
A Wilson-Cowan System with Delay

Consider the differential-delay system

x′(t) = −x(t) + S(ax(t− τ)− by(t− τ)− θx)

y′(t) = −y(t) + S(cx(t− τ)− dy(t− τ)− θy) (1)

where S is the function S(z) = 1
1+e−z . If the delay τ is zero, this is a simple

version of the Wilson-Cowan system which models the interaction between two
groups of nerve cells in the brain. The function x(t) represents the percent of
cells active at time t in the population E of excitatory cells, and y(t) represents
the percent of cells active in the inhibitory population I. The terms θx and θy
are external inputs to the cells in E and I, respectively. The system (1) with
τ > 0 models two interacting populations of cells where the feedback from
cells is delayed by a constant time τ > 0.

For the non-delayed system, with τ = 0, it is clear that any constant
solution x(t) ≡ x̄, y(t) ≡ ȳ must satisfy the two equations

x̄ = S(ax̄− bȳ − θx)

ȳ = S(cx̄− dȳ − θy).

Note that the same points (x̄, ȳ) are also the equilibrium solutions of (1)
for any delay τ , since if x(t) is a constant, then x(t− τ) ≡ x(t) for any value
of τ , and similarly for y(t).

In the case of the non-delayed system with τ = 0, determining the stability
of a constant solution (x̄, ȳ) involves linearizing the system around (x̄, ȳ), and
then writing the linearized system in matrix form as X ′(t) ≈ AX(t). The
solutions of this linear system can be written as a linear combination of eλtv⃗
where (λ, v⃗) range over the eigenpairs of the matrix A, and the solution (x̄, ȳ)
can be shown to be asymptotically stable if, and only if, all of the eigenvalues
λ of A have negative real part. The same sort of analysis can be applied to
the delayed system (1).

Let (x̄, ȳ) be any equilibrium solution of (1), and write

x(t) = x̄+ u(t)

y(t) = ȳ + v(t)

where the functions u and v are assumed to be small. We want to know if
this perturbed solution will tend to the point (x̄, ȳ) as t → ∞. This will
happen if, and only if, both u(t) and v(t) tend to zero as t → ∞. To obtain
equations for u and v, substitute the assumed functions x(t) = x̄ + u(t) and
y(t) = ȳ+v(t) into (1). Since x̄ and ȳ are constants, it is clear that u′(t) ≡ x′(t)
and v′(t) ≡ y′(t).
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Consider the first equation in the system (1):

x′(t) ≡ u′(t) = −(x̄+ u(t)) + S(a(x̄+ u(t− τ))− b(ȳ + v(t− τ))− θx).

Let the argument of the function S be written as z+∆z, where z = ax̄−bȳ−θx
is a constant, and ∆z = au(t − τ) − bv(t − τ) is a small perturbation term.
Then the equation becomes

u′(t) = −x̄− u(t) + S(z +∆z).

Since S is an analytic function with derivative S ′(z) = S(z)(1−S(z)), we can
use its Taylor series to write

S(z +∆z) = S(z) + S ′(z)∆z +O((∆z)2)

where the term O((∆z)2) contains all of the nonlinear terms in u(t − τ) and
v(t− τ). Then

S(a(x̄+u(t−τ))−b(ȳ+v(t−τ))−θx) = S((ax̄−bȳ−θx)+(au(t−τ)−bv(t−τ)))

= S(ax̄− bȳ − θx) + S ′(ax̄− bȳ − θx)(au(t− τ)− bv(t− τ)) +O((∆z)2)

= x̄+ x̄(1− x̄)(au(t− τ)− bv(t− τ)) +O((∆z)2).

Putting this back into the equation for u′(t), and dropping the nonlinear terms,
we have

u′(t) ≈ −u(t) + x̄(1− x̄)(au(t− τ)− bv(t− τ)).

Similarly, the equation for v′(t), when linearized, becomes

v′(t) ≈ −v(t) + ȳ(1− ȳ)(cu(t− τ)− dv(t− τ));

and the linearized system (1) can be written in matrix form as(
u(t)
v(t)

)′

= −
(

u(t)
v(t)

)
+M

(
u(t− τ)
v(t− τ)

)
, (2)

where the matrix M =

(
ax̄(1− x̄) −bx̄(1− x̄)
cȳ(1− ȳ) −dȳ(1− ȳ)

)
.

It is known that, in a small neighborhood of an equilibrium (x̄, ȳ), solutions
of (1) will behave very much like solutions of the linearized system (2), and
solutions of the linear system can be assumed to have the form

u(t) = ūest

v(t) = v̄est. (3)

Substituting the functions (3) into (2), we have(
u(t)
v(t)

)′

=
d

dt

(
est

(
ū
v̄

))
= sest

(
ū
v̄

)
;
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and the linearized system (2) has the form

sest
(

ū
v̄

)
+ est

(
ū
v̄

)
−Meste−sτ

(
ū
v̄

)
≡

(
0
0

)
.

