Relaxation Oscillators and Neural Networks

In Section 3 of Chapter 5, the van der Pol equation
" +c(z® = 1)’ + 2 =0, (1)

is used to introduce limit cycles. This equation was originally derived in 1926
by the Dutch physicist and electrical engineer Balthasar van der Pol, to model an
electrical circuit, with nonlinear resistance, in a vacuum tube. At that time, radios
were made with vacuum tubes, since the transistor had not yet been invented. When
the constant c in the equation is small, the solutions all approach a limit cycle, and
the graph of x(¢) approaches a smooth periodic sine-like curve (left graph below).
When the constant c is large, say ¢ = 20, the graph of the limit cycle has a very
different non-sine-like appearance (right graph below). The oscillation in the circuit
with large c is called a “relaxation oscillation”. The phrase “relaxation oscillation”
was introduced by van der Pol in 1926.
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The van der Pol equation (1) can be written as a system of two first-order ODE:s:
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The function f is a cubic in x. Using the information in Chapter 5, we can then do
a phase plane analysis on this system in order to see why the change in behavior
occurs.

Finding answers to the four problems below will help you understand the be-
havior of the system (2):

1. Show that the function f(x) = . _ 7 makes the system (2) and the second-

3
order equation (1) equivalent. Remember that £ (f(z(t))) = % L4z



2. Draw a phase plane for (2) and draw the x and y nullclines; that is, all curves
where 2/ = 0, or 3y = 0, respectively. Show that the nullclines intersect only
at (z,y) = (0,0), so that (0, 0) is the unique fixed point for the system.

3. Find the partial derivatives %—5, %—5, %—S, %,

J(x,y) for the system. Evaluate .J(0,0).

and write out the Jacobian matrix

4. Determine all bifurcation values of the system for ¢ > 0. How does the type
of the equilibrium at (0, 0) change as ¢ increases?

If you have any trouble with these problems, the answers to 2, 3, and 4 can be
found at the end of this article.

Around the same time, other scientists and engineers were beginning to be in-
terested in modelling the electrical activity in nerve cells (neurons) in order to “un-
derstand” the behavior of the human brain. In the case of engineers, they were
hoping to be able to produce a model that could be used to program a computer
capable of “learning” to do human-like tasks, such as translating foreign languages,
recognizing objects in a scene, etc. One of the first biological models was a system
of differential equations for the electrical activity in a giant squid axon. It won its
authors A. L. Hodgkin and A. F. Huxley the 1963 Nobel prize in Physiology and
Medicine. Their model approximated voltages across the cell membranes, and in-
volved a number of parameters which had to be determined to make the behavior of
the model mimic the behavior of the voltage in the cell. Its complexity, and the fact
that it was specific to the squid axon, made it not the type of model the computer
engineers were looking for.

Later in the 1960’s, a simplification of this model was proposed by Richard
FitzHugh and J. Nagumo. It consisted of the following two first-order differential
equations:
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In this model, V' (¢) is a membrane-like voltage, I(t) is an input current, w(t) is a
general gate voltage, and a, b, and 7 are parameters. The value of 7 is assumed to
be positive and strictly less than one.

Notice the similarities and differences between this system and the Van der Pol
system (2). The V-isocline w = V' — V3 + [ is again a cubic, which can be moved
up or down in the (V, w) phase plane by changing the value of the input current /.
The w isocline V' = a + bw is a straight line that can be moved to any position by
the values of the parameters a and b. This means that for certain values of the pa-
rameters the neuron will act like a relaxation oscillator. Several investigators have
used different versions of this model to study the behavior of the output of groups of
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interacting neurons. See the article: H. Ryu and S.A. Campbell. Geometric Analy-
sis of Synchronization in Neuronal Networks with Global Inhibition and Coupling
Delays, to appear to Philosophical Transactions of the Royal Society A, 2019.

Many models for the behavior of neurons have been suggested. One of the
simplest ways to model the behavior of a neuron is called the “integrate and fire”
model. Basically it is assumed that in a network of N neurons, some or all of which
are interconnected, each neuron receives a weighted sum of inputs from the other
neurons to which it is connected, and produces an output if the sum is greater than
some specified threshold value. The weights between the neurons are usually varied
over time, giving the network a way in which to adapt, or “learn”. The most popu-
lar such network, called a backpropagation network, is one in which the weights
between cells are varied to minimize the difference between the output of the net-
work and a desired output specified by the problem solver. This is referred to as
supervised learning. Backpropagation’s popularity has experienced a recent resur-
gence given the widespread adoption of deep neural networks for problems such
as image recognition. This method is rather far removed from the actual behavior of
neurons in the brain, but performs surprisingly well when extremely large computer
resources are available.

