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AN ITERATION METHOD FOR CALCULATION
WITH LAURENT SERIES*

BY

H. A. RADEMACHER and I. J. SCHOENBERG

University of Pennsylvania and Ballistic Research Laboratories, Aberdeen Proving Ground

Introduction. The power series is a basic concept of Analysis which is of funda-

mental importance from the theoretical as well as from the computational point of

view. The theoretical importance of power series springs from the fact that it repre-

sents any analytic function in the neighborhood of a regular point. The reason for its

practical importance is the ease with which implicitly defined functions, by finite

relations or differential equations, may be expanded in power series by the so-called

method of undetermined coefficients, known and used since the dawn of mathematical

analysis.

Laurent series play a definitely minor role as compared to power series. One reason

is the more complicated nature of the connection between the sum of the series and

its coefficients. Another reason, dependent on the first, is the difficulty of calculations

with Laurent series.

The purpose of this paper is to describe a method whereby rational or algebraic

operations with Laurent series may be performed with high accuracy at the expense

of a reasonable amount of labor. A general approximation method to empirical data,

developed by one of us,1 required the very accurate reciprocation of certain Laurent

series. This problem of reciprocation of Laurent series was the starting point of oui

investigation. Our method for solving this particular problem turned out to be identi-

cal with a method of reciprocation of finite matrices already investigated b>

H. Hotelling.2 We finally point out that our method of computation with Laurenl

series extends to computations with trigonometric series provided these series con

verge absolutely.

I. Newton's algorithm and statement of the problem. Let

f(x) = a<>xm + a1xm~1 + • • • + am = 0, (a0 5* 0), (1

be an algebraic equation with numerical real or complex coefficients. If x is a simpl

root of this equation, then very close approximations to a: may be readily computei

by Newton's iterative algorithm represented by the recurrence relation

/(*»)

AO' (
The reason for the fast convergence of xn towards x is as follows: Expanding the right

* Received Nov. 6, 1945.

II. J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic func

Hons, Part A, Quart. Appl. Math.

2 H. Hotelling, Some new methods in matrix calculation, Ann. Math. Statist. 14, 1-34 (1943), espe

cially p. 14, and Further points in matrix calculation and simultaneous equations, Ann. Math. Statist. 14

440-441 (1943).
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hand side in a power series in xn — x, in the neighborhood of the simple root x, we find

that (2) may be written as

xr+1 - x = c2(xn - xY + C3(x„ — x)3 + ■ ■ • , (3)

with coefficients c„ depending only on the root a:. Because there is no linear term

in xn — x on the right-hand side we find that from a certain point on the error rcn+x — ac

is of the order of magnitude of the square of the previous error xn — x. From this stage

on, each step will approximately double the number of correct decimal places of the

previous approximation xn. This type of rapid convergence is sometimes referred to

as "quadratic convergence."

Let us notice that the iterative process (2) requires a division, by/'(*„), at each

step of the process. This is a serious handicap in computing with machines which do

not perform the operation of division, as for example the standard punch-card ma-

chines. This division is likewise a handicap if we wish to extend the process to the

realm of matrices where division is a difficult numerical operation.

We propose to modify Newton's algorithm (2) so as to require only the operations

of addition, subtraction and multiplication in its performance. It will then be shown

how the modified Newton algorithm allows us to carry out numerically rational as

well as algebraic operations on Laurent series. The most general numerical problem

whose solution is facilitated by our method may be formulated as follows.

Problem. Let

f(w, z) = a0(z)wm + ai(z)wm~1 + • • • + an(z) = 0 (4)

be an equation with the following properties:

1. The coefficients a,(z) are all regular and uniform functions of z in the ring

R: ri < | z | < r2. . (5)

2. We have
a0(z) 5^ 0 in R. (6)

3. The discriminant D(z) of (4) satisfies

D(z) ^0 in 5 (7)

so that the equation (4) has no critical point in R. Let now w = w(z) be a branch of a solu-

tion of (4) which is necessarily regular in R but need not be uniform in R. Given the nu-

merical values of the Laurent expansions of the coefficients a,(z), the problem is to find the

values of the coefficients of the Laurent expansions of w(z).

Remarks. 1. The difficulty of this problem is due to its being concerned with

Laurent series rather than ordinary power series. Indeed, if everything else is un-

changed, we replace, in its formulation, the ring (5) by the circle |z| <r2, then all

Laurent series mentioned become power series, in which case the power series expan-

sion of the branch w — w{z) may be obtained by the method of undetermined coeffi-

cients (see the first paragraph of our Introduction).

