
Student Project: An Adaptive Predator-prey System

A simple predator-prey model can be written in normalized form as

N ′
1(t) = N1(t)

(
1− N1(t)

K
− c12N2(t)

)
N ′

2(t) = N2(t) (−r + c21N1(t)) ; (1)

where N1(t) and N2(t) are the sizes of the prey and predator populations, respec-
tively, at time t. The constant K is the carrying capacity of the prey and r is the
normalized death rate of the predator, assuming the prey’s growth rate is b = 1. The
term c21N1N2 represents the gain in the growth rate of the predator due to its inter-
action with the prey, and c12N1N2 is the corresponding loss in the growth rate of the
prey. The constants c12 and c21 take into account the difference in the mean weight
between the two species. For a really nice introduction to this model see Section 6.2
in [4].

Problem 1. Write system (1) in the form

N ′
1 = N1 −

(N1)
2

K
− c12N1N2 ≡ F (N1, N2)

N ′
2 = −rN2 + c21N1N2 ≡ G(N1, N2), (2)

and compute the Jacobian matrix J(N1, N2) =

( ∂F
∂N1

∂F
∂N2

∂G
∂N1

∂G
∂N2

.

)
.

Problem 2. Show that the only points (N1, N2) where F and G are simultaneously
equal to zero are (0, 0), (K, 0), and P =

(
r
c21

, Kc21−r
Kc12c21

)
. This means that if K > r

c21
,

the system (1) will have three equilibrium solutions in the positive quadrant.

Problem 3. Use the Jacobian found in Problem 1 to show that (0, 0) is always a
saddle point, and that if K > r

c21
then (K, 0) is also a saddle point. What type of

equilibrium is (K, 0) if K < r
c21

. Note that in this case, the point K is no longer in
the positive quadrant.

Problem 4. If K > r
c21

, show that the interior critical point P is asymptotically
stable. For what value of r does it bifurcate between a spiral sink and a sink?

The figure below shows a phase plane for the system (1), with parameters r =
0.2, K = 10, c12 = 0.45 and c21 = 0.2. In this particular case, all of the solutions
with positive initial values converge to the interior critical point P = (1, 2) where the
two populations coexist. With the above parameter values P can be clearly seen to
be a spiral sink.
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Figure 1: Trajectory of the predator-prey system starting at N1(0) = 3, N2(0) = 1.

Suppose it is known that increased interaction with the prey improves the preda-
tor’s hunting ability; that is, the predator is able to adapt its behavior, or “learn”. It
seems logical to hypothesize that in this case the value of c12 and c21 should also be
proportional to the amount of past interaction between the two species. The more
contact the predators have had with the prey over the recent past, the more successful
they should be at capturing them. One way to compute an average of past interaction
is to use an integral with an averaging kernel kT , and write:

average interaction over the past =
∫ t

−∞
kT (t− u)N1(u)N2(u)du,

where the averaging kernel kT (t) is a positive function on (0,∞) satisfying∫ ∞

0

kT (u)du = 1 and
∫ ∞

0

ukT (u)du = T.

We will use the simplest averaging kernel of this type: kT (t) = 1
T
e−t/T . The larger

the value of T , the longer the time period over which the adaptation takes place. A
large negative exponent − 1

T
, with T small, makes the average more dependent on the

recent past.
We will define an adaptive predator-prey system:

N ′
1(t) = N1(t)

(
1− N1(t)

K
− b12N2(t)

∫ t

−∞
kT (t− u)N1(u)N2(u)du

)
N ′

2(t) = N2(t)

(
−r + b21N1(t)

∫ t

−∞
kT (t− u)N1(u)N2(u)du

)
; (3)

where the constants b12 and b21 are, respectively, the constants c12 and c21 each di-
vided by the product of N1 and N2 at the interior critical point P . This serves to keep
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the interior critical point the same for both the adaptive system and the nonadaptive
system, so that the approach to the equilibrium can be compared.

Note that by defining a new function

Z(t) =

∫ t

−∞
kT (t− u)N1(u)N2(u)du,

we can write (3) as a system of three ordinary differential equations:

N ′
1(t) = N1(t)

(
1− N1(t)

K
− c12

n1n2

N2(t)Z(t)

)
N ′

2(t) = N2(t)

(
−r +

c21
n1n2

N1(t)Z(t)

)
Z ′(t) =

1

T
(N1(t)N2(t)− Z(t)); (4)

where we have used the product rule to differentiate the function Z(t).

Problem 5. With kT (t) = 1
T
e−t/T , use the product rule for differentiation, and the

fundamental theorem of calculus, to show that

Z ′(t) =
d

dt

(
1

T
e−t/T

∫ t

−∞
eu/TN1(u)N2(u)du

)
=

1

T
(N1(t)N2(t)− Z(t)).

