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ON GRAEFFE'S METHOD FOR SOLVING
ALGEBRAIC EQUATIONS*

BY

E. BODEWIG

The Hague

In the usual descriptions of the methods of solving numerical algebraic equations,

Graeffe's method takes a minor place as compared with the methods of Newton,

Horner, and others. It is not useful, of course, for correcting a single approximate

value, as the other methods are, but has the advantage that no first approximation

need be known. A second advantage is that approximations to all roots are obtained

simultaneously, in contradistinction to the other methods which furnish approxima-

tions to one root at a time. In spite of this, the computations required by Graeffe's

method are not much more laborious than those necessary to obtain an approxima-

tion, to a single root by one of the other methods if allowance is made for the time

necessary to find the first approximation. Yet this slight increase in labor may be the

reason that Graeffe's method is somewhat neglected. Its third and perhaps its main

advantage is that it also affords a means of finding the complex roots. It is true that

by certain other methods, such as that of Newton, an approximation to a complex

root can be improved, but obtaining the first approximation is rather difficult in the

case of complex roots. A last advantage of Graeffe's method is that it automatically

separates roots which are close together, such as a/5/2 and 3/2. It is known that

Lagrange claimed this same advantage for this method of developing a root into a

continued fraction, in contradistinction to Newton's method; Lagrange's method

fails, however, in the case of complex roots.

These advantages are well known, though not sufficiently appreciated in practice.

But so far as can be seen, it is not known that Graeffe's method also gives the multiple

{real or complex) roots, in a manner essentially simpler than is generally pointed out in

more elaborate descriptions of the procedure. Further, of all the methods it is the only

one for solving an equation having several pairs of complex roots of the same modulus.

To derive these and other properties, for example the convergence of the process,

we discuss the whole method in a somewhat simpler form than is generally used.

Preliminary remarks. The method consists in deriving from an equation

x" + aix"'1 + • • • + o„ = 0 (1)

with the roots Xi, Xt, • ■ • , xn another equation

Xn + A1Xn~l + ■ • • +An = 0 (2)

having the roots Xt =jcf, where p is a large number (and for practical reasons a power

of 2), so that the distinct roots of (2) are widely separated and can thus be easily

calculated in the following manner.

Splitting of equation (2).

First case. All the roots of (2) are positive and simple.
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Then, from
Xi» X2» • • • » Xn

we have
-Ai = EX, « Xi

yl2 = £ X.-X, « XxX2

- A, = £ X,X,Xt « X,X2X3 etc.,

since the first members of the sums predominate. Thus

Xi « - Ax/1, X2 ~ — At/Ax, X3 « -At/A2,

that is, equation (2) is split into the n approximate linear equations

X + At = 0, AxX + Ai = 0, AiX + At = 0, • • • , 4„_iX + An = 0.

Second case. Several of the roots of (2) have the same absolute value.

(ia) There is one pair of complex roots, say

X3 == Re1^, X4 =

so that

A2 = ZXiXj « x,x,

- A, = XiX2X, + XiXjX, + • • • « XiX2(X3 +X4) = XiXi-2R cos A

« X1X,X3X< = X,X2 i?2.

Thus X3, Xi are approximately the roots of the quadratic equation

AtXt + AtX + A^O, (3)

so that equation (2) is split into the « —2 linear equations

X + Ai = 0, AxX + At = 0, A4X + At = 0, • • • , An_xX + = 0

and the quadratic (3).

(ib) There are two pairs of complex roots, having the same absolute value R,

X3l4 = i?e±<A, Xs,t = Re±a.

Then

At « XiX2

- At « X!X2(X3 + X4 + X6 + X.) = XiX2-2J?(cos A + cos B)

A 4 ~ XiX2(X3X4 4" • • • "f" XsXe) = XiX2-2i?2(l -f- 2 cos A cos B)

- At « XiX2(X3X4X6 + • • • + X4X6X6) = ,XiX2-2i?3(cos A + cos B)

A e « X!X2X3X4X5X6 = XiX2 i?4.