2. We did not require the branch w = w(z) to be uniform in R. However, we do

not restrict our problem by assuming w(z) to be uniform in R. Indeed, if w(z) returns

to its values after k turns in R, k>l, we change variable by setting

z = {k.
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Our equation (4) thereby becomes

f(w, f*) = 0

and the branch w(z) becomes uniform in the corresponding ring in the f-plane. If we

can determine its uniform Laurent series

oo

W(z) = 12 "ni""
—oo

we also have its algebraic expansion
00

w(z) = 2 <0„Zn/*.
— 00

3. Even the case m= 1 is far from trivial. Thus

a0(z)w — 1=0

amounts to the important problem of the reciprocation of a given Laurent series.

2. The modification of Newton's algorithm. We return in this section to the case

of the ordinary algebraic equation (1). We now impose the restriction that

f(x) has only simple zeros. (8)

This condition implies that the polynomials f(x), f'(x) have no common divisors and

that we can therefore determine uniquely, by rational operations alone, two poly-

nomials <j>{x) and \//(x) satisfying the identity

f{x)<t>{x) +f'(x)i(x) = 1, (9)

and such that the degrees of <£ and \j/ do not exceed m — 2 and m — 1, respectively.

The coefficients of <}>(x), yf/(x) are rational functions of the coefficients a,. For later

reference it is important to remark that the coefficients of ip(x) may be written as a

quotient of polynomials in av divided by the discriminant D of the polynomial/^).

Indeed, the coefficients of <f> and xp are determined, in view of (9), by a system of linear

equations whose determinant is precisely the discriminant D of f(x). This procedure

leads to explicit expressions of \p and D in determinant form. Thus for m = 3 we obtain

m - ^

x2 x 1 0 0

3a0 0 0 do 0

2#i 3#o 0 d\ a o

G 2 2<Zi 3do CL2 Q\

0 #2 2fli {Z3 #2

D =

3a0 0 0 a0 0

2d\ 3flo 0 o>\ cio

di 2#i 3do #2

0 d<i 2di dz d2

0 0 a2 0 dz

(10)

This expression, which generalizes to any value of m, indeed shows that the coeffi-

cients of \p(x) have the common denominator D if regarded as rational functions of

the a, s.

Now we modify Newton's algorithm (2) to its new form3

3 We learn from a note by J. S. Frame, Remarks on a variation of Newton's method, Amer. Math.

Monthly, 52, 212-214 (1945), that precisely the same modification of Newton's algorithm has already

been used since 1942 by H. Schwerdtfeger, of the University of Adelaide, South Australia, for the numeri-

cal solution of ordinary algebraic and transcendental equations.
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%n+1 ~ ^ 1)

Setting
F{x) = x - f(x)i{x) (12)

we may write (11) as
x„+i = F(xn). (11')

On comparing (2) and its modification (11) we see that the division required by (2),

at each step of the process, is not present in (11). Now we want to show that the

algorithm (11') also enjoys the property of (2) of producing fast convergence towards

the zeros of f(x). Indeed, let x be a root of (1),

/(*) = 0, (13)

and let us expand F(xn) about the point xn=x. Writing for convenience fM(x) =fM,

\f/M(x) we have by Taylor's formula

f(*») = / + /'(*» — x) + if"(xn - x)2 + ■ • • ,

i(xn) = i + i'(xn - x) + W(x„ - x)2 + ■ • ■ ,

hence

f(xn)Hxn) = Si + (/*' + /'*)(*„ - x) + w + 2ft' + /"*)(*„ - xy + • ■ • .

By (9) and (13) we have/ = 0,/V = l and therefore

F(xn) - s = - K2/V + /"*)(*„ -*)»+•••.

This shows that we may write our relation (11) in the form

xn+i - x = b2{x)(xn - xY + b3(x)(xn — x)3 + • • • + &2m-i(*)(*» - x)2m~\ (14)

where the b,(x) are polynomials in x with coefficients which are polynomials in a, divided

by the common denominator D.

Again the missing linear term in xn—x, on the right-hand side of (14), shows that

if x0 is sufficiently close to x, then the algorithm (11) will insure that xn^>x with quad-

ratic convergence.

An important special case of (1) is the equation

axm —1 = 0, («^ 0). (15)

The identity
x

(— 1 ){axm — 1) -\ (maxm~x) — 1
m

shows that in this case
1

i(x) = —x.
m

The relation (11) now becomes

#n+l = #n ~f~ #»( 1 QX%). (16)
m

[n particular if m = 1, (15) reduces to

ax — 1 = 0 (17)
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when (16) becomes
%n+l ~ a%Ti) • (18)

3. The reciprocation of matrices. The advantage of the modified, or division-free,

Newton algorithm (11) appears in connection with matrix calculations. In recent

years H. Hotelling has recommended the following procedure of finding the reciprocal

X = A~X of a given numerical non-singular matrix

A = ||ai3-|| (i, j = 1, • • • , m). (19)

Obtain in some way, e.g. by the so-called Gauss, or Doolittle, process a good approxi-

mation X0 to A~l. Then improve this approximation by the recurrence relation

Xn+1 = Xn + X„(7 - AX(20)

In the case of m = 1 this relation is identical with (18).