At any equilibrium point (N1, N2, Z) of (4) the value of the integral Z(t) remains
constant at N1 ×N2. This means that if (n1, n2, n1n2) is an interior equilibrium, n1

and n2 must satisfy the two equations

1− n1

K
− c12n2 = 0 and − r + c21n1 = 0;

that is, n1 =
r
c21

and n2 =
1
c12

(
1− r

c21K

)
.

Problem 6. Writing the system ( 4) as

N ′
1 = F (N1, N2, Z) = N1 −

N2
1

K
− c12

n1n2

N1N2Z

N ′
2 = G(N1, N2, Z) = −rN2 +

c21
n1n2

N1N2Z

Z ′ = H(N1, N2, Z) =
1

T
(N1N2 − Z) , (5)
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find the Jacobian. It will be a 3× 3 matrix containing the partial derivatives of F,G,
and H with respect to each of the three variables N1, N2, and Z.

A point (x, y, z) in R3 will be a critical point for the adaptive system iff F (x, y, z) =
G(x, y, z) = H(x, y, z) = 0.

Problem 7. Show that the critical points of (4) are (0, 0, 0), (K, 0, 0), and P =(
r
c21

, Kc21−r
Kc12c21

, r
c21

Kc21−r
Kc12c21

)
.

FROM HERE ON THE CONSTANTS WILL HAVE VALUES:

K = 10, r = 0.2, c12 = 0.45, c21 = 0.2.

Using these values, we will try to compare the rate of approach of solutions of the
adaptive and non-adaptive systems to the interior critical point P , where N1 = 1 and
N2 = 2. Remember that Z approaches the value N1N2 as the trajectory approaches
P . Figure (1) shows a trajectory of the non-adaptive system (with the above parame-
ters) starting at the initial point (3.0, 1.0) in the phase plane.

Check, using your solution to Problem 1, that the Jacobian for the non-adaptive
system at the interior critical point P = (n1, n2) will be

J(n1, n2) ≡ J(1, 2) =

(
−n1

K
−c12n1

c21n2 −r + c21n1

)
=

(
−0.1 −0.45
0.4 0

)
;

therefore, the characteristic polynomial at P is

det(λI− J) = det

(
λ+ 0.1 0.45
−0.4 λ

)
= λ2 + 0.1λ+ 0.18.

The eigenvalues (roots of the characteristic polynomial) are

λ ≈ −0.05± 0.4213ı.

Close to the equilibrium point P , the non-adaptive system is approximated by the
linear system with matrix J , so the solutions are given approximately by(

N1(t)
N2(t)

)
=

(
1
2

)
+ α1e

λ1tv⃗1 + α2e
λ2tv⃗2

where (λi, v⃗i), i = 1, 2 are the two eigenpairs of J and α1 and α2 are constants. If
both of the eigenvalues have negative real parts, we will define the rate of approach
to P for the non-adaptive system to be maxi=1,2(Re(λi)). Note that the closer the
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negative real part of the eigenvalues is to zero, the more slowly the solution will
approach P . In this case the trajectories will approach P at an exponential rate of
e−0.05t when they are very close to P . It can also be seen that they spiral with a semi-
period of 2π

0.4213
≈ 15 when they are close to P . The figure below shows a graph of

the functions N1(t) and N2(t) starting from the initial point (N1(0), N2(0)) = (3, 1).

Figure 2: The functions N1(t) and N2(t) (dashed) as t goes from 0 to 120.

For the adaptive system we can do the same thing, using the Jacobian found in
Problem 6:

J (n1, n2, n1 · n2) =

 −n1

K
−c12n1 −c12

c21n2 0 c21
n2

T
n1

T
− 1

T

 =

 −0.1 −0.45 −0.45
−0.4 0 0.2

2
T

1
T

− 1
T

 .

If the real parts of the three eigenvalues are all negative we will define the rate of
approach to P for the adaptive system to be maxi=1,2,3(Re(λi)).

