
A PDE used in cooking, plus more work with Bessel functions

The following very interesting partial differential equation was brought to
the author’s attention by Steve Gifford, a computer consultant in San Fran-
cisco, California. In a paper, located on the web at

www.douglasbaldwin.com/Baldwin-UGFS-Preprint.pdf,

a method of cooking called “Sous-vide” is described. It involves heating food
at a fixed temperature in vacuum-sealed plastic bags for possibly a very long
time. The temperature T of the food in the bag is assumed to satisfy the
following version of the one-dimensional heat equation:

∂T

∂t
= α

(
∂2T

∂r2
+

β

r

∂T

∂r

)
, T (r, 0) = T0,

with boundary conditions

∂T

∂r
(0, t) = 0, k

∂T

∂r
(R, t) = h(Twater − T (R, t));

where 0 ≤ r ≤ R is the distance from the center of the bag, t ≥ 0 is time,
and 0 ≤ β ≤ 2 is a geometric factor that makes it possible to adjust for a bag
of arbitrary shape, from a large slab (β = 0) to a long cylinder (β = 1) to
a sphere (β = 2). T0 is the initial temperature of the food in the bag, and
Twater is the constant temperature of the water bath in which it is immersed.
The three constants α, k, and h specify the physical properties of the object
being cooked. Some characteristic values for the physical constants are given
in Appendix A of the pdf cited above.

The object of this project is to see if we can find a series solution for this
PDE, and then compare its values with results obtained from a numerical
solution. Along the way you will learn some interesting things about Bessel
functions.

Exercise 1. Show that if we replace the function T (r, t) by the function
U(r, t) ≡ T (r, t)− Twater, then the problem in terms of U becomes:

∂U

∂t
= α

(
∂2U

∂r2
+

β

r

∂U

∂r

)
, U(r, 0) = T (r, 0)− Twater = T0 − Twater

∂U

∂r
(0, t) = 0,

∂U

∂r
(R, t) +

h

k
U(R, t) = 0,

which is a parabolic PDE with homogeneous boundary conditions. �
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It should now be possible to solve the problem by separation of variables.
Letting U(r, t) = X(r)Y (t), the PDE becomes

XY ′ = α

(
X ′′Y +

β

r
X ′Y

)
.

Exercise 2.
Separate the variables by dividing both sides of this equation by αXY , and

show that the resulting ODEs for X and Y are

Y ′(t) = −αλY (t) and X ′′(r) +
β

r
X ′(r) + λX(r) = 0.

�

If the equation

X ′′(r) +
β

r
X ′(r) + λX(r) = 0 (1)

is multiplied by rβ, it can be seen to be a Sturm-Liouville equation

rβX ′′ + rβ
β

r
X ′ + rβλX =

d

dr
(rβX ′) + λrβX = 0

with weight factor w(r) = rβ; therefore, if the eigenvalues λn and the corre-
sponding eigenfunctions Xn(r) are found, we know that the family of functions
{Xn(r)}∞n=1 is an orthogonal family on 0 ≤ r ≤ R. This means that

∫ R

0

rβXj(r)Xk(r)dr = 0 whenever j ̸= k.

The two boundary conditions on the temperature function U(r, t) ≡ X(r)Y (t)
can be used to find boundary conditions on X(r).

Exercise 3. Show that the two boundary conditions on X(r) are

X ′(0) = 0, X ′(R) +
h

k
X(R) = 0. �.

To find the general solution of (1), make the substitutions τ =
√
λr and

Z(τ) ≡ X(r). Then (1) becomes

λ

(
Z ′′(τ) +

β

τ
Z ′(τ) + Z(τ)

)
= 0.

