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limiting case «M0. Actually, in

(2a) we have retained the leading

term while neglecting 0(«2), which

is consistent with the linear-per-

turbation theory.

F(n) according to (2) and (2a)

is plotted in Figure 1. It is clear

that Gothert's and Sauer's conclus-

ion cannot be correct in the range of

practical interest (1/10<«< 1/3

and 0.6 ^/3<1, say), since all of

the various procedures listed above

result in appreciable corrections to

the velocity ratio. It seems more

reasonable to conclude merely that

the linear-perturbation theory can-

not distinguish between the vari-

ous results. In this situation the

formula of Method I might well be Fig. 1. The superstream velocity ratio for ellipsoids

adopted by reason of its simplicity. of revolution in incompressible flow.

ON THE NUMERICAL TREATMENT OF FORCED OSCILLATIONS*

By ALVIN C. SUGAR" (Northrop Aircraft)

1. Introduction. The differential equation, with typical initial conditions, of an

harmonic oscillator subject to the action of a general disturbing force ma(t) is given by

x + o>2x = a(t), a;(0) = 0 = x(0). (1)

This equation occurs in problems involving from one to infinitely many degrees of

freedom. Its solution can be expressed as follows:

D C ' x
x = — > where D = I a(r) sin u(t — r)dr (2)

01 J o

is the so-called Duhamel integral. If in (1) we replace only x by D/u we obtain an

expression for the acceleration of the body.

x = a(t) — wD. (3)

In this note a simple expression which is an approximation of D is found. This

expression provides a convenient process for evaluating x and related quantities. Us-

ing the resulting simplified form of the acceleration a quick and easy vector method

of obtaining the maximum acceleration is explained. Rapid methods of finding the

* Received Oct. 1, 1945.

** Now at Brown University.
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maximum displacement are also considered. By maximum acceleration is meant maxi-

mum magnitude or absolute value of acceleration and similarly for displacement.

2. Evaluation of the Duhamel integral. The curve y=a(t) is approximated by a

broken line Y = A(t), see Fig. 1. As indicated we are taking A(t0)=0. Since the ap-

proximation of a curve by a broken line can be improved by increasing the number of

segments, it is evident that this method can produce a solution which is as accurate

Fig. 1

as desired. Frequently in engineering problems the forcing function is known only

approximately and the additional error introduced by a broken line consisting of rela-

tively few segments is negligible.

Let A(t)=Ai(t), where yi = Ai(t) is the equation of a straight line of

slope m- Since the linesyi = Ai(t) and yi+i=Ai+\(t) intersect at the point (<;, Ai(ti)), it

follows that
Ai+1(ti) = AtW). (4)

With the notations of Fig. 1 the Duhamel integral can be approximated in the follow-

ing manner:

D = I a(r) sin u(t — r)dr
J 0

1 /» li » <

« I Ai(r) sin u(t — r)dr + I A j{r) sin w(t — r)dr.
i-\ J (<_! J tj-J

Integration by parts enables us to write this in the form

1 r > j-i -i

uD = A{t) 2 Mi sin u(t - /i_i) - X m sin u(t - /,)
w L i-i «=.o J

where we have defined ^o = 0 in order to obtain the following compact result:

1 r fci
uD = A f" X) (m.+x — Hi) sin u(t — /*)!.

L »-o J
(5)
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From (3) and (5) it is evident that

1 '-1
x A — coD = — ^2 (m.+i — M<) sin u(t — /<). (6)

<0 t=0

3. Maximum acceleration and displacement. It is, at times, of importance to know

the maximum displacement or acceleration. In this paragraph we show a vector

method of obtaining the maximum acceleration. Since the expression for x for the jth

time interval is, apart from a constant factor, a sum of sinusoids of the same fre-

quency, co, it is equal to a sinusoid of frequency co. The amplitude of this sinusoid can

be obtained by vector methods. It is evident that this amplitude is equal to the maxi-

mum of the absolute value of the resultant sinusoid over a time interval equal to or

in excess of one half period. From this it is apparent that the following vector pro-

cedure can be used in determining max| x\ over all of the time intervals.