In studying the convergence of Xn towards X =A~X Hotelling metrizes the space

of real mXm matrices by means of the absolute value or norm

N(A) = a/ £ aij (21)
' i.j

which enjoys the following properties

N(A + B) g N(A) + N(B), N(AB) ^ N(A)N(B). (22)

By means of these inequalities Hotelling derived an estimate of N(Xn — X) which

was improved by A. T. Lonseth as follows:4

Inequality of Hotelling and Lonseth. Let X0 be an approximation to X = ^4~1

such that

N(I - AXo) = k < 1. (23)

Starting with X0 we obtain the sequence Xn by (20). Then

N{Xn - X) ^ N(Xo) • Jb"-.(1 - k)~K (24)

This interesting result shows in particular that the inequality (23) is sufficient to

insure the convergence of the process.

Our generalizations (16) and (11) of the recurrence relation (18) suggest similar

iterative procedures for the solution of non-linear algebraic matrix equations. We

prefer, however, to pass on to a discussion of calculations with Laurent series.

4. Calculations with Laurent series. Let

oo

°(z) = 22 «n2n, (ri < I z I < r2), (25)
—oo

be a Laurent series converging in the ring (5). There is no inherent restriction of the

generality of the Problem formulated in our Introduction if we assume that the ring R

contains the unit-circle |z| =1, i.e.

4 See Hotelling's second note already mentioned.
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fi < 1 < r2. (26)

An advantage of this normalization is that it implies that a„—>0 exponentially as

n—»+ oo or n—>— oo, insuring that the sequence {«„} is "finite" to a fixed number of

decimal places.

The relation (25) sets up a one-one correspondence

a(z) ~ {o:„}

between functions a{z) uniform and regular in R and sequences {«„} for which the

series (25) converges in R. To the function a(z) = 1 corresponds the unit-sequence

I: ao = 1, an = 0 if n 0.

This correspondence may be interpreted as an isomorphism concerning the operations

of addition, subtraction, multiplication and multiplication by a scalar. Indeed, if

00

Hz) = 23 j8»z", (fx < z < rs)i (27)
—oo

is a second series then we find, on multiplying (25) and (27) that to the product

c(z) = o(z)6(z) (28)

corresponds the series

where

c(z) = H-ynZ" (29)

7» = (30)

Thus to the operation (28) of multiplication of the functions a, b, corresponds the

operation of convolution (30) of the two sequences {«„}, {/3n}, an operation which

we write as

7 = a/3. (31)

We mention incidentally a third interpretation of Laurent series isomorphic to the

two already discussed. Indeed, consider the (4-way) infinite matrix

\M\ (32)

in which a,_, is the element in the ith row and jth column, both i and j assuming

all integral values. Such matrices may be designated "striped" for the reason that all

elements lying on a line, sloping down at a 45° angle, are identical. To every sequence

{a„} corresponds one such matrix, and conversely. The isomorphism between such

matrices and sequences becomes evident if we remark that the multiplication of two

striped matrices ||a3-_,||, is another striped matrix ||7/-»||, where the sequence

{yn} is given by (30). This remark throws some light on the connection between

Laurent series and the case of finite matrices of §3.
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We finally define the norm of the function a(z), or of the sequence {«*), as the

non-negative number
oo

N(a) = N(<x) = E I I • (33)
—oo

This norm also enjoys the two properties (22) or

N(a + b) £ N(a) + N(b), N(ab) £ N(a)N(b). (34)

Their verification is immediate in this case.

We are now able to attack the general Problem of section 1. However, it is essen-

tial to discuss first the important case m = l of reciprocation.

4.1. The reciprocation of Laurent series. With the norm of a Laurent series as

defined by (33), the result of Hotelling and Lonseth (section 3) applies to Laurent

series without any change. Assuming that the sum a(z) of the given Laurent series

(25) does not vanish in R, we are to find the expansion

1 00

w(z) = —- = 2 "n3"- (35)
a(z)

Let

wo(z) = 2 w»0>zn (36)
—oo

be an approximation to (35) such that

N( 1 - aw0) = N(I - aoj«") = k < 1. (37)

The very important problem of how such approximations may be obtained will be

discussed later (section 4.3). This starting sequence is now to be improved by the

relation
w(n+l) = „(„) + w(n)(7 _ a&)(n))_ (38)

The rapid convergence is assured by the Hotelling-Lonseth inequality

#(„<") _ g N(uW) k*" ( 1 - k)~K (39)

Pending a discussion of procedures for obtaining the first approximation, we may

therefore regard the numerical problem of reciprocation as solved. This implies that

we may perform all four rational operations on Laurent series and that we may thus

find the Laurent expansion of any rational function of Laurent series.