A more realistic approach to learning might consist of allowing each neuron to
collect signals from a subset of the neurons in the system. The weights between
them could then be augmented in terms of the concurrence of activity in the two
connected cells. One model in which this was tried', for a fully connected system
of N cells, uses the equations
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The function o(z) is either a Heaviside function H(z — ) with threshold 6, or a
smoothed version of H(z — ). Several differentiable approximations to H were
mentioned in the text. The differential equation for the weight A;; is derived by
assuming that A;; is the average, over the past, of the interaction between cells ¢
and j; that is

Api(t) = % /_ /T () (a5 () s

Note that if the weights A;; are positive, the action of cells on each other in (4)
is inhibitory; that is, the larger the value of A;;, the greater the negative effect
of cell 7 is on cell 7. The value of a weight increases if, and only if, both cells
1 and j are active at the same time. It would probably be more realistic to have

"Noonburg, V. W., (1997). Threshold-dependent limit cycles in a nonlinear network model.
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the feedback term o (z,(t)) evaluated at time ¢t — At¢, which would make (4) be a
system of differential-delay equations. This has not been tried, but even without the
delay this system can be shown to produce periodic solutions in which each neuron
acts as a relaxation oscillator. As an example, consider a two cell system (4) with
N =2,¢=03,T =5.0,and 0(z) = H(z — 0),0 = 0.768. The value of the
threshold 6 is critical; it must be very close, but not equal, to 1%6 ~ 0.7692. The
initial values used are x1(0) = 0.2, 29(0) = 0.1, A12(0) = 0.5, A5, (0) = 0.5. The

initial values for z; and x5 must be between 0 and % (the cell’s “carrying capacity”).
The two figures show x; with its weight A5 (dotted) and x5 with As;. It is clear

that the cells are behaving like relaxation oscillators.

IDEAS FOR FURTHER INVESTIGATION

1. This one is for the computer experts. Read the file entitled “An Introduction
to Backpropagation Networks” and write a computer program that learns to
recognize 3 or 4 different patterns in a 4 x 4 matrix. This means that your
input layer must contain 16 cells and the output layer contains 4 (or 5, if you
want a unique response when the input is not close to any of the four patterns).
Train the system with sample inputs and then test it on a random set of binary
matrices (i.e. matrices containing only 1’s and 0’s).

2. For the system (3), write out the Jacobian J(V,w), assuming the input /
is zero. and 7 = 0.1. Find the equilibria, and determine the type of each
for arbitrary values of a and b. What happens if you let the input /(¢) be a
periodic function? See if you can find a set of parameters such that the system
produces relaxation oscillations. What other types of behavior can occur?



3. Try to design a system (4) with three cells x1, 22, and x5. How many weights
will there be? Find all critical points of this system. Try to set the parameters
so that the system produces relaxation oscillations.

ANSWERS TO PROBLEM 2 - 4

The two graphs below show the phase planes for the van der Pol equation when
¢ = 1.5 and ¢ = 10. The 2’ nullcline is the curve y = ’”—; — x, and the 3’ nullcline
is the y axis, © = 0. These intersect only at the critical point (0, 0). Notice the way
in which trajectories behave around (0, 0). The point (0, 0) is a spiral source when
¢ < 2 and is a source for ¢ > 2. When (0,0) is a source, one gets the behavior
characteristic of a relaxation oscillator. The trajectories move along the cubic to the
max or min point, and then shoot across to the other side at high speed. To see why,

look at the arrows.
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The Jacobian for the system is the matrix
OF OF 2
% ou c(—z*+1) ¢
sen = (& &)= (TG

At the origin, J(0,0) = | , so its determinant is 1 and the trace is c.

c
. 0
If you put the point (¢, 1) into the trace-determinant plane, you will see that since
the determinant is always equal to 1, the point (¢, 1) crosses the parabola det =
(trace)?/4 when c is equal to 2. This implies that the type of the equilibrium at

(0, 0) changes from a spiral source to a source when ¢ passes through 2.

5