2



This is not quite Bessel’s equation of order 0, because of the parameter β; but
using Maple, the general solution is found to be

Z(τ) = C1τ
1
2
(1−β)J 1

2
(β−1)(τ) + C2τ

1
2
(1−β)Y 1

2
(β−1)(τ),

where Jν and Yν are Bessel functions of the first kind. As τ → 0+, the function
Yν(τ) tends to −∞ for any order ν, so in order to make the temperature finite
at r = 0, it is necessary to set C2 = 0. Thus the required solution of (1) is any
constant multiple of

X(r) = Z(τ) = Z(
√
λr) = (

√
λr)

1
2
(1−β)J 1

2
(β−1)(

√
λr).

To find the eigenvalues λn, we need to make X(r) satisfy the two boundary
conditions. Letting p = 1

2
(β − 1) and τ =

√
λr, we can use the known series

for the Bessel function Jp to write

X(r) = τ−pJp(τ) = τ−p

∞∑
n=0

(−1)n( τ
2
)2n+p

n!Γ(1 + n+ p)
=

∞∑
n=0

(−1)nτ 2n

22n+p n!Γ(1 + n+ p)
,

and since this is a Taylor series in powers of τ 2, it can be seen that X ′(0) = 0
as required. The series can also be used to compute X(0) = 1

2pΓ(1+p)
.

The Gamma Function Γ(z)

The Gamma function is a continuous extension of the factorial function. For any positive real number z it is
defined by

Γ(z) =

∫ ∞

0
x
z−1

e
−x

dx.

For z > 0 it satisfies the equation Γ(z + 1) = z · Γ(z). One very useful value is Γ
(

1
2

)
=

√
π.

The second boundary condition requires that X′(R)
X(R)

= −h
k
. To find the

derivative of the function X(r), we can use a known formula which states that
for any order p, J ′

p(τ) =
1
2
(Jp−1(τ)−Jp+1(τ)). Using this, with τ =

√
λr and

p = 1
2
(β − 1), the chain rule for differentiation implies that

X ′(r) =
d

dr

(
τ−pJp(τ)

)
=

d

dτ

(
τ−pJp(τ)

) dτ
dr

.

Therefore, by the product rule,

X ′(r) =

(
−pτ−p−1Jp(τ) + τ−p

(
Jp−1(τ)− Jp+1(τ)

2

))√
λ

and
X ′(r)

X(r)
=

X ′(r)

τ−pJp(τ)
=

(
−p

τ
+

1

2

(
Jp−1(τ)− Jp+1(τ)

Jp(τ)

))√
λ.
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We can then set

X ′(R)

X(R)
=

(
−p√
λR

+
1

2

(
Jp−1(

√
λR)− Jp+1(

√
λR)

Jp(
√
λR)

))
√
λ = −h

k
.

Exercise 4. Use algebra to show that this results in the requirement that

1

2

(
Jp−1(z)− Jp+1(z)

Jp(z)

)
=

(
p− h

k
R

)
1

z
, where z =

√
λR

�

Notice that for β = 0, 1, 2 the constant p = 1
2
(β− 1) has the three possible

values −1
2
, 0, 1

2
. The function Jp−1(z)−Jp+1(z)

Jp(z)
has vertical asymptotes at the

zeros of Jp(z), and these are known to approach the zeros of cos
(
z − p

2
π − π

4

)
as z → ∞; therefore, if it can be shown that the function J ′

p is monotoni-
cally increasing or monotonically decreasing in each open interval between the
asymptotes, there will be exactly one intersection zn between

(
n− 3

4
+ p

2

)
π

and
(
n+ 1

4
+ p

2

)
π for each integer n = 1, 2, · · · . These intersections can be

found using the Maple command fsolve. The graph in Figure 1 shows the
first 5 intersections, using the parameter values β = 2 → p = 1

2
, h = 100, k =

0.5, R = 0.04. With β = 2, the first three intersections are z1 ≈ 2.76536, z2 ≈
5.60777, z3 ≈ 8.54057.

Figure 1: Intersections z1, · · · , z5 with β = 2

Try to make an argument to show that the function J ′
p is monotonically

increasing or monotonically decreasing between zeros of Jp. Think about the
fact that Jp has the shape of a damped cosine function. If you would like to
learn more about Bessel functions, you could try writing this up as a formal
proof.

