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REFLECTION IN A CORNER FORMED BY
THREE PLANE MIRRORS*

J. L. SYNGE
The Ohio Slate University]

1. Introduction. If a plane mirror is attached to the base of a projectile and a

parallel beam of light projected on it, the direction of the reflected beam at any in-

stant will give us information about the angular position of the projectile at that in-

stant. It will not, however, indicate the angular position completely, because a

rotation of the projectile about the normal to the mirror leaves the direction of

the reflected ray unaltered.

This difficulty may be overcome by using more than one mirror, and the possibil-

ity of using a reflecting corner formed by three plane mirrors suggests itself. If the

three mirrors are mutually perpendicular, the direction of the reflected beam gives no

indication of the angular position of the projectile, because such a corner reverses

the direction of any parallel beam falling on it. But if the angles of the corner are not

right angles, this is no longer the case; in general, there will be six reflected beams, and

their directions will determine the angular position of the projectile completely. With

three parameters at our disposal (the three angles of the corner), we can secure a

variety of different effects. The purpose of the present paper is to make a systematic

study of the optical behavior of all corners formed by three plane mirrors.

The method used is based on the fact that the transformation of ray-directions

due to reflection in a plane mirror is equivalent to a rigid-body rotation about the

mirror-normal through two right angles (i.e. a half-turn), combined with a reversal of

sense. Consequently, three successive reflections in three plane mirrors produce a

transformation equivalent to three half-turns, combined with a reversal of sense. But,

by Euler's theorem, three successive half-turns are equivalent to a single rotation

(not, in general, itself a half-turn). Thus the transformation due to reflection in a

corner formed by three plane mirrors may be described by giving the axis of the single

equivalent rotation (called the optic axis in the present connection), and the angle of

the rotation.

It is found that, when different orders of reflection in the three mirrors are taken

into consideration, there are in general three optic axes and a unique angle of rotation.

The rotation occurs in both positive and negative senses, so that in general there are

six reflected rays resulting from a given incident direction. This is, of course, to be

expected, since we can form six permutations of three mirrors.

It is useful to represent directions by points on the surface of a unit sphere. There

are then two fundamental spherical triangles. One has for vertices the normals to the

three mirrors, and the other has for vertices three directed optic axes. Actually there

are two spherical triangles formed by (undirected) optic axes, but one is the reflection

of the other in the center of the sphere, and so we pick out one for definiteness. The
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vertices of the triangle formed by the mirror-normals lie at the middle points of the

sides of the triangle formed by the directed optic axes, and the angle of the single

equivalent rotation is the defect from four right angles of the sum of the angles of the

triangle formed by the directed optic axes.

Explicit formulae are given for the construction of the optic axes (3.10) and the

angle of the single equivalent rotation (4.15).

The fact that a ray, to be reflected, must strike the front of a mirror, and not the

back, introduces awkward conditions. These conditions are removed in the mathe-

matical theory by supposing that the mirrors are planes which reflect from either side.

Further, in investigating the effect of a second reflection, we may find that after re-

flection in the first mirror the course of the ray does not bring it into incidence with

the second mirror. In such cases we shall disregard the position of the ray, and apply

to its'direction the transformation corresponding to reflection in the second mirror.

These artificialities (from the practical standpoint) are introduced to avoid encumber-

ing the mathematical theory with conditions which have no bearing on the funda-

mental transformation problem. Once the general theory has been set up, the condi-

tions mentioned above may be looked into in any particular case. To facilitate this,

we shall continue to call one side of each mirror the front.

2. Equivalence of reflections and rigid body rotations. Let N be a unit vector

normal to a plane mirror, drawn out from the front (Fig. 1). Let I be a unit vector

along an incident ray, and I' a unit vector along the reflected ray. From a point 0

let us drawn the unit vectors N, I, I', —I, —I' (Fig. 2).

Fig. 1 Fig. 2

It is clear from the law of reflection that I' is obtained from —I by a half-turn

about N; equivalently, — I' is obtained from I by a half-turn about N.