Therefore X3, ■ ■ ■ , X6 satisfy the equation

^2X4 + ^3X3 + ^4X2 + ^6X + ^, = 0. (4)

To solve it, let us first compute R from

R4 = At!At. (5)
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With this R let
X = RY, where F = e'*. (6)

Then all the roots of Eq. (4) in Y have the modulus 1, and if Y is a root, then 1 /Y

is also a root, that is, Eq. (4) is "reciprocal":

Y* + BY3 + CY* + BY + 1=0.

By
Y + Y-1 = 2 cos <t> = Z (7)

it becomes a quadratic equation in Z.

(ic) There are n distinct pairs of complex roots having the same modulus R.

Then in a manner similar to (ib) above an equation M of degree 2ju is split off.

The modulus R is obtained from the equation

R2" = quotient of the last coefficient to the first coefficient At of the equation M. (8)

To compute the arguments A, B, • • • of the n pairs of roots, we again set X = R Y

as in (6), and divide by the leading coefficient A The new equation in Y is again

reciprocal:

(F2" + 1) + J3(F2"-> + F) + C(F^-2 + F2) + h NY" = 0. (9)

By substituting (7) into (9) it can be seen that (9) is an equation in Z of degree n

having n real roots of Z<2 which can be found by Graeffe's method. Complications

cannot arise since all the roots are distinct. The transformed equation therefore will

break up into a system of n linear equations.

(iia) There are three roots with the same modulus R, one positive and the others

complex, say
X3 = R, X*,i =

Then

A 2 X\Xz

- A3 « X!X2(X3 + Xi + Xs + Xe) = XiXz Ri 1 + 2 cos A)

A 4 « XiXs(X,X4 + Mb + Ms) = XiXn -R'i 1 + 2 cos A)

- A6 « X1X1X3X4X6 = Xrfi-R3,

so that X3, Xi, Xt are approximately the roots of the cubic equation

A2X3 + A3X2 + AtX + A* = 0. (10)

The value of R is obtained from

i?3 = - As/A2,

or more simply from

R = - Ai/A3. (11)

Thus equation (2) is split into n — 3 linear equations and the cubic equation (10).

The last equation can be broken up into the linear equation (11), that is A3X-+-At =0,

and a quadratic equation.

(iib) There are n pairs of complex roots and one positive root, all of the modu-

lus R.
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An equation M of degree 2/^ + 1 results and from that a linear equation L is again

split off. It consists of the two middle terms of M, that is

L: AM+iX ~f" ̂ /i+3 = 0 (12)

with the solution R.

To find the arguments of the complex roots, we again set X = RY and obtain a

reciprocal equation in F of degree 2/i+l. It has the solution Y= 1, so that by dividing

it by Y— 1 there results a reciprocal equation of degree p in Z that may be solved by

Graeffe's method, yielding /i pairs of complex roots.

(iii) There are multiple roots.

Let Xt have the multiplicity v. Then equation M, mentioned above in (ic) and

(iib), will be divisible by (X — Xi)'= (X — R)', if Xt is real, and by [(X — Xt)(X — Xj)]'
= (X2 —2R cos AX-fT?2)', if X2 is complex. The reciprocal equation in Y is then di-

visible by (F—1)' or (F2 —2 cos AF+1)', respectively.

Note. It is not always possible to eliminate the multiple roots of (2) by eliminating

at once the multiple roots of (1), for distinct roots of (1) may, by the successive squar-

ings, give the same roots of (2).

In summary we can say, if the absolute values of the roots of (2) are partly equal,

partly different, then Eq. (2) is split up into several approximate equations Mi of

lower degrees. The degree of an M is equal to the number of roots having the same

modulus R. Thus there are as many equations M as there are distinct moduli. To

every simple root there corresponds a linear equation.