Once the zn are found, we can set λn =
(
zn
R

)2
. For each n = 1, 2, · · · the

functions Yn(t) can then be found by solving the equation Y ′
n(t) = −αλnYn(t).
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This first-order differential equation has solutions Yn(t) = Ce−αλnt, and the
product Un(r, t) = Xn(r)Yn(t) is a solution of the partial differential equation
for each integer n = 1, 2, · · · . Since the pde is linear, its general solution can
be written in the form of an infinite series:

U(r, t) =
∑∞

n=1AnUn(r, t) =
∑∞

n=1 Ane
−αλnt(

√
λnr)

−pJp(
√
λnr).

λn =
(
zn
R

)2
, p = 1

2
(β − 1)

The initial condition on U(r, t) required that, at time t = 0,

U(r, 0) =
∞∑
n=1

AnXn(r)Yn(0) =
∞∑
n=1

An(
√

λnr)
−pJp(

√
λnr) = T0 − Twater.

Since the functionsXn(r) form an orthogonal set on [0, R] with weight function
rβ, the coefficients are

An =
∫R
0 U(r,0)Xn(r)rβdr∫R

0 (Xn(r))2rβdr
=

∫R
0 (T0−Twater)(

√
λnr)−pJp(

√
λnr)rβdr∫R

0 ((
√
λnr)−pJp(

√
λnr))2rβdr

.

Example 1 Using the parameter values h = 100W/m2K, k = 0.5W/mK,R =
0.04m, and α = 1.4× 10−7m2/sec., compare the time it takes for the temper-
ature in the center of the food package to rise close to the temperature of the
water bath for β = 0, 1, and 2.

The graphs in the above figure were generated by the Maple program shown
below. Remember that the actual temperature of the food is T (r, t) = U(r, t)+
Twater. Realistic values for the heat transfer coefficient h and the thermal
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conductivity of the food k were taken from Appendix A in the web article cited
on page 1. The radius of the package was arbitrarily chosen to be R = 0.04m ≈
1.5in. Note that the constant p − h

k
R is dimensionless, since R is in meters.

To have time t in hours, the thermal diffusivity α = 1.4 × 10−7m2/sec was
multiplied by 3600. The temperatures used are T0 = 50C and Twater = 1000C.
It can be seen that a spherically shaped package requires the least amount of
time for the temperature in the center to reach the desired value.

SERIES SOLUTION FOR U(r, t)

h:=100: k:=0.5: alpha:=1.4E-7*3600: R:=0.04: T0:=5: Twater:=100:

beta:=2; p:=(beta-1.0)/2.0: Nterms:=50:

for n from 1 to Nterms do

z[n]:=fsolve((BesselJ(p-1,z)-BesselJ(p+1,z))/BesselJ(p,z)=

2.0*(p-h*R/k)/z,z=(n-0.75+p/2.0)*Pi..(n+0.25+p/2.0)*Pi);

lam[n]:=(z[n]/R)^2;

A[n]:=int((T0-Twater)*(z[n]*r/R)^(-p)*BesselJ(p,z[n]*r/R)*

r^(beta),r=0..R)/

int(((z[n]*r/R)^(-p)*BesselJ(p,z[n]*r/R))^2

*r^(beta),r=0..R); od:

U:=proc(r,t) local S; global A,lam,alpha,p,z,R,Nterms;

if r=0 then

S:=sum(A[j]*exp(-alpha*lam[j]*t),j=1..Nterms)/

(2.0^p*GAMMA(p+1.0));

else S:=sum(A[j]*exp(-alpha*lam[j]*t)*(z[j]*r/R)^(-p))

*BesselJ(p,z[j]*r/R),j=1..Nterms);

fi: S:

end proc:

U(0,1) = -16.1542

U(0,2) = -1.45323

For small values of t, the series for U converges very slowly, and it is useful
to compare values of U(r, t) obtained by this method with those obtained using
a numerical method. Problem 5 below will ask you to do this.

