 2)
N:=16: delr:=R/N: delt:=0.005:
    C:=alpha*delt/delr^2; C2:=beta*delr/2.0: C3:=2.0*h*delr/k:
for i from 0 to N+1 do u[i,0]:=T0-Twater; od:
for j from 0 to 2000 do
    for i from 1 to N do
        u[i,j+1]:=u[i,j]+C*(u[i+1,j]-2*u[i,j]+u[i-1,j]+(C2/(i*delr))*(u[i+1,j]-u[i-1,j]));
od;
    u[0,j+1]:=u[1,j+1];
    u[N+1,j+1]:=u[N-1,j+1]-C3*u[N,j+1];
od:
```

With $\beta=2$, this program produced the values
$U(0,1) \equiv u(0,200) \approx-16.1105$
$U(0,2) \equiv u(0,400) \approx-1.44300$
6. Choose appropriate values for N (number of intervals in the partition of the r-axis) and Δt, and compute the numerical solution $u[i, j]$ on the interval $0 \leq t \leq 10$ hours. In order for the numerical method to be stable, the constant $C=\alpha \frac{\text { delt }}{\text { delr }}$ must be less than 0.5 . For each $\beta=0,1$, and 2 , compare the values you get for $U(0,1), U(0,2), U(0,4)$, and $U(0,6)$ to
the values found in Exercise 1 (in each program, the values of $U(0,1)$ and $U(0,2)$, generated by the program with $\beta=2$, are shown). Remember that in the numerical program $r=i * \Delta r$ and $t=j * \Delta t$. State what values you needed to use for N and Δt to get all of the results, for the two different types of solution, to agree in the first decimal place.
7. Assume you are a numerical analyst working for a company that makes sous-vide cookers. You have been assigned to write a procedure (numeric or analytic, your choice) that will produce the cooking time for food in the cooker, given the values of $\beta, h, k, \alpha, T_{0}$, and $T_{\text {water }}$. This should be the simplest procedure that quickly produces the time it will take the temperature in the center of the food to reach $\left(T_{\text {water }}-2\right)^{0} C$. Justify all of the choices that you make.