4.2. The general algebraic case. We turn now to the general case of the equation

(4) with the two additional, and as we have seen, unessential restrictions that our

ring R contains the unit-circle |z| =1 and that the solution w = w(z), of (4), be uni-

form in R. The problem is to find the numerical values of the coefficients of the

expansion
00

w(z) = 23 w"z"- (40)

We return to our discussion (section 2) of the division-free Newton algorithm (11),

especially in its expanded form (14). This discussion remains valid if applied to (4)

rather than (1). The algorithm is in this case
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Wn+1 = w„ — f(wn, z)if/(wn), (41)

the expanded form of which is

wn+1 — w = b2(w)(wn — w)2 + ■ ■ ■ + b2m-i(w)(wn — w)2m_1. (42)

We have to remember, however, that ^(w») is a polynomial in wn with coefficients

which are polynomials in a„ divided by D = D{z). Since D is a polynomial in the av,

we may first derive its Laurent expansion by additions and multiplications from the

given Laurent series of the coefficients ay(z) of (4). Secondly, since

D(z) 7^ 0 in R,

we may also find by the method of section 4.1 the Laurent expansion of \/D(z). In

this way we arrive at the Laurent expansions of the coefficients of ^(w„). These pre-

liminary Laurent series operations allow to put the relation (41) in the form

1 = wn + (c0(z) + ci(z)wn + • • • + c2m-i(z)wl 1), (43)

where
c„(z) = 2 y*'z" (44)

w

are numerically known Laurent expansions.

Now let

w0(z) = X (45)
—30

be an approximation to (40), (See section 4.3.) Starting from this approximation we

obtain the successive series
" (n) »

W,'n(z) = 2 Z (46)

by means of (43). This operation of deriving wn+i from w„ is of course to be performed

on the corresponding sequences of coefficients. By (43), (44), (46), the operation takes

the form

= coC") + (-y„ -)- 71a>(") + • • • + Tam-K"'"')2"1-1)- (47)

Will the expansion (46) converge towards the expansion (40) of the solution? To

answer this question we return to the form (42) of our relation. Taking the norms of

both sides of (42) and using the properties (34) of the norm, we obtain

N(wn+1 — w) S N(Jbi(w)) [iV(w„ — w)]2 + ■ • • + N(b2m-i(w))[N(wn — w)]2m_I. (48)

This relation shows that if

N(u>o - w) = £ I aj ' - a,* I (49)
—oo

is sufficiently small then (48) will indeed imply

lim N(wn — w) = 0 (50)
n—*oo

with quadratic convergence.
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4.3. Derivation of an approximate Laurent expansion. The method for computa-

tion with Laurent series described in the previous sections will now become effective

provided we can solve the following problem.

Initial approximation problem. Let

oo

F(z) = £ cX (51)
—00

be regular in the ring R containing the circle |z| =1. This function F(z), whose Laurent

coefficients c„ are unknown, is defined by an algebraic equation which allows us to com-

pute the value of F(z) for any given z of R, in particular for any root of unity. We are to

describe a practical method whereby, given e>0, we may compute the coefficients c* of

a Laurent series
oo

F*{z) = Z c*z' (52)
—oo

regular in R, such that
oo

N(F - F*) = £ | c, - c* | < e. (53)
—oo

We shall now solve this problem by the method of trigonometric interpolation.6

Let m be a positive integer and let

z„ = e!**/», (p - 0, 1, •••,*- 1), (54)

be the mth roots of unity. These roots of unity satisfy the following orthogonality

relations
1 , , (1 if v = s (mod m)

2 z^Zfi = *! t a \ (55)
m M_o 1.0 if j'ps (mod m).

If m is odd, w = 2« + l, we consider the Laurent polynomial

n

Fm(z) = cm,,z' (56)
r—n

having m arbitrary coefficients.

If m is even, m = 2n, we define our polynomial so as to contain again only m arbi-

trary coefficients as
n—1

Fm(z) = X) c".<z" + ^m.„(zn + *-»). (57)
»— (n-l)

Whether m is even or odd we may always write

Fm{z) — Cm.yZ", ^ fl — ^ ^ , (58)

6 Concerning the subject of trigonometric interpolation we refer to the classical memoir by Ch. J. de

la Vallfie Poussin, Sur la convergence des formules d'interpolation entre ordonees equidistantes, Bulletin de

l'Academie royale de Belgique, 319-410 (1908), and to Dunham Jackson, The theory of approximation,

American Mathematical Society Colloquium Publications, vol. 11, New York, 1930, chap. IV.
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where the summation symbol 22' is to indicate that if m is even, then

Cm,—n Cm.m (59)

and that the terms of (58) for v= +n are to be taken with half their value. The rela-

tion n= \m/2\ is to indicate that n is the greatest integer not exceeding m/2.