The transformations may also be shown on the surface of the unit sphere with

center O; the unit vectors are now represented by points on the surface of the unit

sphere (Fig. 3). The law of reflection may be stated as follows. Join — I to N by a great

circle, and produce it on to make the arc (N, I') equal to the arc ( — 1, N). Equiva-

lently, join I to N by a great circle, and produce it on to make the arc (N, — I') equal

to the arc (I, N).

In order that the incident ray may strike the front of the mirror, the arc ( — 1, N)

must be less than §7r; but in view of the remarks made in Section 1, this restriction

will not be imposed.

Consider now a corner formed by three plane mirrors with unit normals Ni, N2,
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N3, drawn out from the fronts. These are represented on the unit sphere in Fig. 4.

Consider successive reflections of an incident ray I in the order Ni, N2, N3. We start

by marking — I on the unit sphere. We construct the first reflected ray I' by drawing

Fig. 3

a great circular arc from —I through Ni, making Ni the point of bisection. If the sec-

ond reflected ray is denoted by I", we construct —I" by drawing a great circular arc

from'l' through N2, making N2 the point of

bisection. We carry on from — I" similarly

through N3 to form the final ray I"'.

We might also have started with I, in-

stead of —I. The same rules of construction

would have led us to —I'".

If the reflections occur in a different or-

der, we change the order of the points

Ni, N2, Ns in the construction. In this way

we get, in general, six different final direc-

tions V" corresponding to a single incident

direction I.

The transformations described above are

equivalent to half-turns about diameters

of a sphere, namely the diameters defined

by Nx, N2, N3, We know by Euler's theo-

Fig. 4 rem that any succession of rotations about

diameters of a sphere is equivalent either tc

no displacement at all or to a rotation through an angle less than 2ir about a uniquely

determined diameter. The former alternative means that I'" coincides with —I, no

matter how I is chosen. On the other hand, if there is a unique axis of equivalent

rotation, then rays incident along the axis of that rotation (and such rays alone) will

undergo reversal as a result of the triple reflection. Every other ray will undergo a

change of direction determined by application of the equivalent rotation.

We shall call the axis of the equivalent rotation the undirected optic axis of the

reflecting corner for the order of reflections assigned. This definition of optic axis

would be adequate if we were content to have the term denote a diameter, without

sense of direction. It is, however, desirable to understand by optic axis one of the two

unit vectors lying on the axis of the equivalent rotation. Accordingly, we shall pro-
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ceed in the next section to define the directed optic axis. For the present, let us sum

up our results as follows:

Theorem I. For three successive reflections in a given order in three plane mirrors,

either every incident ray is reversed in direction,

or there exists a unique undirected optic axis

such that

(a) a ray incident along the undirected op-

tic axis is reversed in direction;

(b) the directions of reflected rays are ob-

tained from the directions of incidents rays re-

versed by a rigid body rotation through an

angle less than In about the undirected optic

axis.

3. Determination of the directed optic

axes. Consider the following problem in

spherical geometry: Given three points Ni,

N2> N, on a unit sphere, to construct a spheri-

cal triangle Ai, A2, A3, such that Nj, N2, N3

are the middle points of its sides (Fig. 5). Fig. S

In vector notation, we have

Nj • A2 = N, A3, N2 • A, = N2 Aa, N3 Ai = N3 As, (3.1)

and also

LiNj = A2 + A3, L2N2 = A3 + Ai, isN3 = Ai + A2, (3.2)

where the L's are unknown scalars. Our problem is to find the A's to satisfy (3.1)

and (3.2).

Solving (3.2) for the A's, we get

2Ai = - UNi + UNj + UN»,

2A2 = Z-iNi - L2N2 + LtN3, (3.3)

2A3 — LiNi -f- L2N2 — LzN3.

Let us define Mi, Mi, Ms by

Mi = N2 N3i Mi = N3 N1( M3 = N, N2f (3.4)

these being of course the cosines of the angles between the N vectors. Taking the

scalar products of the first two of (3.3) and N3, we get

2AiN3 = — L1M2 + L^Mi + L3,

2A2 N3= LiMi - L2Mi + L3.