Determination of the equations Mi. It is well known that by squaring the roots of

(1) a series of equations Gi, Gt, Gj, • • • having the roots x%, xf, x*, ■ • ■ results.

The problem now is to decide which equation G first breaks up into equations Mi,

and what these Mi are.

We have seen that if the equation M has m roots with equal moduli R, then the

absolute member of the normalized M (that is an M whose leading coefficient is 1)

is equal to ±i?m. In the following transformed equation it will be equal to ±i?2m,

that is, from a certain equation Gk the absolute member of a (normalized) M is (to

the required degree of accuracy) squared when passing to the following transformed

equation. This or a similar relation does not hold for the other coefficients of M, for

they involve cos A. Since cos A changes to cos 2A in the following equations, the co-

efficients not only irregularly change their quantity, but often their signs too.

To find the various M, into which an equation Gk is eventually split up, we must

therefore seek only those coefficients that are squared when passing to the next equa-

tion G. That is, we begin with the leading coefficient 1 of all Gk and choose the first

member Ai that by the last root-squaring is itself squared. The coefficients from 1

to Ai form the first equation Mi. The next equation Mi has the leading coefficient Ai.

Since A i is itself squared when going a step further, it is unnecessary to normalize the

supposed equation Mi, but we may choose immediately the first coefficient A ,• after A ,•

that is squared by the root-squaring. Equation Mi now has the coefficients lying

between A ,• and A,-. If A k is the next coefficient after A ,• that is squared by root-squar-

ing, Mi extends from A ,• to At, and so on.

It is not necessary that the same equation Gk yield all the various Mi. The higher

the degree of an M is, the later the mentioned quality of the extreme coefficients will

generally appear. However, from the stage where an M is split off, it is no longer neces-
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sary to keep it during the further calculation. It is sufficient to treat only the rest of

the Gk that remain after cancelling the Mi.

Resolution of an equation M. Every M of degree m must be solved separately,

in the following manner.

(i) Normalize M to M'.

(ii) Find the modulus R of all roots of M from (8), that is, in the normalized M',

from

Rm= — absolute member of M' if m is even,

and from the linear equation L (12), if m is odd

(iii) With this R set X = RY, where Y=ei*, into M' and normalize again to M".

This new equation in Y is reciprocal.

(iv) If this is possible, divide M" by Y— 1 (that is, is F=1 a root?), and repeat

this division as often as possible. If this is possible s times, then M has the root R

of multiplicity 5. If m is odd, s is at least 1.

(v) Form the quotient Q = M"/(Y— 1)*; this is also a reciprocal polynomial.

(vi) In Q = 0 set Z= Y+ F_1. Then Q = 0 is transformed into an equation ()' = 0

in Z of degree (m—s)/2. The equation <2' = 0 has all its roots real.

(vii) cos <£ = Z/2 yields (m — s)/2 values of 4> and therefore m — s values of X:

X =Re±{*, and this together with the root X = R of multiplicity s yields the complete

system of roots of M.

Solution of equation (1). To every root Xt of M there corresponds one root

of (1). Since X ,=:£?, every Xt yields p tentative values of x,• from which the right

root must be chosen. We do not, of course, calculate with the complex values of xit

but take only the real component of Eq. (1) that is:

Rn cos n<f> + i?n_1aj cos (w — 1)<I> + R"~2a2 cos (» — 2)<f> + • • • + a„ = 0, (13)

where $ is given by

<*> = (2qr + 4>t)/p, q = 0, 1, 2, •••,/>— 1. (14)

After having found the first <t> satisfying (13), we stop the calculation with this

If equation (1) is not too complicated, that is, if the M's have a low degree, the

process can be abbreviated in the usual manner.

In all other cases the process of finding the complex roots can always be abbrevi-

ated in the following manner. In the chain of the transformed equations Gk we go back

to the first equation Gm(tti<3C&), where M starts to split off, that is, where the double

products have no more influence on the first (or second) decimal place of the corner-

coefficients of M. This equation M is solved to one or two decimal places only. The

root of Eq. (1) is now—to one or two decimal places—to be selected from a group of 2m

members, instead of from the 2* members of (14). This decreases the work involved.