We shall now require the Laurent polynomial (58) to interpolate the function (51)

in the points (54). This gives the m equations

n

22' cm.,z\ = F(z„), (/I = 0, 1, •••,«— 1). (60)
r——n

On multiplying (60) by z*/m (5 fixed, — n^s^n) we find in all cases, in view of (55)

after summation by n, that

^ TO—1

Cm.. = — 22 {— n ^ s ^ n). (61)
m „_o

The construction of our approximate Laurent expansion (58), i.e. (52), has now been

completed. The following theorem will now show that the condition (53) may also be

realized by the present method of construction.

Theorem. We assume the Laurent series

F{z) = 22 c-z' (62)
00

to converge absolutely on the unit circle | z | = 1, i.e.

ib 1 c,i <»•' (63)
—00

Then our interpolating Laurent polynomial (58) satisfies the condition

lim N(F - Fm) = 0. (64)
m—♦«0

Remark. Notice that the regularity of F(x) in a ring containing |z| =1 implies

our condition (63) but not conversely. This remark is of importance concerning cal-

culations with absolutely convergent Fourier series. (See section 5.)

Proof. Let JV be a positive integer. We shall restrict ourselves to values of m ^ 2N,

hence n^N. We may then write

N(F-Fm)£ 22 \c,-cm,\+ Z' |e»..|+ 22 kl. (65)
JV+l Wg|»!5n

We shall now estimate the three sums on the right-hand side.

• See Dunham Jackson, loc. cit., for other conditions insuring the convergence of trigonometric

interpolation.
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Let e>0 be given. In view of our assumption (63) we may choose N such that

53 | cy | < e. (66)

An upper bound for the second sum of (65) may now be obtained as follows. By (61)

and (62) we have

1 .
,»= — 53 4 53 c'zl = 53c' — 53

VI fx=Q V=—OQ J»=—00 W fi^rO

and finally by (55)

Cm,s = ^ ' £*• (67)
v~= t (mod to)

For all m~2i2N, whether m is even or odd, we now have

53' I cm,s| = 53' 53 lc'l= 53 |c„|<« (68)
|«|^* ?=«(mod m) |>>|^2V

by (66). We now return to (61). Since (62) converges uniformly on |z| =1, F(z) is

continuous on |z| =1 and (62) is its Fourier series. We therefore have the Fourier-

Cauchy relations

c, = —- f F(z)z~r~ldz.
2iri J iz|_i

(69)
1*1-

From the definition of this integral as a limit of Cauchy sums we may now write

(with zm = 1)

1 y"~~1
cv — lim ~ ^ ^ F(zg)zu v *(^m+i

m-*»o 2iri M==o

J m— 1

cy — Jim —; 53 F(zll)z?"(e2*i/m — 1),
to—► oo 2iri

and finally, by (61),

I TO—1

Cy = lim — 53 F(z„)z-' = lim cm (70)
to—»oo 7W M=o m—

We now have indeed

JV—1

53 I c» ~~ c">.-l < «. provided m > w0(e). (71)
r—N+1

By (65), (66), (68), and (71) we now have

N(F — Fm) < 3e, provided m > w0(«), (72)

and our theorem is established.

4,31. The 24-ordinate scheme of numerical harmonic analysis. The interpolation

of our given function F(z) in the 24th roots of unity will provide satisfactory approxi-
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mation for most ordinary purposes. Let us assume for definiteness that F(z) is real for

real z. On the unit-circle z = eie we then have

F(ei9) = R(6) + *7(0), (73)

where the real part R(d) is an even function, while the imaginary part 1(0) is odd.

Denote by

Fm = Rm+ HM, (M = 0, 1, • • • , 23), (74)

the computed values of our function at 15°—intervals in 6, i.e. for the points (54)

with m = 24. We now interpolate the 13 ordinates (ji = 0, 1, • • • , 12) by a cosine

polynomial

A0 + Ai cos 0 + • • • + An cos 110 + ^4x2 cos 120, (75)

and the 13 ordinates Io = 0, h, ■ • • , In, /i2 = 0 by a sine polynomial

Bi sin 0 + • • • + Bn sin 110. (76)

These polynomials are readily obtained by the 24-ordinate scheme as described in

E. T. Whittaker and G. Robinson, The calculus of observations, ed. 3,1940, section 137,

pp. 273-278. The complex function (73) is now interpolated in the 24 points by the

trigonometric polynomial

Fu(ei0) = Ao + A\ cos 0 + • • • -f- An cos 110 + Au cos 120

+ iB\ sin 0 + ■ • • + iBu sin 110.

