
A Population Growth Equation with Diffusion

The logistic population equation studied in ordinary differential equations
classes has the form:

p′(t) = rp(t)

(
1− p(t)

K

)
,

where p(t) is the population of some species at time t, r is its intrinsic growth
rate, and K is the carrying capacity of the ecosystem in which it lives. If the
ecosystem contains two interacting populations, a predator population p(t) and
its prey q(t), the following system of equations is sometimes used by biologists
to model their growth:

dp

dt
=

aϵqp

1 + aTq
− µpc

dq

dt
= rq(1− q/K)− aqp

1 + aTq
, (1)

where a is the predator attack rate, T is the predator handling time, ϵ is the
predator conversion efficiency, µ is the predator death rate, and the exponent
c defines the predator density dependence.

It is also a standard technique to assume that the populations are diffusing
in space; that is, to add diffusion terms to each equation to obtain the following
system of partial differential equations in the population variables p(x, y, t) and
q(x, y, t):

∂p

∂t
= Dp

(
∂2p

∂x2
+

∂2p

∂y2

)
+

aϵqp

1 + aTq
− µpc

∂q

∂t
= Dq

(
∂2q

∂x2
+

∂2q

∂y2

)
+ rq(1− q/K)− aqp

1 + aTq
. (2)

Here, the constants Dp and Dq represent the diffusion rates for the predator
and prey, respectively.

The following theoretical problem was brought to the writer’s attention
by a biologist: if the exponent c is greater than one, is there a possibility
of diffusive instability in the case where the non-spatial model (1) is stable,
and Dp is sufficiently greater than Dq? The following parameter values were
suggested by the biologist: r = 0.3, K = 5, a = 1, T = 2, ϵ = 1.5, µ =
0.4, c = 1.5, Dp = 0.1, Dq = 0.03. These values were chosen to model
a problem involving a lake containing populations of zooplankton (predators)

1

and algae (prey). The populations are assumed to inhabit a rectangular region
0 ≤ x ≤ 20 and 0 ≤ y ≤ 15.

The non-spatial model (1) can be solved numerically using the DEplot

command in Maple. With the above parameter values, DEplot was used to
graph the phase plane of (1), and the result is shown on the left below. Note
that there appears to be a stable spiral sink at (p̄, q̄) ≈ (0.4385, 0.2730). This
can be easily checked by finding the equilibrium points and then using the
trace-determinant plane to determine their type.

Exercise 1. Compute the Jacobian for the system (1), using the given pa-
rameters, and show that the single equilibrium at (0.4385, 0.2730) is a spiral
sink.

Exercise 2. Show that if the following parameter changes are made: a =
1.5, K = 5.5, T = 2.2, ϵ = 1.0, and µ = 0.33, the equilibrium moves to (p, q) =
(0.3294, 0.2164) and becomes unstable, and a limit cycle appears. A phase
plane for this system is shown above on the right.

To solve the diffusive system (2), we note that each equation is a parabolic
partial differential equation, but each contains nonlinear terms in p and q;
however, the numerical method we have used for parabolic p.d.e.s still works.
Approximating ∂p

∂t
and ∂q

∂t
by forward differences, and the second-order partials

by central differences the reader is invited (indeed encouraged) to check that
the result is the following system of difference equations for Pi,k,j ≡ p(i · dx, k ·
dy, j · dt) and Qi,k,j ≡ q(i · dx, k · dy, j · dt), i = 0, 1, · · · , N, k = 0, 1, · · · ,M .

The new constants are Cpx = ∆tDp

(∆x)2
, Cpy =

∆tDp

(∆y)2
, Cqx = ∆tDq

(∆x)2
, Cqy =

∆tDq

(∆y)2
.

2

Pi,k,j+1 = Pi,k,j + Cpx(Pi+1,k,j − 2Pi,k,j + Pi−1,k,j)

+ Cpy(Pi,k+1,j − 2Pi,k,j + Pi,k−1,j) + ∆t

(
aϵPi,k,jQi,k,j

1 + aTQi,k,j
− µ(Pi,k,j)

c

)
Qi,k,j+1 = Qi,k,j + Cqx(Qi+1,k,j − 2Qi,k,j +Qi−1,k,j)

+ Cqy(Qi,k+1,j − 2Qi,k,j +Qi,k−1,j) + ∆t

(
rQi,k,j

(
1− Qi,k,j

K

)
− aQi,k,jPi,k,j

1 + aTQi,k,j

)

If neither population flows across any of the edges of the lake, we can
assume ∂p

∂x
and ∂q

∂x
are zero on the boundaries where x = 0 and x = 20, and

similarly, ∂p
∂y

and ∂q
∂y

are zero on the boundaries where y = 0 and y = 15. In the

Maple program, making ∂p
∂x

≡ 0, for example, is done by assuming the central

difference p(∆x,y,t)−p(−∆x,y,t)
2∆x

= 0 for all y and t. This is simulated by making
P−1,k,j = P1,k,j for k = 0, 1, · · · ,M at the beginning of each time step. The
other three conditions are handled similarly.

The initial condition requires specifying an initial predator population

3

p(x, y, 0) = f(x, y) and initial prey population q(x, y, 0) = g(x, y) where f
and g are functions defined on the rectangle 0 ≤ x ≤ 20, 0 ≤ y ≤ 15.

The Maple program on page 6 was used to compute 600 time steps with
∆t = 0.5, and with the x and y intervals partitioned so that ∆x = ∆y = 1.0.
For each j = 0, 1, · · · , 600 the results were stored in two 20× 15 matrices, one
for the predator distribution and the other for the prey. The surface defined
by each of these matrices was plotted using the command matrixplot and the
resulting plots were stored in two lists. Each of these lists can be animated to
show how the corresponding population varies over time. The eight figures on
pages 3 and 4 show the two populations at four different times. Be sure to take
notice of the vertical scale on the graphs. When s = 600, both populations
are nearly constant at their limiting values p ≈ 0.44 and q ≈ 0.27.