In addition, the process is abbreviated by the fact that not all 2* equations of (13)

have to be computed, since the members of the majority of them differ from those

of the others only in the sign. An example will make this clearer.

Nevertheless this part of the labor is the most tedious of the whole process if

the first transformed equation Gm, from which M is first split, has a large m, that is,

if two or more roots of (1) are close together. It is good, however, to have a method

that yields these roots at all.
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In cases where there are only one pair or two pairs of complex roots this whole

process is superfluous as will be seen in the example.

Convergence of the process. If the coefficients of the transformed equation Gk are

determined exactly and the roots of Gk are calculated by splitting Gk into several M,

then the roots of the M's are only approximately the roots of Gk- If, thereby, a root

of Gk is found with the relative error €*, then the error of the same root in the follow-

ing equation is

2
fk+l ~

as is easily seen. Let us suppose that we are dealing with the largest root Xi and there

are m complex pairs of roots of the same modulus R, then we see that R is calculated

from the absolute member a of the equation Mk. Let now X2 = R-10-1' be the follow-

ing root and let the m pairs of complex roots be

X' = Re±ia, X" = Re**, ■■■ , X<m> = Re*?.

Then a, being the sum of the combinations of all roots of Gk by 2m, is equal to

a = R2m + 2i?2m_1(cos A + cos B + • • • + cos T) -X2 + • • ■

« R*m( 1 + 25 -10~')>

where 5 is the sum of the cosines. Thus

R ~2V~a (1 - (l/m)10-\S),

that is, since S<m, the relative error tk of R is less than 10-<.

From the following equation Gk+1, equation Mk+i is set up, and if b is the absolute

member of Mk-u, then

b « R + R i-2S'Xi, where S' < m.
Thus

R' = R* « v^(l - 10-2«).

That is, the relative error of R' is
-2* 2

€*+1 <10 « €fc.

Now the roots xi, x2, X3, • • • of (1) are the 2*th roots of the roots Xi of Gk'

Thus if e is the relative error of X\ of Gk, then

2*

*1 = VXiU + «) « VXi (1 + e/2*).

That is, the relative error of xi is e/2h. But from Gk+i we obtain, as we have seen

= VXJ(1 + e2) « v^XT(l + €2/2t+1),

that is, the relative error of x\ is tt/2k+l or the square of that of the equation Gk. Thus,

we have:

The relative error of the roots Xi of (1) as they are computed from the transformed

equations Gk decreases quadratically with every following equation Gk, that is, if the roots

Xi of (1) following from Gk are exact to r decimals, then equation Gk+\ will yield them to 2r

decimals exactly. Roughly, every following equation yields tiwce as many exact decimals of

the roots Xi of (1).



1946] ON GRAEFFE'S METHOD 183

It must be taken into account that this property holds only if the roots are already

sufficiently separated, for instance, if the difference of any two neighboring roots

of Gk is at least equal to 100, or else the approximations above are invalid.

From this property it follows that Graeffe's method has its greatest efficiency if it

is carried out to many decimal places. If a calculating machine is used this does not

require more computational work than required for fewer decimal places. Now, it is

true that in this case one must calculate more transformed equations at least if the

number of decimals are to be fully used. But for this purpose it will be sufficient to

have one or two equations more. If, for instance, the equation G6 yields 5 exact decimals

of the Xi of (1) then the next smaller root of G6 has a modulus r«10-5i?, where R is

the modulus of the greatest root. In G6 the relation of the two greatest roots will then

be 10-10, that is, only the 10th decimal place of the coefficients of Ge will be influenced.