Setting
z = e'9, cos vd = 5(z* + z~'), i sin vd = %{z" — e~'), (77)

we obtain the Laurent sum with real coefficients

n

Fu{z) = Ao + E h(Ar + B,)z' +
>-=1

11

+ Z h(A, - B,)z-> + (78)
r-l

This initial approximate Laurent expansion will be used in section 6 in our example

of reciprocation of a Laurent series.

5. Calculation with Fourier series. The method of calculation with Laurent series

described in sections 4, 4.1, 4.2, 4.3 and 4.31, applies unchanged to the realm of abso-

lutely convergent Fourier series written in the complex form

00

F(z) = cvzwhere z = ei9,
—oo

with the definition of the norm as

n(f) = x;ui.
—oo

The general problem of section 1 may now be reformulated, replacing the ring R by

the unit circle \z\ =1. The coefficients a,(z) of the equation (4) are now defined by
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given absolutely convergent Fourier series. The conditions (6) and (7) remain un-

changed. The important fact that a uniform, continuous solution w = w(z) of (4)

along the unit-circle admits of an absolutely convergent Fourier expansion is now as-

sured by a general theorem of N. Wiener and P. Levy.7 The effectiveness of the inter-

polation method of section 4.3 for obtaining a satisfactory initial approximate Fourier

series is secured by our theorem of section 4.3.

We finally mention briefly the special problem of the reciprocation of a non-

vanishing absolutely convergent Fourier series

oo

A (8) = Ja0 + ^ (a» cos nd + bn sin n9) (79)
n—=1

with real coefficients a„, b,. In applying our method, we have to pass to the complex

variable z, by means of the relations (77), obtaining the series

oo

A(9) = a(z) = a»zn» (8°)
—00

which is now to be reciprocated. The coefficients a„ being complex, it would appear

that computations with complex numbers are unavoidable. This, however, is not the

case since we may proceed as follows. Working with the real series

/(z) = R(otn)z", g(z) = X) I(a„)z", (81)
—oo —oo

we have by (80)

1 1 / g A—— = — = i   = 22 U"Z"- (82)
fl(») f+ig P + g2 P + g2 tl

Starting with (81) and operating with real series only, we now form the expansions

of P, g2 and then/2+g2. The real "Laurent" series of/2+g2 is now reciprocated by the

method of section 4.1 and finally the series for

f/(P + g2), g/(P + g5)

obtained by multiplications. This furnishes the complex values of the u„ of (82).

Returning to the variable 0, by (77) we finally obtain the ordinary real Fourier ex-

pansion of

1/A(6)

6. An example of reciprocation of a Laurent series. Our numerical example will

benefit by the following general remark concerning the modified Newton algorithm

(11). For simplicity we limit ourselves to the case of the equation (15) or

axm —1=0 (83)

which is solved by the recurrent relation

' See Antoni Zygmund, Trigonometrical series, Warszawa-Lw6w, 1935, pp. 140-142.



1946] CALCULATION WITH LAURENT SERIES 155

1
*»+i = Xn H xn(l - ax?). (84)

m

Let us assume that our first approximation Xo is of such accuracy that x2 will have all

the accuracy we want, while xi does not quite do. More precisely we assume the

"residual"
r = 1 — ax 0m (85)

so small that we may neglect r3 everywhere in our calculations. We may use this fact

in eliminating xi between the two equations

1
Xi= xo H Zo(l - x0m),

m , ,

1 (86)
x2 = Xi H *i(l — xr).

m

Indeed, by (85), (86), we have

xi = x0 ̂ 1 H 

and neglecting r3 we find
/ tn — 1 \

= *om( 1 + r + — rM.

If we then compute x2 in this way, i.e., neglecting r3 wherever it appears, we easily find

the following approximation to jc®:

1 / m + 1 \
xi = XoH ZolrH   r2).

m \ 2m /
(87)

We may interpret both equations (85), (87) as a recurrence relation furnishing xi in

terms of the first approximation *0. This process converges "cubically." Indeed, a

simple calculation will show that we may write (87) as

(m + l)(2wt + 1)
xi — x — (*o — a;)3 + (terms of order > 3).