Additional Exercises:

1. Using the parameter values from Example 1, run the Maple program to
find the series solution U(r, t). For each value β = 0, 1, and 2, compute
the temperatures U(0, 1), U(0, 2), U(0, 4), and U(0, 6).
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2. Define cooking time Gβ(X) to be the time in hours that it takes for
a package of radius X inches to go from T ◦

0C to (Twater − 2)◦C, using
a given set of parameters. Draw graphs of Gβ(X) for β = 0, 1, 2 on the
interval 0.5in ≤ X ≤ 5in. Choose your own set of parameters from the
values given in Appendix A for some specific type of food.

3. The equation ∂U
∂t

= α
(

∂2U
∂r2

+ β
r
∂U
∂r

)
can be approximated by the differ-

ence equation
U(r, t+∆t)− U(r, t)

∆t

= α

[
U(r +∆r, t)− 2U(r, t) + U(r −∆r, t)

(∆r)2
+

β

r

(
U(r +∆r, t)− U(r, t)

∆r

)]
.

Solve this equation for U(r, t+∆t) in terms of values of U at time t.

4. How would you express the two boundary conditions ∂U
∂r
(0, t) = 0 and

∂
∂r
U(R, t) + h

k
U(R, t) = 0 as difference formulas in U? Be careful at the

end r = 0, since the PDE contains a term with r in the denominator.

5. Check that the Maple program below solves the difference equation in
Problem 2 with the boundary conditions given in Problem 3. Explain
how the program handles the two boundary conditions.

NUMERICAL SOLUTION FOR U(r,t)

h:=100: k:=0.5: alpha:=1.4E-7*3600: R:=0.04: T0:=5: Twater:=100:

beta:=2: (this constant needs to be set to 0, 1, or 2)

N:=16: delr:=R/N: delt:=0.005:

C:=alpha*delt/delr^2; C2:=beta*delr/2.0: C3:=2.0*h*delr/k:

for i from 0 to N+1 do u[i,0]:=T0-Twater; od:

for j from 0 to 2000 do

for i from 1 to N do

u[i,j+1]:=u[i,j]+C*(u[i+1,j]-2*u[i,j]+u[i-1,j]+ (C2/(i*delr))*(u[i+1,j]-u[i-1,j]));

od;

u[0,j+1]:=u[1,j+1];

u[N+1,j+1]:=u[N-1,j+1]-C3*u[N,j+1];

od:

With β = 2, this program produced the values

U(0, 1) ≡ u(0, 200) ≈ −16.1105

U(0, 2) ≡ u(0, 400) ≈ −1.44300

6. Choose appropriate values for N (number of intervals in the partition
of the r-axis) and ∆t, and compute the numerical solution u[i, j] on the
interval 0 ≤ t ≤ 10 hours. In order for the numerical method to be stable,
the constant C = α delt

delr2
must be less than 0.5. For each β = 0, 1, and

2, compare the values you get for U(0, 1), U(0, 2), U(0, 4), and U(0, 6) to
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the values found in Exercise 1 (in each program, the values of U(0, 1) and
U(0, 2), generated by the program with β = 2, are shown). Remember
that in the numerical program r = i ∗ ∆r and t = j ∗ ∆t. State what
values you needed to use for N and ∆t to get all of the results, for the
two different types of solution, to agree in the first decimal place.

7. Assume you are a numerical analyst working for a company that makes
sous-vide cookers. You have been assigned to write a procedure (numeric
or analytic, your choice) that will produce the cooking time for food in
the cooker, given the values of β, h, k, α, T0, and Twater. This should be
the simplest procedure that quickly produces the time it will take the
temperature in the center of the food to reach (Twater − 2)0C. Justify all
of the choices that you make.
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