Hence, by the last of (3.1),

LiM2 — L2Mi = 0. (3.6)

Similarly

L%M $ — L3M2 = 0, L3M i — LiM3 = 0. (3.7)
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If all the M's vanish (i.e. if the N vectors are mutually perpendicular), we may

choose the L's arbitrarily, save for the condition that the sum of their squares shall

equal 4. For it is easy to verify that the A's as given by (3.3) will then be unit vectors,

and the conditions (3.1) and (3.2) will be satisfied. This means that we can take any

point Ai on the unit sphere and construct the triangle by passing successively through

the N points, making each a point of bisection. The triangle necessarily closes.

Now suppose that there is at least one M different from zero. From (3.6) and

(3.7) it follows that a number k exists such that

h = 2kMu L2 = 2kMit U = 2 kM3. (3.8)

We proceed to determine k. Since the N's and the A's are unit vectors, if follows from

(3.3) and (3.8) that

k\M\ + M\ + M\ - 2M1M2M3) = 1. (3.9)

The quantity in the parentheses is positive definite, since no M can exceed unity in

absolute value. We have then a choice between two real values of k, one negative and

the other positive. If either of them be chosen, and the L's obtained from (3.8), and

then the A's from (3.3), the conditions (3.1) and (3.2) are satisfied, and so the prob-

lem is solved. The problem then admits of two (and only two) solutions; the two

triangles are the diametrical opposites of one another.

To avoid confusion, let us pick out one of these two solutions for application to

the optical problem. Let us decide to take the positive value for k. To sum up, the

triangle required is given by

Ai = k(- MJh + M2N2 +

A2 = i( - M2N2 + MJh), (3.10)

A3 = k( MiN! + Af2N2 - MJXt),

where the M's are given by (3.4) and

k = (Mi + M\ + M\ - 2M1MtMi)~1'\ (3.11)

the positive value being understood.

We have also
NrA2 = N1 'A3 = kM i,

N2A3=N2-A !=kM2, (3.12)

N3A1 = N3A2 = I1M3,

and

2 kM iNj = A2 + A3, 2iM/2N2 = A3 + Ai, 2kM^N3= A1+A2. (3.13)

We have now to show the connection of this problem in spherical geometry with

our optical problem. We shall begin by proving that the diameter through A2 is the

undirected optic axis for reflections in the order Ni, N2, N3.

We take an incident ray with 1= ±A2. The first reflected ray is then given by

I'= + A3. The second reflected ray is given by I" = ± Ai. The third or final reflected

ray is given by V" — + A2. Thus I"'= — I, which proves that the diameter through A2

is the undirected optic axis for reflections in the order Ni, N2) N3. In just the same
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way we may show that the diameter through A2 is the undirected optic axis for re-

flections in the order N3, N2, Ni, also.

Further, if we start from A3 or Aj, we can prove in the same way that the diameter

through A3 is the undirected optic axis for reflections in either of the orders N2| N3| Ni

or Ni, N3, N2i while the diameter through Ax is the undirected optic axis for reflections

in either of the orders N3, Ni, N2| or N2, Ni, N3.

We are now in a position to define the directed optic axes by selecting senses on

the undirected optic axes. We shall do this by imposing the condition that the directed

optic axes are given by (3.10) with k positive.

Let us sum up as follows:

Theorem II. For any reflecting corner composed of three mirrors which are not all

mutually perpendicular, the directed optic axes are the three unit vectors Ai, A2, A3, given

by (3.10) with positive k. The mirror-normals Ni, N2, N3 meet the unit sphere at the mid-

dle points of the sides of the spherical triangle formed by Aj, A2, A3, Ni being on the side

A2A3, and so on. The directed optic optic axes correspond to the following orders of re-

flection :
Directed optic axis Order of reflection

Aj NsNiNs or N2NiN3

A2 NiN2N3 or N3N2N!