If

— ^ min </i+1 - ti), i = 0, 1, • • • , m, (7)
CO

then max \x\ =max OP< (Fig. 2), where the magnitude of the tth vector is

| (in—/j,_i)/co| and its argument with respect to OP\ is equal to the phase angle — co2i_i.

Without condition (7) max OP,- is an upper bound of |*| and probably a pretty

good approximation of max | x\.

Fairly rapid methods of computing the maximum displacement1 can be devised

e.g. when the frequency is large, then, for the ith interval, max | x | «(1/w2) [max | A ,•(<) |

+ max|a;| ]. For any frequency the problem

of finding max|x| may be reduced to that of

finding the maximum value of the curve ob-

tained by the superposition of a sinusoid and

a straight line. This can be handled by obvi-

ous methods involving use of elementary

differential calculus.

A still better method of approximating

the maximum displacement is available if s 2

is known or can be quickly evaluated, where s

is defined by the differential equation,

s = a(t), i(0) = 0 = s(0). (8)

This method permits direct use of the above vector procedure. This is easily shown by

evaluating the Duhamel Integral by repeated integration by parts.2 Thus,

1 f ' C
x = — I s sin co(t — r)dr = s — co I 5 sin u(t —

Ct) J o *^0

r)dr

1 '-1
~ — (Vk+i — vk) sin co(/ — tk), (9)

CO (fc_o

1 A mechanical analyzer was invented by M. A. Biot to obtain this maximum [Bulletin Seismological

Soc. Amer. 31, 151-171 (1941)].
8 As was done by G. W. Housner in obtaining his formulas (2) and (3), Bulletin Seismological Soc.

Amer. 31, 143-149 (1941).
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where Vh and h are defined by a broken line approximation of s. If the initial condi-

tions of (8) defining s are changed to s(0) =So and s(0) = s0, then (9) takes the follow-

ing form:

*<> r
x = sin ut — So cos ut -f- s — w I 5 sin a>(l — r)<ir, (10)

w Jo

which again can be expressed as a sum of sinusoids of the same frequency.

On the basis of limited experience, the following suggestions for computation seem

good. If the curve is sufficiently smooth, then the term containing n\ will make a

sizeable contribution; consequently the first time interval should be as small as con-

venient. It seems best to take A (0) =a(0). The vector polygon will obviously be sim-

plest if ti is selected so that as many values as possible of ut, are multiples of ir.

If we had assumed ^4(0)^0, then it would follow that

1 7-1
uD = A — 4(0) cos ut 2 0*»+i — Mi) sin to(/ — ti).

(» 0

If we let ik = i(tk) then it is clear that i^+i Substituting in (9) we have3

1 '-1
x ~ — (^+i — **) sin w(' — '*)• C11)

W k—0

In calculating the maximum displacement, (11) would be more convenient than (9)

since i could be obtained by a single integration of a(t).

A REMARK ON THE RECTIFICATION OF THE

JOUKOWSKI PROFILE*

By CHARLES SALTZER (Brown University)

The Joukowski profile is usually defined as the image under the Joukowski trans-

formation,
f = z + c2/z (1)

of a circle passing through the point ( — c, 0) whose center lies in the first quadrant,

and whose radius is c(l+e) where c, and a>0. Although this representation gives the

complex potential of the incompressible flow about a Joukowski profile very readily,

the representation of this profile as the inverse of a parabola1 has the advantage, as

will be shown below, of introducing a parameter with direct geometrical meaning

which permits the immediate rectification of the Joukowski profile in closed form.

In the Zi-plane consider the parabola

yi = hx\ (2)

3 It is interesting to note that the sum in (11) is the so-called left Cauchy-Stieltjes sum corresponding

to D.
* Received Aug. 17, 1945.

1 In this way the profile later called "Joukowski profile" was introduced by Chaplygin. See Chapyl-

gin's Collected Papers, Leningrad 1933, vol. 2, pp. 144-178, in particular §6.