From this it follows that—apart from exceptional cases—the same number of trans-

formed equations will in general be necessary if a certain exactness is required. For,

suppose we have an equation with two roots having the ratio 1.1. Then by 3 or 4

transformations the ratio will become 3. Thus to have a certain exactness, it will

be necessary to calculate 3 or 4 equations more than for an original equation with two

roots having the ratio 3. The example is very unfavorable, for there will be few equa-

tions having roots of the ratio 1.1. At a ratio 1.5, there are only one or two more

transformations required.

Since by raising to powers all roots with distinct moduli will be separated auto-

matically by a quadratically convergent process, Graeffe's method is more powerful

than other ones.

Influence of rounding off. These considerations of convergence are strictly valid

only if the coefficients of the transformed equations are exact, but in reality the cal-

culation is carried out to a fixed number v of decimals. The errors of rounding off are,

of course, increased by every squaring and multiplication. Now, these errors can be

estimated by adding the proper inequality to every coefficient of the scheme. But in

general this tedious supplement will be superfluous, for on the whole the error will

be annulled by the process of extracting the 2*th roots of the roots of Gk- That is,

if the calculation is carried out to v decimals, the roots of (I) will on the whole be exact to

v decimals too.

Moduli or roots lying close together. When the equations of the chain do not soon

show signs of an approaching splitting up, this will signify that some moduli of even

roots are close to each other.

Various procedures have been proposed for accelerating the convergence. But

they are all unpractical. For they require much more work than does the Graeffe's

method when carried on two or three steps further. Add to this that by these de-

vices the calculation of the chain is interrupted which is very undesirable when at

the end of the calculation the roots of (1) are to be computed from those of the Mi.

These procedures make no allowance for the quadratic convergence (or diver-

gence) of Graeffe's method. For before it becomes obvious that several moduli or roots

are close to each other several transformations are already effected. By then the roots

will be separated so far that the greatest difficulties have been overcome, and the

further calculation will proceed rapidly. It is not advisable, therefore, to disregard

the entire calculation performed up to this point and instead, to apply Graeffe's method

to a transform of the original equation.
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For instance Encke (Gesammelte mathematische und astronomische Abhand-

lungen, vol. 1, Berlin, 1888, p. 185), when dealing with a certain equation states

that "after 6 or 7 operations we have got the conviction that two trinomial factors

lying close together are existing here." Then he abandons Graeffe's method and starts

on a new calculation. Yet, if Graeffe's method is carried 2 or 3 steps further, all roots

separate automatically.

Thus the usual procedure of Graeffe will be always the most suitable one. Indeed, one

of the chief advantages of the method is, that no special devices are required.

On the other hand, if some knowledge of the position of the roots of f(x)=0 is

not furnished by the first steps of Graeffe's method, but by other sources, then this

knowledge may be used from the beginning to accelerate the separation of the roots

by transforming the equation first.

If, for instance, several moduli are close to each other and their absolute value p

is known approximately and if also several roots are close to each other and their

values, too, are known approximately, we may proceed as follows.

We have a group G of roots lying near a circle C with radius p around the origin

of the Gaussian plane. And in this group G there exist several places u, v, w, • • •

where the roots "accumulate" so that G is divided into the subgroups U, V, W, • ■ • .

Now the slow convergence of G when applying Graeffe's method arises from the

fact that the quotient of two moduli of G is lying close to 1. This difficulty will be

partly overcome by chosing the origin of the coordinates in the neighbourhood of one

of the points u,v, w, • • • , say u. The circle C will still be a circle, but it does no longer

have the new origin as its center. Thus the quotients of the moduli of the group G

have essentially changed. For the relations of the distances of the subgroup U from

the origin to each other as well as to those of the subgroups V, W, • • • differ now

widely from 1. The same holds for the relations of the distances of the group V to

the distances of W, • • • . However the relations of the distances of V to each other

remain nearly the same as they were before, and the same will hold for W to each

other.

By this transformation the separation of the group G will, therefore, be acceler-

ated, that is, the equation of the group G will break up into the equations for the sub-

groups U, V, W, • ■ ■ faster than would have been the case without this transformation,

and the subgroup U will even be split into its individual elements. The method is

to be repeated eventually, as far as the subgroups V, W, • • • are concerned.