A3 N2N3Ni or N!N3N2

We see from (3.10) that the directed optic axes are easily constructed in space by

adding and subtracting the vectors kMiN2, kM%N3. This construction is shown

Fig. 6
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in Fig. 6. It is interesting to note that six of the eight vertices of the parallelepiped

are occupied by the vectors + Ai, ± A2, + A3.

4. The angle of the equivalent rigid-body rotation. Fig. 7 shows the representa-

tions on the unit sphere of the three mirror-normals Ni, N2, N3 and the three directed

optic axes Ai, A2, A3. We know that three successive half-turns about Ni, N2, N3 in

order are equivalent to a rotation about A2. We proceed to find the magnitude of this

rotation.

B = -I

Fig. 7

We first construct the point B by joining N2 to Ni, and producing the great circle

so as to make the arc (Ni, B) equal to the arc (N2, Ni). We then investigate the dis-

placement of B resulting from the three successive half-turns. It is clear that the final

position C is obtained by joining N2 to N3, and producing the great circle so as to make

the arc (N3, C) equal to the arc (N2, N3). The effect of the three successive half-turns

is to rotate the arc (A2, B) into the arc (A2, C). Since certain spherical triangles are

obviously congruent, it is at once seen that the angle of rotation (taken less than ir)

is equal to the defect from four right angles of the sum of the angles of the spherical

triangle AiA2As. If the half-turns were carried out in the reverse order, then C would

go to B; the angle of rotation would be the same in magnitude, but would have the

opposite sense.

If the other senses of application of the three half-turns are considered, we get

the same magnitude for the angle of the single equivalent rotation in all cases.

We shall now obtain a formula for the angle of the single equivalent rotation in

terms of the angles between the normals of the three mirrors.

If an incident ray I is reflected in a mirror with normal N, the reflected ray I' is

given by
r = I-2N(N-I). (4.1)

Let us start with an incident ray I such that — I = B, where B is as in Fig. 7, and let us

follow this ray through successive reflections in the mirrors with normals Nt, N2, N3.

The first reflected ray is I'=N2, and so by (4.1)

I = I' - 2N!(H!-I') = N2 — 21f8N1. (4.2)
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The second reflected ray is I"= — N2. The third and final reflected ray is

I'" = I" - 2NS(N3 I") = - N2 + 2N3(N3N2) = - N2 + 2AfiN3, (4.3)

the M's being as in (3.4).

We note that (3.10) give
- I A2 = I'" A2 = kMz. (4.4)

As already seen, the angle of rotation dm is the angle between the arcs (A2, B)

and (A2, C), as shown in Fig. 7. This is the same as the angle between the vectors

(AjXB) and (A2XC). If the rotation is considered positive when it is a right-handed

rotation about A2) through an angle less than ir, then the angle satisfies the equation

(A2 X B) X (A2 X C)
sin 0iS3-A2 =-j n j— > (4.5)

| A2 X B | | A2 X C |

where B = — I and C = I"'. (The angle 0123 shown in Fig. 7 is negative in the defined

sense.)

To evaluate the right-hand side of (4.5), we note that by (4.4) we have

|A2 XB||A2XC| = 1 - jfewl (4.6)

Also, identically,

(A2 XB) X (A2 XC) =A2[A2 (BXC)]. (4.7)

By (4.2) and (4.3),

B X C = - I X I"' = (- N2 + 2MJh) X (- N2 + 2MxN3)

= - 2Mx(N2 X N3) - 2Af3(Ni X N2) - 4M1M3(N3 X Nx), (4.8)

and so, by (3.10),

A, (BXC) = k(MJl! - M2N2 + M,N3) • (B X C)

where P is defined by
= kP(- 2M\ + 4AhMtMi - 2Ml), (4.9)

P =Nr(N2 XN3). (4.10)

When the value (3.11) for k is used, (4.9) may be written

A2 (B X C) = - 2Pk~\l - ifeV2). (4.11)

On substitution of this expression in (4.7), and then substitution from (4.6) and (4.7)

in (4.5), we get
sin 0J23 = — 2Pk~l. (4-12)

We note that P is the determinant formed from the direction cosines of the three

normals to the mirrors, and

1 Ms M2

M3 1 Mx

M2 Mi 1

P2 =

Hence

= 1 - k~\ (4.13)

P = e( 1 _ £-2)1/2, (4.14)
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where e is +1 or — 1 according as the orientation of the triad Nt, N2, N3 is positive

or negative.

