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CONTRIBUTIONS TO THE PROBLEM OF APPROXIMATION
OF EQUIDISTANT DATA BY ANALYTIC FUNCTIONS*

PART B—ON THE PROBLEM OF OSCULATORY INTERPOLATION.
A SECOND CLASS OF ANALYTIC APPROXIMATION FORMULAE

BY

I. J. SCHOENBERG

University of Pennsylvania and Ballistic Research Laboratories, Aberdeen Proving Ground

Introduction. The present second part of the paper has two objectives. Firstly,

we wish to carry further the important actuarial work on the subject of osculatory

interpolation (Chapters I and II). Secondly, we construct even analytic functions

L(x), of extremely fast damping rate, such that the interpolation formula of cardinal

type

F{x) = 11 yM* ~ ") (1)

reproduces polynomials of a certain degree and reduces to a smoothing formula for

integral values of the variable x (Chapter III). This second problem is found to be

intimately connected with the subject of osculatory interpolation.

A preliminary remark concerning our notation is necessary. In Part A, Section

2.21 we described various characteristic properties (or "type characteristics") of a

polynomial interpolation formula of the form (1), such as: (i) The degree m of the

composite polynomial function L(x)\ (ii) its class C", i.e., order of contact is n\

(iii) the highest degree k of polynomials for which the formula (1) is exact; (iv) the

span 5 of the even polynomial function L(x). For convenience we propose to summa-

rize all these statements by saying that (1) is a formula of type1

* Received Oct. 18, 1945. Part A of this paper appeared in this Quarterly 4, 45-99 (1946).

1 The connection of these types characteristics with the notation as used by Greville in his paper

The general theory of osculatory interpolation, Trans. Actuar. Soc. Amer., 45, pp. 202-265 (1944), especially

pp. 210-211, is as follows: The first three symbols D~, C, El, require no further comment since they are

identical respectively with the characteristics 4, 1, and 6 of Greville's classification, pp. 210-211. There

remain three further characteristics to be discussed: (i) Whether the formula (1) is an "end-point" or

"mid-point" formula. This point is of importance if (1) is written in terms of certra! differences, since it,

then reduces to either the Everett or else the Steffensen form. The following statement is obvious: The

formula (1) is an "end point" or "mid-point" formula depending on whether the span s is even or odd.

(ii) Greville's adjectives "ordinary" and "modified" agree respectively with our "ordinary" and

"smoothing."

(iii) The highest order d of differences involved (explicitly or implicitly). We start with the following

question: Let x be given. How many ordinates yn enter into the computation of F(x) by (1)? Assuming that

L(x) is continuous, hence =0, at the end point x = s/2 of its span, we have L(x—n) ;^0, as long as n in

such that
| x — n\ < s/2.

This inequality is found to be equivalent to

-y + *<»<y+*. (•)

Let s = 2<r be even (end-point formula) and let now x be anywhere within OiZx^l. By (*) F(x) then re-
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Dm, C", £*, S. (2)

As an instance we may describe the &-point central interpolation formula of Part A,

Scction 2.121 as a formula of type3

fC° if k is even")
Dk~\ V, £*->, s = k.

lC-' if k is odd J

In Chapter II we construct a class of ordinary interpolation formulae and two

classes of smoothing interpolation formulae. These classes by no means describe all

possible osculatory interpolation formulae. Furthermore, a number of interesting

problems concerning remainder terms and orders of approximations await solution.

No attempt has been made to see which of the numerous formulae tabulated by

Greville, loc. cit., are contained in the three classes of formulae developed in Chapter

II. The essential progress made in this direction may perhaps be briefly described as

follows. The construction of an interpolation formula usually requires the solution of

a more or less complicated system of linear equations, unless, as in Lagrange's for-

mula, the basic interpolating functions are obvious from the start. These systems of

equations are especially troublesome if one wishes to construct an osculatory inter-

polation formula of any general class. As Greville correctly points out, loc. cit., pp.

255-256, the mere agreement between the number of unknowns with the number of

equations which they should satisfy, will, by itself, never prove the existence of a

solution. Basically, our parametric representation of spline curves of order k (Part A,

Section 3.15, Theorem 5) circumvents this difficulty.

An example which illustrates the operation of this representation is as follows.