Dividing by est,

(sI + I − e−sτM)

(
ū
v̄

)
=

(
0
0

)
,

and this matrix equation can have non-zero solutions if, and only if, the de-
terminant of the matrix (s + 1)I − e−sτM is zero; that is, we need to find all
solutions of the equation

det

(
s+ 1− e−sτax̄(1− x̄) e−sτbx̄(1− x̄)

−e−sτcȳ(1− ȳ) s+ 1 + e−sτdȳ(1− ȳ)

)
= (s+1)2+(dȳ(1−ȳ)−ax̄(1−x̄))(s+1)e−sτ−((ad−bc)x̄ȳ(1−x̄)(1−ȳ))e−2sτ = 0.

If this last equation is multiplied by the positive quantity e2sτ it becomes a
simple quadratic equation in ρ = esτ (s+ 1):

ρ2 + (dȳ(1− ȳ)− ax̄(1− x̄))ρ− (ad− bc)x̄ȳ(1− x̄)(1− ȳ) = 0. (4)

Then if ρ = r1 and ρ = r2 are the two roots of this quadratic equation, it
will be the case that the equilibrium solution (x̄, ȳ) is stable if, and only if, all
complex roots s of the two equations

(s+ 1)esτ = ri, i = 1, 2 (5)

have real parts less than zero.
The following theorem (see [2]) addresses this problem. The proof of the

theorem requires some messy analysis in complex variables, but should be read-
able by anyone who has had at least one introductory course covering complex
variables. For a very readable book covering differential-delay equations see
[1].

Theorem 1 If a > 0, the roots of the equation

ses + aes + (u+ vı) = 0

all satisfy ℜ(s) < 0 if, and only if, u + vı is in the bounded convex region,
symmetric about the u-axis, where

u2 + v2 < a2 + y2−1 if u+ vı is in the first or fourth quadrant
u2 + v2 < a2 + y20 if u+ vı is in the second or third quadrant.

Both y−1 and y0 are roots of the transcendental equation yi tan(yi+α) = a, with
0 < y0 <

π
2
− α, and −π

2
− α < y−1 < −α, where α = arctan

∣∣u
v

∣∣ , 0 ≤ α ≤ π
2
.
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Note: If a root u + vı of the polynomial is real, that is v = 0, then α =
arctan |u

v
| = arctan |∞| = π

2
. This implies that y0 = 0 and y−1 tan(y−1+

π
2
) = a

with −π < y−1 < −π
2
.

Notice that if we multiply (5) by the positive time delay τ , and let z = sτ
then we will need to show that the roots of

zez + τez − τri = 0

all have negative real parts, so that the Theorem applies directly to our prob-
lem.

Example: Consider the delayed Wilson-Cowan system

x′(t) = −x(t) + S(20x(t− τ)− 18y(t− τ)− 1.8)

y′(t) = −y(t) + S(24x(t− τ)− 25y(t− τ)− 1.0). (6)

The figure below shows a phase plane for this system, with τ = 0.

Exercise 1. Show that (6) has exactly three critical points (x̄, ȳ) at P1 ≈
(0.108407, 0.137514), P2 ≈ (0.383516, 0.352498) and P3 ≈ (0.910481, 0.782783).

Exercise 2. Show that when τ = 0, the point P1 is a sink, P2 is a saddle
point, and P3 is a sink. The green and red trajectories in the figure are the
stable and unstable manifolds of the saddle point. Note that any trajectory
that starts to the left of the stable manifold ends up at P!, and those starting
on the right end up at P3.

Exercise 3. Use Theorem 1 to show that P1 becomes unstable for τ between
1.94 and 1.95.

Exercise 4. Use Theorem 1 to show that P3 becomes unstable for τ between
0.69 and 0.70. (A solution of Exercise 4 is given at the end of this paper.)
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Numerical routines for solving differential-delay equations have recently
been developed, and are now available in Maple and other computer algebra
systems. Information concerning the use of these routines in Maple can be
found on the dsolve[numeric][delay] help page. To see how the behavior
of trajectories of (6) changes around the critical points we used the following
Maple routines:

• To define the system (enter desired values for x(0) and y(0)):

ddesys:={diff(x(t),t)=-x(t)+1.0/(1.0+exp(1.8+18*y(t-tau)-20*x(t-tau))),

diff(y(t),t)=-y(t)+1.0/(1.0+exp(1.0+25*y(t-tau)-24*x(t-tau))),x(0)=..,y(0)=..):

• To solve the system (enter desired value for the delay tau):

dsn:=dsolve(eval(ddesys,tau=...),numeric);

• To plot the solution x(t) from t = 0 to t = 40:

Px:=plots[odeplot](dsn,0..40,labels=[t,x]);

• To plot the solution y(t) from t = 0 to t = 40:

Py:=plots[odeplot](dsn,[[t,y(t),color=green]],0..40,labels=[t,y]);

• To plot an (x, y) phase plot in the unit square, with t ranging from 0 to
40:

Pxy:=plots[odeplot](dsn,[[x(t),y(t)]],0..40,x=0..1,y=0..1,labels=[x,y]);

Using these instructions, trajectories of x(t) and y(t) near the two critical
points P1 and P3 were calculated, and plotted for three different values of the
delay τ . In the six figures below, the graph on the left shows a solution starting
near the critical point P1 and the graph on the right uses initial conditions
near P3. The values of τ increase from top to bottom, using the three values
τ = 0.5, 1.7, and 2.1. In the graphs on the left the initial conditions are
x(0) = 0.11, y(0) = 0.14 and on the right the initial conditions are x(0) =
0.915, y(0) = 0.78. In all six cases, the resulting trajectory either approaches
or spirals around the nearest critical point. It looks like limit cycles occur
at both of the points P1 and P3 when they become unstable with increasing
delay. The critical point P2 is an unstable saddle point when τ = 0, and you
can use Theorem 1 to show that it will remain unstable for any positive delay
τ . This means that when τ ≥ 1.95 the system has no stable attractors. The
following lines of Maple code were used to generate the top graph on the left.

with(plots);

ddesys := {diff(x(t), t) = -x(t)+1.0/(1.0+exp(1.8+18*y(t-tau)-20.0*x(t-tau))),

diff(y(t),t)=-y(t)+1.0/(1.0+exp(1+25*y(t-tau)-24*x(t-tau))),x(0)=.11,y(0)=.14};

dsn := dsolve(eval(ddesys, tau=0.5), numeric);

Px := plots[odeplot](dsn,0..40,color = black,thickness=3,labels=[t,"x , y"]);

Py := plots[odeplot](dsn, [[t, y(t), color = orange, thickness = 3]], 0..40);

display(Px,Py);
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x(0) = 0.11, y(0) = 0.14 x(0) = 0.92, y(0) = 0.78

τ = 0.5

τ = 1.7

τ = 2.1

In the figure below some trajectories are shown plotted in the (x, y) plane,
with the value of τ = 2.4. Notice that trajectories can intersect in the phase
plane. There is no uniqueness theorem for a differential equation with delay.
The numerical routines used here assume the value of the functions x and y
on the initial interval −τ < t < 0 is equal to the constant value x(0), or y(0),
respectively. Even with this assumption there can be infinitely many solution
curves passing through a given point.
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Exercise 5. With τ = 2.4, see how close to P1 a trajectory can start and
still wind up oscillating around P3. Use the phase plane for τ = 0 to help you
decide where to start.

Some trajectories in the phase space of (1) with τ = 2.4

Solution of Exercise 4
At the critical point P3 = (0.910481, 0.782783) the quadratic (4) is

ρ2 + 2.620737ρ− 0.942386,

and its two roots are r1 = −2.941153 and r2 = 0.320413. Check it!
For the point P3 to be stable, we need to determine for what values of

τ > 0 all roots of zez + τez − τri have negative real parts for both ri = r1
and r2. Using the notation in Theorem 1, this is equivalent to asking for what
values of τ do all of the roots of

zez + aez + (u+ vı)

have negative real parts, where a ≡ τ and u+ vı ≡ −τri.
Consider first the root ri = r1, so u + vı ≡ (2.941153)τ + 0ı, which is a

positive real number, hence in the positive half plane. This means we must
use Theroem 1 with Y = y−1, α = arctan|u

v
| = arctan(∞) = π

2
. According

to the theorem, the value of Y must satisfy Y tan(Y + π
2
) = a ≡ τ . We

can write a simple one line Maple program to produce a table with columns
(τ, Y, u2 = (τr1)

2, τ 2 + Y 2). Print this Table for increasing values of τ until
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the entry in column 3 becomes larger than the entry in column 4. If this is
done with small increments in τ , it will locate the value of τ where P3 becomes
unstable. Check that it happens between τ = 0.693 and 0.694.

For the other root r2, u+ vı = (−0.320413)τ , and we need to use Theorem
1 with Y = y0. For stability we must have

u2 + v2 < a2 + Y 2.

Since u = −τr2 = (−0.320413)τ, v = 0, a = τ , and Y = y0 = 0, this
condition becomes 0.10266τ 2 < τ 2, and it is satisfied for any positive value of
τ . Therefore the point P3 is stable if τ ≤ 0.693 and unstable if τ ≥ 0.694.
Remember that the conditions must be satisfied for both of the roots r1 and
r2.

Exercise 3 can be solved in a similar manner.

Exercise 5. Read as much as you can in [3] and see if you can prove that
Hopf bifurcations occur at the critical points P1 abd P3 when they lose stability.
This is not a simple problem.
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