We may sum up as follows:

Theorem III. The magnitude (taken less than tt) of the angle of the single equivalent

rotation is the defect from four right angles of the angle-sum of the spherical triangle on

the unit sphere whose vertices represent the directed optic axes. If a positive angle corre-

sponds to a positive (right-handed) rotation about the directed optic axis involved, the

angle is given both in magnitude and sign by

sin 6 = — 2ejfe->(l - iSr2)1'2, (4.15)

where k is given in terms of the cosines of the angles between the mirror-normals by (3.11),

and eis +1 or — 1 according as the triad of mirror-normals, in the order of the reflections,

is positive or negative (i.e. right-handed or left-handed).

Let us now see how the six reflected rays are to be constructed when the incident

ray I is given and the three directed optic axes are known. We mark on the unit sphere

(Fig. 8) the directed optic axes Ai, A2, A3, and the incident ray reversed, —I. Let us

Fig. 8

suppose that the mirror-normals are so numbered that Ni, N2, N3 form a positive

triad. To obtain the reflected ray resulting from reflections in the order Nj, N2, N3

we use the optic axis A2. We draw the arc (A2) —I), and rotate it about A2 in the nega-

tive sense through an angle equal to the defect from four right angles of the angle-sum

of the spherical triangle AiA2A3, or equivalently through an angle sin-12&-1(l —k~2)112,

as given in (4.15). This gives the reflected ray 1^, the subscripts indicating the order

of the reflections. To obtain I^, we rotate the arc (A2, —I) about A2 in the opposite

sense through the same angle.

Using the other optic axes, we obtain similarly the whole set of six reflected rays.

These are shown in Fig. 9, the great circular arcs being shown as straight lines for

simplicity. All the marked angles are equal.
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5. Cases of perpendicular mirrors. Let us consider the case where two of the

mirrors are perpendicular to one another. Let us take Ni perpendicular to N2, and

write

Ms* 0, Mz = 0. (5.1)

Then (3.10) give for the directed optic axes

Ai — &(— MiN i -f- Af2N2),

A2 = k( M1N1 — M2N2), (5.2)

A3 = k( MiNi + M2N2),

and from (3.11) we have

M3=0

Fig. 10

k M,N,

M3=0

Fig. 11

2 2  1/2

k = (M1 + M2) . (5.3)

The equations (3.12) and (3.13) become

Ni-Aj = NrA3 = kMi, N2 A3 = N2 Ai = kM2, N3 Ai = N3 A2 = 0, (5.4)
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and

A2 ~h A3 = 2 kMiN 1, A3 -(- Ai = 2 kM2N 2, Ai A2 = 0. (5.5)

We note that Ai and A2 are opposed to one another, and Ai, A2, A3, Ni, N2 are co-

planar. The arrangement on the unit sphere is shown in Fig. 10. The construction in

space for the directed optic axes is shown in Fig. 11.

Let us now consider the case where one of the mirrors is perpendicular to the two

others. Let Ni be perpendicular to N2 and Nj. We write

Mi 7*0, Mi = 0, Mi = 0. (5.6)

From (3.10) we get for the directed optic axes

Ai = - A2 = ifeMiNi, A, = MfjNj, (5.7)

where k= \ M\\~l; from (3.12) and (3.13)

N x * A2 = N1A3 = kM 1, N2A3 = N2Aj = NsAx = N3A2 = 0, (5.8)

and

A2 + A3 = 2kM$h, A3+Ai = 0, Ai + A2 = 0. (5.9)

N,= A,

m(>ojm2=m3=o M,<0jM2=M3=0

Fig. 12

Now A2 and A3 coincide, and Ai is opposed to them. The arrangement on the unit

sphere is shown in Fig. 12 for the cases Mi>0 and Mi<0.