Let F(x) be defined as equal to 0 for x ^0, as well as for x ^4. We propose to complete

the definition of F(x) in the range by four cubic arcs joining at * = 1, 2, 3, in

such a way that Fix) be of class C" for all real x. Of course, we are not interested in

the obvious but trivial solution F(x) =0. Let us now count the available parameters

and the number of conditions. The 4 cubic arcs furnish 4-4 = 16 parameters. The sec-

ond order contact requirements at x = 0, 1, 2, 3, 4 lead to a system of 3-5 = 15 homo-

geneous equations. The solution of a homogeneous system of 15 equations in 16

unknowns depends on anything from 1 to 16.arbitrary parameters, depending on the

rank of the system. Our Theorem 5, for k =4, furnishes immediately the one-parame-

ter solution
F(x) = c-Mi(x - 2) (3)

the graph of which is given in Part A, Section 3.13. Again Theorem 5 will easily show

that this is the most general solution of the problem. We see how this complicated

system of 15 equations in 16 unknowns is explicitly solved by (3). As a variation of

the problem, let us now define F{x) to be equal to 0 for *^0, as well as for x^3, and

let us propose now to bridge this gap by 3 cubic arcs giving a F{x) of class C". Now we

flnd that the problem amounts to a system of 12 homogeneous equations in 12 un-

knowns. This tells us precisely nothing. Again by Theorem 5 we can readily show that

quires all yn such that —ar<n<a+1 that is s — 2a consecutive ordinates. Let j = 2<r+l be odd (mid-point

formula) and let x be anywhere within — J =*= !• Again by (*) F(x) now requires all y„ such that

— o-—l<n<<r-)-l, hence again s — 2a+l consecutive ordinates. We have therefore proved the following:

The highest order d of differences involved is always related with the span s by the relation s = d+1.

2 The symbol C-1 is to indicate the class of piecewise continuous functions.



114 I. J. SCHOENBERG [Vol. IV, No. 2

the trivial solution F(x) =0 is the only solution. These considerations generalize and

allow to characterize our basic functions

, 1 k k-1
M>= 71 7T7 5 *+ -

(« — 1)!

up to a multiplicative constant and a shift along the *-axis, as follows:3 Let F(x)

be =0 for as well as for x^n, where n is a positive integer. We wish to complete

the definition of F{x) by a succession of n arcs, of degree k — \, joining at x= 1, 2, • • • ,

n — 1 such as to furnish a F(x) of Ck~2. Then n = k is the smallest value of n for which

this can be done in a non-trivial way and for this minimal value n = k the gap is bridged by

F(x) = c-Mk{x - k/2)

and in no other way.

The reader who is mainly interested in the numerical applications may pass di-

rectly from here to the Appendix where the use of the tables is fully explained and one

example is worked out.

I. THE COSINE POLYNOMIALS <f>k(u) AND CERTAIN RELATED SETS OF POLYNOMIALS

In the present chapter we propose to study further properties of the cosine poly-

nomials
oo

<£*(«) = H Mk{n) cos nu (1)
n-=—oo

which were mentioned in Part A, sections 3.14 and 4.1 (for t = 0). By Part A, section

4.1, formula (6) (for t = 0) we may also write

oo

<t>k{u) = X)
j/=—oo

and therefore

<pk(u) = (2 sin m/2)*- ^ \ ■ (2)
(m + 2ttv) k

1.1. Expression of 4>k(u) in terms of rational polynomials. We introduce two new

sets of periodic functions defined by

pk{u) = (2 sin u/2)k■ ~—, , , ' (3)
y=-x (u + 2tv) "

<rk(u) = (2 sin u/2)k- 7— ~~tt ' (3')
r—00 (« + 2tv) k

A comparison with (2) shows that

Ipk{u) if k is even,
4>k(u) =

(a-/c(u) if k is odd.
(4)

3 Problems of this kind concerning polygonal lines of a certain degree and class are of importance for

the theory of formulae of mechanical quadratures. The author expects to discuss this connection else-

where.
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By differentiation of (3) and also (3') we readily find the recurrence relations

u 2 u
Pt+i(«) = cos — Pk(u) - — sin — pi (m), (5)

2 k 2

u 2 m
<Tk+i (m) = cos — ok(u) -sin — ai (m). (5')