This is a problem where you really want to have a CAS to find eigenpairs for a
given matrix. In Maple, the instructions

with(LinearAlgebra):
A:=<<a11,a21,a31>|<a12,a22,a32>|<a13,a23,a33>>:
v,e:=Eigenvectors(A);

will return the three eigenpairs of the matrix A. Be sure to notice that the matrix A
is entered in column form.
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In the adaptive case, the characteristic polynomial at P will be equal to

det(J− λI) = det

 −0.1− λ −0.45 −0.45
−0.4 −λ 0.2

2
T

1
T

− 1
T
− λ

 ,

and it will be a cubic polynomial in λ. Expand the matrix by cofactors and show that
the characteristic polynomial is:

−p(λ) = λ3 +

(
0.1 +

1

T

)
λ2 +

(
0.18 +

0.8

T

)
λ+

0.52

T
. (6)

Letting f(λ) = −p(λ), we want to determine when the real part of each of the three
roots is negative. If that is true then trajectories that start close enough to P will tend
to P as t → ∞. The cubic will either have three real roots or one real root and two
complex conjugate roots. Note that there can be no positive real roots because all of
the terms in the cubic are positive if λ > 0.

There is a standard test to determine which of the two cases will occur. If we
write

f(λ) = λ3 + pλ2 + qλ+ r,

and substitute λ = x− p
3
, the cubic reduces to the form

x3 + ax+ b,

with the x2 term missing. The new coefficients are

a =
1

3
(3q − p2) and b =

1

27
(2p3 − 9pq + 27r).

It can then be shown that there will be three real roots iff b2

4
+ a3

27
≤ 0. Since b2 > 0,

this can only occur if a < 0. The value of a in (6) is

a = q − p2

3
=

(
0.18 +

0.8

T

)
− 1

3

(
0.1 +

1

T

)2

≈ 0.17667 +
0.7333

T
− 0.3333

T 2

and this is positive at least if T > 0.42. So for all T > 0.42 we can assume that the
characteristic polynomial has one negative real root and a pair of complex conjugate
roots α± βı. This means that the only way the critical point P can lose stability is if
the real part α of the complex roots becomes positive.

Writing the cubic as a product of its factors,

λ3 + pλ2 + qλ+ r = (λ− λ1)(λ− λ2)(λ− λ3),
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it is easily seen that the coefficient of λ2 is p = −(λ1 + λ2 + λ3). Letting λ1 and λ2

be the complex roots α± βı, and λ3 = c, we see that

λ1 + λ2 + λ3 = 2α + c = −(0.1 +
1

T
) → α =

−0.1− 1
T
− c

2
.

This means that α will be negative as long as c > −
(
0.1 + 1

T

)
.

For several values of T , the table below shows the roots of (6) together with the
value of −0.1− 1

T
. It appears that a bifurcation occurs for T ≈ 4.444. At the critical

point P the real part of the complex roots becomes positive, and the point P is no
longer asymptotically stable.

T α± βı c −(0.1 + 1
T
)

0.1 −0.4106± 0.6259ı −9.2788 −10.1
0.2 −0.4188± 0.6592ı −4.2624 −5.1
0.5 −0.3738± 0.7933ı −1.3524 −2.1
1.0 −0.1841± 0.8226ı −0.7318 −1.1
2.0 −0.0535± 0.7242ı −0.4931 −0.6
4.0 −0.0030± 0.6148ı −0.3440 −0.36
4.444 −2 ∗ 10−6 ± 0.6000ı −0.3250 −0.3250
5.0 0.0023± 0.5843ı −0.3046 −0.3

On the next page trajectories for T = 1, 2, and 5 are shown, both in the (N1, N2)-
plane and as time series N1(t), N2(t), and Z(t) over the t-interval (0, 120). It seems
clear that the populations move most quickly to the stable critical point when the time
constant T is small. This suggests that quick adaptation is most effective at ending
the cyclical behavior. With adaptation averaged over a long time period it appears
that the populations enter into some type of long-term cyclical behavior.
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For T = 1, 2, and 5, the figures below show the trajectory in the (N1, N2)-plane,
together with graphs of N1(t), N2(t), and Z(t) over the t-interval (0, 120). The dark
curve is N1(t), the dashed (orange) curve is N2(t), and the light (green) curve is
Z(t). The initial conditions in each case are N1(0) = 3, N2(0) = 1, and Z(0) =
N1(0) ·N2(0) = 3.
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TOPICS FOR FURTHER STUDY

1. How does the value of the death rate r of the predator effect the behavior? If
r is very small, the predators’ average life span will be long, and they will be
able to adapt over a longer time period. Changing r also changes the location
of the critical point P , so you will need to recompute the nonadaptive system
for different values of r in order to do a comparison.

2. How does the value of the carrying capacity K effect the behavior of the pop-
ulations? Note that changing K also changes the location of the critical point
P .

3. The cyclical trajectory observed in the adaptive model when T ≈ 4.444 may
be an example of a Hopf bifurcation. Learn everything you can about Hopf
bifurcations and then see if you can prove that one occurs in this model.

4. Does the same type of bifurcation occur as the parameter r is varied?
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