navigation4

## 4. Great circle sailing

The calculation of the great circle track between two points A and B with given latitude and longitude is an exercise in spherical trigonometry.

The points A and B form a spherical triangle with the North Pole C. Each side of this triangle is an arc of a circle centered at the center of the earth, i.e. a great circle. The length of a great-circle arc can be read off immediately from the corresponding central angle: the measurement of the central angle in minutes of arc gives the length of the arc in nautical miles. If we call a, b, c the sides opposite vertices A, B, C, then in this triangle we know a, b, and C. Side a has length 90o minus the latitude of vertex B, and vice-versa. The angle C is the difference between the longitudes of A and B. This is enough information to solve for all the elements of the triangle, in particular side c (the great-circle distance) and angle A (the initial course).

Starting point and destination, together with the North Pole, form a spherical triangle.

Here is the problem from Dutton:

• Compute the distance and initial course by great circle sailing from a point in Lat. 37o-42' N., Long. 123o-04'W., near Farallon Island Lighthouse, to a point Lat. 34o-50' N., Long. 139o-53' E., near the entrance to the Bay of Tokio.

In this case we compute a = 90o - 37o42' = 52o18', b = 90o - 34o50' = 55o10' and C = 360o - 123o04' - 139o53' = 97o03'.

We may solve for c using the spherical law of cosines:

cos c = cos a cos b + sin a sin b cos C.

This gives c = 74.36o or 4461.6 nautical miles.

Once c is known, A can be calculated using the spherical law of sines:

sin A / sin a = sin B / sin b = sin C /sin c.

Using the known values for a, c, and C this gives A = 57.77o, or 57o46'19".

Welcome to the
Feature Column!

These web essays are designed for those who have already discovered the joys of mathematics as well as for those who may be uncomfortable with mathematics.
Read more . . .

Search Feature Column

Feature Column at a glance