2 k 2

These may be used in a progressive computation of pk and cr* if we start with

P2(«) = 1, <y\ (m) = 1. (6)

We prefer, however, to express p*(w) and crt(M) as polynomials in the variable

x = cos («/2) (7)
by means of

P*(m) = U*_2(cos m/2), = Fjt_i(cos m/2). (8)

Substituting into (5), and (5') respectively we find that the two sequences of polyno-

mials £/„(x), ^n(x), both of exact degree n, satisfy the recurrence relations

L/*+1(x) = xUk(x) + —— (1 - **) Uk (*), (9)
k + 2

Vt+1(x) = *F*(x) + -J- (1 - *2)F*' (*), (9')
* + 1

with initial values which by (6) and (8) are

£/»(*) = 1, F.(x) = 1. (10)

A simple calculation now gives

Ui(x) = x, Fi(x) = x,

tfs(x) =4(1 + 2 Xs), F,(«) =^(1 + x2),
*3 Z

t/3(x) = 4 (2* + x3), F,(«) = 4 (s* + *s) . „
3 6 ?■ (11)

1 1
Ut(x) = — (2 + llx2 + 2*4), F4(«) = — (5 + 18x2 + *4)

1 1
Ut{x) = — (17* + 26x3 + 2x6), F»(*) = (61* + 58*3 + *6).

45 120

We record as a lemma the following properties which are readily established by in-

duction.

Lemma 1. £/*(x) and F*(x) are polynomials of exact degree k which are even or odd

according as k is even or odd. The coefficients of their highest terms are positive. Also

Uk( 1) = F*(l) = 1, Uk(- 1) = Vk(- 1) = (- 1)*. (12)
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In view of (4) and (8) we find the following expression of <j>k{u) in terms of our new

polynomials:
\Uk-i{x) if k is even,

i(») if k is odd.

( U  ,
mu)=<l , : ,, as)

This shows that the even polynomials Ui,, F2, are of special interest.

1.2. The zeros of the polynomials XJk and Vk- We propose to prove the following

proposition :

Lemma 2. The zeros of the even polynomials Ui,(x) and Vz,(x) are all simple and

purely imaginary.

We carry through the proof for Ui,(x) only since the proof for Vt,(x) is entirely

similar. In order to deal with real zeros, we define a new sequence of polynomials

ui{x) by
«*(*) = i~kUk(xi), (k = 0, 1, • • • ). (14)

These new polynomials are also real and satisfy a recurrence relation which in view

of (9) is readily found to be

1
M*+i(z) = xuk(x) - (1 + x2)Uk (X). (15)

k + 2
From (11) we find

u0(x) = 1, ui(x) = x, u2(x) = f(2x2 — 1). Mx) = i(x3 — 2x), ■ • • .

In view of (14) it obviously suffices to show that the zeros of Uk{x) ar real and simple,

while those of uz,(x) are also different from zero. This is readily done by induction

as follows. Let k = 2v be even and let us assume that the k zeros of Uk(x) are

— £>•, — £»-i, • • • , — £i, fi, {2, • • • 1 £» (0 < £1 < • • • < £,), (16)

and therefore simple. This, and the fact that Uk(x) has a highest term of positive co-

efficient (Lemma 1 and (14)), imply that

Uk (ijr) > 0,

and that the sequence of values of uk' (x), at the k roots (16), alternate in sign. By

(15) we therefore find

Uk+iiit) < 0

and that the values of Mjt+i(*),at the k roots (16), alternate in sign. Since Mt+i(0) =0,

we conclude that u,k+i(x) has v positive and v negative zeros which must therefore be

simple.

Let now k = 2v + \ be odd and let w* have the simple zeros

fi, 0, *lt •••, fc (0 < fx < • • • < £,). (17)

Now we conclude as before that ut+1(£>.) <0 and that the values of uk+i(x), at the k

roots (17), alternate in sign. Again the conclusion is that uk+i(x) has simple real roots

none of which vanishes. This proves the theorem by complete induction.

1.3. A few corollaries. In this last section of the present chapter we prove several

auxiliary propositions which will be used in the next chapter in the derivation of inter-
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polation formulae of various kinds. These propositions represent the solutions of the

algebraic problems arising by the Fourier integral transformation of the problems of

the construction of those interpolation formulae.