The initial functions were chosen arbitrarily. The initial predator popula-
tion is modelled by a sum of three exponential functions of the form e−((x−x̄)2+(y−ȳ)2)

where the three points (x̄, ȳ) were chosen to be (0.3H, 0.3L), (0.7H, 0.2L), and
(0.8H, 0.7L), with H = 20 and L = 15 being the dimensions of the rectangular

4

lake. The initial prey population is assumed to be of a similar form. It was
found that, while there was a rather interesting transient behavior initially,
by the 600th time step (t = 300.0), both populations had nearly converged
to their equilibrium values over the entire rectangle. Notice that the Maple
program maintains a list LP, containing the predator population size in the
middle of the rectangle over the time interval s = 0..S. When plotted, this
makes it possible to see if the populations are converging to a fixed value, or
oscillating in a near periodic fashion.

Exercise 3. Run the pde program with the initial parameter values (with
Dp=0.1 and Dq=0.03) and notice that the populations converge to the values
determined in Exercise 1. Then make the alterations given in Exercise 2 and
show that the populations oscillate. The two graphs below are plots of the
list LP generated by the Maple program. If you estimate the period of the
oscillation, does it match your estimate for the period of the limit cycle in
Exercise 2? Remember that the time t is equal to s/2.

Predator population in center of lake for 0 ≤ s ≤ S

Exercise 4. Use the original parameters and run the pde program. See if you
can make it oscillate by changing only the values of c,Dp, and Dq.

5

Maple program for the predator-prey system with diffusion

> Len:=20: N:=20: #length of pond

> Hgt:=15: M:=15: #width of pond

> r:=0.3: #prey intrinsic growth rate

> K:=5: #prey carrying capacity

> a:=1.0: #predator attack rate

> T:=2.0: #predator handling time

> eps:=1.5: #predator conversion efficiency

> mu:=0.4: #predator death rate

> c:=1.5: #predator density dependence

> Dp:=0.1: Dq:=0.03: #predator and prey diffusion rates

> g:=(x,y)->0.2*exp(-0.02*(x-0.5*Hgt)^2-0.02*(y-0.6*Len)^2)

+0.1*exp(-0.02*(x-0.75*Hgt)^2-0.01*(y-0.1*Len)^2):

> f:=(x,y)->exp(-(x-0.3*Hgt)^2-(y-0.3*Len)^2)+exp(-(x-0.7*Hgt)^2

-(y-0.2*Len)^2)+exp(-(x-0.8*Hgt)^2-(y-0.7*Len)^2):

> dx:=Len/N: dy:=Hgt/M: dt:=0.5: Cpx:=dt*Dp/(dx*dx):

> Cpy:=dt*Dp/(dy*dy): Cqx:=dt*Dq/(dx*dx): Cqy:=dt*Dq/(dy*dy):

> for i from 0 to N do for k from 0 to M do ## store the initial populations

P[i,k,0]:=f(i*dx,k*dy); Q[i,k,0]:=g(i*dx,k*dy); od; od: LP:=[[0,P[10,7,0]]]:

> S:=600: for j from 0 to S-1 do ## start a time step

for i from 0 to N do

P[i,-1,j]:=P[i,1,j]; Q[i,-1,j]:=Q[i,1,j];

P[i,M+1,j]:=P[i,M-1,j]; Q[i,M+1,j]:=Q[i,M-1,j]; od;

for k from 0 to M do

P[-1,k,j]:=P[1,k,j]; Q[-1,k,j]:=Q[1,k,j];

P[N+1,k,j]:=P[N-1,k,j]; Q[N+1,k,j]:=Q[N-1,k,j]; od;

for i from 0 to N do for k from 0 to M do

P[i,k,j+1]:=P[i,k,j]+Cpx*(P[i+1,k,j]-2*P[i,k,j]+P[i-1,k,j])

+Cpy*(P[i,k+1,j]-2*P[i,k,j]+P[i,k-1,j])

+dt*a*eps*P[i,k,j]*Q[i,k,j]/(1+a*T*Q[i,k,j])-dt*mu*P[i,k,j]^c;

Q[i,k,j+1]:=Q[i,k,j]+Cqx*(Q[i+1,k,j]-2*Q[i,k,j]+Q[i-1,k,j])

+Cqy*(Q[i,k+1,j]-2*Q[i,k,j]+Q[i,k-1,j])

+dt*r*Q[i,k,j]*(1.0-Q[i,k,j]/K)-dt*a*Q[i,k,j]*P[i,k,j]/(1+a*T*Q[i,k,j]);

od; od; LP:=[op(LP),[j+1,P[7,10,j+1]]];

od: with(plots): pointplot(LP);

To set up the animation:

> with(plots): with(linalg):

> for s from 0 to S do Pred[s]:=linalg[matrix](N+1,M+1);

Prey[s]:=linalg[matrix](N+1,M+1);

for i from 1 to N+1 do for k from 1 to M+1 do Pred[s][i,k]:=P[i-1,k-1,s];

Prey[s][i,k]:=Q[i-1,k-1,s]; od; od;

GPrey[s]:=matrixplot(Prey[s],axes=frame,gap=0.02,style=patch);

GPred[s]:=matrixplot(Pred[s],axes=frame,gap=0.02,style=patch);od:

Lpred:=[]: Lprey:=[]: for u from 0 to S do

Lpred:=[op(Lpred),[GPred[u]]]; Lprey:=[op(Lprey),[GPrey[u]]]; od:

> display3d(op(Lpred),insequence=true); display3d(op(Lprey),insequence=true);

6