The value of this method is largely theoretical because equations with several

points of accumulation, u, v, w, • • • , near the same circle C do not occur frequently.

The details of the transformation mentioned above will depend on the nature of

the roots:

i. Several roots near the circle C are real. We may suppose that all these real roots

are positive. Otherwise we form the first transformed equation and get a new equation

with the assumed property. The convergence will be most rapid if the origin of the

coordinates is chosen in the neighborhood of the least of these positive roots, say a,

i.e., if the following transformation is made:

x = y + a', where a' « a = p.

ii. The roots near C are all complex, but "simple," i.e., no two of them are close to-

gether. In this case, too, the transformation
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x = y + p', where p' = p,

will be sufficient as is evident geometrically.

Hi. All roots are complex, but several of them are lying near u = a+ib (and u' = a— ib,

of course). Then it will not be convenient in general to bring u into the origin immedi-

ately, for this would require a complex transformation. It will be more suitable to do

this by two real transformations. First we make the transformation

x = y + a', where a' ~ a,

so that u will come near the y-axis. The equation in y will have several roots near +ib.

We transform it by Graeffe's procedure and obtain an equation in Y having several

roots near the point (0; — b2). Then by the second transformation

Y = U — b2

we obtain an equation in U having several roots near the origin. The ratios of the

moduli will now differ widely from 1.

This method will be particularly useful when all the roots of the equation are lying

near the circle C, for instance, for the equations Mi. In this special case' the method

may be brought into a more convenient form by applying a procedure of Ostrowski.

[Recherches sur la methode de Graeffe et les zeros des polynomes et des series de

Laurent, Acta mathematica, 72, 245 (1940)].

In case Hi above, i.e., if all roots of f(x)= 0 are lying around u = a+ib and

u' — a — ib, the sum ma of all roots will be equal to the coefficient — ai, so that the real

part of all roots will be approximately a « —ai/m. After the transformation x = y+a,

the coefficient of will then vanish. The same holds for the equation in Y. That is:

If we know that/(x)=0 has all its roots near two conjugate complex numbers,

we may apply the transformations of Hi without knowing these points, by bringing

f(x) into the reduced form f(x), transforming / once by Graeffe's procedure into F(x)

and bringing the latter into its reduced form F(x). The roots of F(x) =0 differ widely,

and Graeffe's method will converge then rapidly.

Example. By the following example we show the efficiency of the method in the

case of roots lying close together or having the same moduli.

8a£ + 4x* + 18a:3 — 15a:2 — 18# — 81 = 0 or normalized: (A)

x6 + 0.54 + 2.25a:3 - 1.875a:2 - 2.25a: - 10.125 = 0.

In the coefficients of the transformed equations there is always a power of 10

omitted; its exponent is given in italics on the left of the coefficient, so that, for in-

stance, the last coefficient of G2 is in reality —104-1.0509 • • • .

To avoid slips it is advisable to put under each transformed equation G* the signs

of the equations having the same roots, but of opposite signs. These signs are alter-

nately equal or opposite to the signs of G*.

As may be seen, it is not until G6 that the pace of the coefficients begins to become

more regular. This late start indicates that the moduli of the roots of (A) lie close

together. Also from this point of view it is advisable to carry out the calculation to

many decimals. Equation G6 is the first equation where the approaching split is

perceptible, for in the double products forming the coefficient of x3 two zeros appear.

From Gi onwards the process goes rapidly, so that in G» the coefficients of xs, x3, x°
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are fixed to 16 places since they are no longer influenced by the double products.

Thus G» is split into the two equations M:

Mi = X2 - 2.358036915546003 1081X + 1.390084523771616-10'" = 0

Mt = 10122- 1.390084523771616X3 - 10m- 1.287533728649992X2

+ 10212-1.545884788849941X - 1025"-2.405072447095789 = 0.