6x2

We note especially the following special case: To solve

ax — 1 = 0 (88)

we set
r = 1 — ax o (89)

and compute
xi = *o + x0 (r + r2). (90)

We turn now to our example which consists in expanding the reciprocal of the

Bessel function

Jo(z) = 1 b + • • • (91)
22 (2 -4)2 (2 - 4-6)2
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into a Laurent series between the first two positive roots of this function, which are

approximately £i = 2.4, £2 = 5.5. In order to avoid even exponents we consider

z z^
Jo(Vz) = 1 h   • • (92)

22 (2-4 y

whose reciprocal is to be expanded in Laurent series between its zeros

= 5.76 and £2 = 30.25.

Let us notice that 13 is near the geometric mean of these numbers. In order to realize

the condition (26) we replace in (92) z by 13z, also changing the sign of the function

for formal reasons. Thus let

00

o(z) = — 70(\/13z) = ]£a„zn (93)
n«=0

be the entire function whose reciprocal

1 00

w(z) =   = X u»z" (94)
7o(VT3i) ^

we are to expand in a Laurent series convergent on and near the unit circle \z\ =1.

Below are the 10-place values of the coefficients an of (93) as computed by

a„ = (- l)n+1(13)"/(2"-»!)2.

-1.00000 00000

3.25000 00000
-2.64062 50000

.95355 90278
-.19369 16775

.02517 99181
-.00227 31870

.00015 07726
-.00000 76564

.00000 03072
- .00000 00100

.00000 00003

£ = .39229 24951

0
1
2
3
4
5
6
7
8
9

10

11

12

2.549 122
2.262 721
1.655 481
1.081 379

.661 333

.379 302

.193 500

.070 603
-.011 124
-.065 027
- .099 093
-.117 947

-.123 985

.000 000
-.257 032
-.395 409
-.427 381
- .405 462
- .361 625
-.309 968
-.256 308
-.202 973
-.150 752
-.099 722
- .049 615

.000 000

.601 975
1.063 727

.489 993

.219 762

.097 293

.042 831

.018 815

.008 261

.003 630

.001 604

.000 727

.000 368

.000 136

-.361 583
-.144 072
- .062 309
-.028 189
-.012 990
-.006 018
- .002 786
-.001 285
-.000 588
-.000 260
-.000 099

From these values, rounded to 6 places, we computed to 6 places the values of a(z„)

at the 24th roots of unity

z„ = cos (15ju)° + i sin (15/*)°, (ji = 0, 1, • • • , 12),

and from these the values of the reciprocal

w(z„) = 1 A(z„) = -R„ + U„, (jt = 0, 1, • • • , 12),
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which are tabulated above. The coefficients A „ and of the interpolating cosine and

sine polynomials (75), (76) where then found by the 24-ordinate scheme. They are

tabulated above.

From these values we computed the coefficients co® of the approximation

Wo(z) = X)
—12

according to (78) by the formulae

(0) A
too = Ao,

(«>
Un = i(A „ + Bn),

coin' = %{An — Bn),

£012 = C0_12 = §All, (n = 1, 2, • • • , 11).

These values rounded to 5 places are in the first column of the following table which

contains the complete computation according to the relations (89) and (90). The last

column headed w = co(0) + w(0)(r+r2) gives the 9-place values of the coefficients «„ of

(94).
Remarks. 1. The basic numerical process in this computation is obviously the con-

volution of sequences. Thus the second column aa><0) is obtained by the convolution

of the column a with the column <o<0). According to the formula (30) this is done very

simply rewriting the column a, say, in reverse order, then matching it with the column

«<°> such that the zero term of one column corresponds to the nth term of the other.

The accumulated products of matching elements gives the nth term of the product

column aw'0'. This operation is very familiar from the process of smoothing by means

of a linear compound formula.

2. The operation of convolution of sequences implies an important check by means

of their sums, for it is clear that the sum of the product column should equal the

product of the sums of the factor sequence, except for the accumulated rounding

error. At the very bottom of each column we wrote the actual sum of the sequence

in that column. Directly below it we wrote (in parentheses) the value of this sum in

terms of the sums of the columns which enter into its composition.

3. The column of final residuals I—au was also computed (values not recorded

here) and its terms were found to be so small that a further repetition of the process,

with our 10-place values of the a„, would not alter our 9-place values of the w„. As

final checks we found by (93)

<z(l)-1 = 2.54911 8356, a(-l)"1 = - .12398 5065,

a(i)-1 = .19349 9936 - .30996 7383 i.

The corresponding values of w(z), computed by (94), were found to be

w{ 1) = 2.54911 8355, w(-l) = - .12398 5067,

w(i) = .19349 9940 - .30996 7383 i.
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-<»> r=I—auw

-29
-28
-27
-26
-25
-24
-23
-22
-21
-20
-19
-18
-17
-16
-15
-14
-13
-12 .00007
-11 .00023
-10 .00049

9 .00110
.00246

7 .00552
6 .01242
5 .02791
4 .06274
3 .14104
2 .31703
1 .71266
0 .60198
1 .35107
2 .17296
3 .07873
4 .03455
5 .01492
6 .00640
7 .00274
8 .00117
9 .00051

10 .00023
11 .00013
12 .00007
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

2.54913

-.00007 00000
-.00000 25000

.00007 26562
-.00004 80946

.00002 68539
-.00000 52301
-.00001 62992

.00002 32702
-.00001 52800
-.00000 13045

.00001 89326
- .00002 53421
1.00002 07580

.00000 39064
- .00001 57627

.00000 43626

.00001 22969
-.00001 61378

.00000 57617

.00000 04662

.00000 78363
-.00001 53488

.00001 88876
-.00001 23781

.00006 13042

.00002 88471
-.00009 48797

.00004 63585
-.00001 07391

.00000 14982
-.00000 01411

.00000 00096
- .00000 00005

.00007 00000

.00000 25000

.00007 26562

.00004 80946

.00002 68539

.00000 52301

.00001 62992

.00002 32702

.00001 52800

.00000 13045

.00001 89326

.00002 53421

.00002 07580

.00000 39064

.00001 57627

.00000 43626

.00001 22969

.00001 61378

.00000 57617

.00000 04662

.00000 78363

.00001 53488

.00001 88876

.00001 23781

.00006 13042

.00002 88471

.00009 48797

.00004 63585

.00001 07391

.00000 14982

.00000 01411

.00000 00096

.00000 00005

1.00000 45679
(1.00000 45680)

-.00000 45679

49
4

-102
64
18

- 64
85

- 65
9

49
- 80

62
- 7
- 68

97
- 42
- 35

61
- 27
- 17

24
- 14

7
- 13

-.00000 00056
- 70

237
- 89
-116

174
-145

67
30

- 91
91

- 37
- 29

81
- 75

3
53

- 39
- 13

37
- 11
- 11

0
32

- 21
80

-124
5

103
- 92

43
- 13

3

.00000 00002
(.00000 00000)
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r+r'

-29
-28
-27
-26
-25
-24 49
-23 4
-22 -102
-21 64
-20 18
-19 - 64
-18 85
-17 - 65
-16 9
-15 49
-14 - 80
-13 62
-12 6 99993
-11 24932
-10 -7 26465
- 9 4 80904
- 8 - 2 68574
- 7 52362
- 6 1 62965
- 5 -2 32719
- 4 1 52824
- 3 13031
- 2 -1 89319
- 1 2 53408

0 - .00002 07636
1 - 39134
2 1 57864
3 - 43715
4 -1 23085
5 1 61552
6 - 57762
7 - 4595
8 - 78333
9 1 53397

10 -1 88785
11 1 23744
12 -6 13071
13 -2 88390
14 9 48722
15 -4 63582
16 1 07444
17 - 15021
18 1398
19 - 59
20 - 6
21 - 11
22 0
23 32
24 - 21
25 80
26 -124
27 5
28 103
29 - 92
30 43
31 - 13
32 3

E -.00000 45677

u°(r+r2)

1
2
5+

12
26
58

130
292
657

1476
3318
7459

16767
37691
84725-

1 90454
4 28120
2 62369

-1 36696
- 37118
- 68748
- 27684

36008
- 35203

9539
9186

- 49463
21184

- 48016
.00000 53032

23489
7594

- 34341
22715"
4594

- 20946
- 47102
- 20304
-1 15311
-1 73068
-3 92531
-3 12836

1 65178
70470
30065-
12827
5472
2335-
996
425+
182
78
33
14
6
2
1
1

-.00001 16443

(-.00001 14637)

w=o>w +«(0> (r +r!)

.00000 0001

.00000 0001

.00000 0003

.00000 0006

.00000 0013

.00000 0029

.00000 0066

.00000 0148

.00000 0332

.00000 0746

.00000 1677

.00000 3769

.00000 8472

.00001 9045

.00004 2812

.00009 6237

.00021 6330

.00048 6288

.00109 3125

.00245 7232

.00552 3601

.01241 6480

.02791 0954

.06274 0919

.14103 5054

.31703 2118

.71265 5198

.60197 4697

.35107 2349

.17296 0759

.07872 6566

.03455 2271

.01492 0459

.00639 7905

.00273 5290

.00116 7970

.00049 8469

.00021 2693

.00009 0747

.00003 8716

.00001 6518

.00000 7047

.00000 3006

.00000 1283

.00000 0547

.00000 0233

.00000 0100

.00000 0043

.00000 0018

.00000 0008

.00000 0003

.00000 0001

.00000 0001

2.54911 8355