These two equations must now be solved. Since in Gg the coefficient of X4 is ap-

proximately twice as large as the coefficient of Xs in Gt, this signifies that Mi has a

real double-root, so that Mi may be put into the form

Mi = (X — my = X2 - 2mX + m2

as is approximately confirmed. Thus from the coefficient of X we have

Xj = X2 = 1.17901845777300-10",

whereas from the coefficient of X° we have

X! = X2 = 1.17901845777393 • 10".

The difference of the two values arises from the rounding off errors we mentioned

above. To annul them slightly we could take the mid-value of the two values:

X» = X2 = 1.17901845777346-10".

Equation Mi no longer splits into factors as can be seen from the course of

its coefficients. Otherwise some of the double products should begin to converge to

zero. Now, this is only the case with the product 2AiA$, and there only because of the

coefficient At. This follows from the fact that equation Mi is already split off and has

no influence on Mi. Thus Mi has all its roots with the same modulus R. Since its de-

gree is odd, we have according to p. 179, ii and according to (12):

R = 10212-1.545884788849941/101#7-1.287533728649892

= 10«-1.200500425311787.

We now set X = R Y in Mi and get the reciprocal equation in F

M" = BY* - 1.855595246409359F2 + 1.8555952464072567 - B = 0

or, to make the equation wholly reciprocal, instead of the two middle coefficients we

put their arithmetic mean, and divide the resulting equation by Y— 1:

Q = M"/(Y - 1) = Y* + 0.2284659663166439F +1=0.

Since this equation is no longer divisible by Y— 1, we put Z= F+ F_1 and obtain

instead of Q:
Z = 2 cos <t> = - 0.2284659663166439,

<f> = 292«.71149255575355.

(The notation "g" refers to the division of the quadrant into 100 parts, instead of

into 90.) Thus the roots of Mi are

X, = R, X«.s = Re
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The roots of the original equation arise from the Xi by extracting the 256th root. Now

266,  r- 256, 
v/xT = a/3. r = VR = 1.5,

<p/256 = 1 ".143405439670912305,

so that the roots x< are to be found among the values

\/3-(cos 2 for/256 + i sin 2 fe-jr/256)
and

1.5(cos <t>k + i sin <£*), where <t>h = (2kir + <f>)/256, k = 1, 2, • • • , 256.

There are two roots of the first kind, thus either two conjugate-complex ones or two

real opposite ones or a real double root, and three roots of the second kind, thus there

is always one real root.

Because of the simple character of the moduli of our roots, the procedure of find-

ing their arguments could be very much abbreviated. However, to show the general

method, we do not make use of this special property. We begin with the more difficult

part, namely equation Mi. Thus we look back in the chain of transformed equations

Gi until we come to the first equation where our M» starts to split off. That is Gt,

where the coefficient of X3 is determined to two places. For the transition to G> makes

two zeros in each of the double products. That is, from G6 an equation M is split off

1.87 X 3 - 105 -4.75XS + 10n-2.08X - 1017 1.49 = 0

or, putting X = 1.5F:

F8 - 0.596F2 + 0.596F - 1 = (F - 1)(F2 + 0.404F + 1).

This gives

cos B = - 0.202 or B = 287».B/32 = 8».97.

Thus the argument of the roots equals

<f>m = 8».97 + 2mw/32, where m = 1, 2, • • • , 32;

by this the number of values to be tried has sunk from 256 to 32. We can correct

these values cj)m by comparing them with the former values <£*, that are nearly exact. For

that we must determine the values of k from the equation 4>k = (2&7r+<£)/256 =»8".97,

that is &=5, thus & = 5 and (/>b = 8".9559 • • • «8".956.
With this value we try to verify the original equation, which on putting x = 1.5 • y,

becomes

(y - 1) ^3y* + 4y3 + 7JI2 + — y + 4^ = 0

or according to (13):

16
3 cos 4d>m + 4 cos 3cf>m + 7 cos 2<f>m H cos <t>n + 4 = 0.

3

Now the values (f>m are
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0i = 8®.956, </>2 = </>i ~t~ 12.5" = 21.456", • • • , <f>g = 96".456

09 = 100" + 01, • • • , 016 = 100" + 08,

017 = 200" + 01, • • • , 024 = 200" + 08,

025 = 300" + 01, • ■ • , 032 — 300" + 08.

These 32 values must be tried. The calculation is carried out to 4r-5 decimals. We

find the solution 0i3, that is

0 be 0U = 146".4559054397.

(It is not necessary to compute all 32-4 = 128 values of cosines, since <f>n, • • • , <f>32

yield values equal or opposite to those yielded by <f>i, • • • , 0 16. Also, in the group be-

longing to 0i through 0i6 not all values are different.) Thus all the roots of the modulus

1.5 are found.

For finding the roots of modulus \/3, we do not need the somewhat tedious pro-

cedure above, but can abbreviate it in several ways. A method that is always applica-

ble consists in dividing the original equation by the product of the three linear factors

already found, thus by
(x — 1.5)(x2 — 3* cos 0 + 2.25).

In the quotient we put x=yy/3 and get y2+1 =0, thus y = i; so we have as roots of the

equation

Xi = iy/3, X2 = — iy/3, *3 = 1.5, *4,6 = 1.5-e**.

After this general and somewhat tedious way of finding the arguments of the roots

*4, *5 having the modulus 1.5, we give in the following the simple method appropriate

to all cases where only two or four complex roots exist.

From Mi, Mi we determine the moduli of their respective roots, as we did above,

that is Xi = X2 and R. Thus the moduli of the roots of the original equation are, as

above,

2v'x7= V3, 2vT= 1.5,

and the roots themselves are

*1.2 = y/3-e±i*, x3 = 1.5, au.s = 1-5

Now we use the property of the coefficients of the original equation, namely that

the sum of all the roots or their combinations at four are:

Xi + X2 + x3 + X4 + Xi = — 0.5 = 2\/3 cos ^ + 1.5 + 3 cos 0.

X1X2X3X4 + xixix3x6 +... = — 18/8 = p/x 1 + p/ *2 + p/x 3 + p/x4 + pf x5,

where p =31:1X2X3X4X5 = 81/8. By inserting the above values we get the two equations

2\/3 cos ^ + 3 cos 0 = — 2,

2\/3 cos \p + 4 cos 0 = — 8/3,
thus

cos 0 = — 2/3, or 0 = 146".4559054397.

Then
cos \f> = 0 or ip = 100".
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Conclusions. Graeffe's method has the following properties.

i. It yields not only one root at a time but all roots simultaneously, even the com-

plex ones; this is accomplished by no other method.

ii. It is the only method that automatically discovers roots lying close together

which easily escape attention. There is no method other than Graeffe's which solves,

without special attention, an equation having, for instance, the roots V5/2 = 1.581 • • •

and 3/2 = 1.5, not to mention theoretical cases such as 1.67324 • • • and 1.67331 • • •

Lagrange's method is the only other one with the same advantage of separating those

roots, but the process requires great attention and much computational work and

fails entirely in the case of complex roots.

iii. An especially valuable property is that even complex roots of the same modulus

are automatically obtained.

iv. These advantages are not due to special artifices. Any other method requires

a first approximation which must then be corrected. But the finding of this first

approximation is difficult, particularly in the case of complex roots. Only Bernoulli's

method does not require a first approximation, but for that it yields only two real

roots at a time, and the process of approximation may be very slow. Graeffe's method

on the other hand does not require a first approximate value. Besides, it is not neces-

sary to use criteria of convergence in order to determine if the approximate value is

sufficiently close the actual root.

Therefore it seems to us that Graeffe's method is by far the best for solving algebraic

equations. Only if one does not need all roots of the equation, but only a single one,

will it be inferior to other methods.