Lemma 3. Let k = 2v be even. We can determine uniquely an even polynomial Pk{x),

of degree k, and an odd polynomial Pk-i(x), of degree k — \, satisfying the identity

Uk(x)Pt(x) + 17*+1(*)P*_,(*) = 1. (18)

Likewise polynomials Qk{x) and Qk~i(x), even and odd respectively, exist uniquely such

as to satisfy

Vk(x)Qk(x) + Vk+1(x)Qk^(x) = 1. (19)

We wish to show first that Uk and Uk+1 have no common zeros. Indeed a common

zero x of Uk and Uk+\ would, by (9), be a zero of

(1 - x*)U£(x).

Since by (12) x^ ± 1, x must be a zero of U£ (x). But this contradicts our Lemma 2

to the effect that Uk(x) has only simple zeros. The polynomials Uk(x), Uk+i(x) having

no common divisors, the identity (18) is assured by the elementary theory of the great-

est common divisor of two polynomials. We now show that Pk{x) is even and Pk~\(x)

is odd as follows. Replacing x by —x in (18) we find

Uk(x)Pk(- x) - Uk+i(x)Pk-i(— x) = 1.

Since our polynomials Pk, Pk~\ are uniquely defined by (18) we find

Pk(x) = P*(- x), Pk-!(x) = - iVit- x),

which prove our statement. An identical reasoning proves the existence of the poly-

nomials Qk and (?t+i satisfying (19).

The polynomials Pk and Pk+i are easily determined for low values of k by the

method of indeterminate coefficients. Thus for k = 2 by (11),

t/2(x) = (1 + 2x*)/3, U3(x) = (2x + x')/3,

from which we find

P2(x) = 2x* + 3, Pi(x) = - 4x,

satisfying the identity

U,(x)Pt(x) + U3(x)P1(x) ^ 1. (20)

Likewise for k =4 we have by (11)

Vt(x) = (5 + 18zs + «4)/24, F6(x) = (61 x + 58x3 + s5)/120.

The corresponding polynomials Qt, Q3 are found to be

Qt(x) = (3648 + 4789a:4 + 83*4)/760, Q»(x) = - (1469a; + 83x3)/152.

They satisfy the identity

V*(x)Q<(x) + F8(;e)g8(^ = 1. (21)
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The identities (18), (19) will later be used in the following form. Again for an

even k, but replacing k by k — 2, we get by (18) and (8)

pk(u)Pk-2(x) + pk+i(u)Pk-3{x) = 1, (k even, * = cos u/2).

Likewise for an odd k, but replacing k by k — \, we obtain from (19) and (8) the

identity

ak(u)Qk-i(u) + <rk+1(u)Qk-i(k) = 1, (k odd, x = cos u/2).

The even polynomials Pk-2, x~1Pk-3, and Qk-u x~'Qk-2, may now be expressed in

powers of
1 — x2 = (sin m/2)2.

We have therefore proved the following:

Lemma 4. We can find constants av, at, b„ b! such as to satisfy the following two

identities:

For an even k

Pk(u) {a0 — 02(2 sin m/2)2 + <14(2 sin u/2)4 — ... ± ak-i(2 sin m/2)*-2}

+ pk+i(u) {Oo — ai (2 sin m/2)2 + (2 sin m/2)4 — • • •

+ o/_4(2 sin u/2)k-4} (2 cos u/2) = 1, (22)

and for k odd

&k(u) j bo - 62(2 sin m/2)2 + i4(2 sin u/2)4 — • ■ ■ ± it-i(2 sin m/2)*-1}

+ <rk+i(u) [bo — bl (2 sin m/2)2 + b[ (2 sin m/2)4 — • •

+ bLs(2 sin u/2)"-3} (2 cos u/2) = 1. (22')

As examples we mention that the identities (20) and (21) become on passing to the

variable u

P4(m) {5 - J(2 sin m/2)2} + P6(m) { - 2} (2 cos u/2) = 1 (23)

and

(213 991 83 1
0-6(m) •( (2 sin m/2)2 H (2 sin m/2)4>

\ 19 760 12160 J

( 194 83 / mV) / m\
+ „,(„) |-__+__^lin_) ^2 cos —) = (24)

The last proposition which we wish to derive here concerns the expansion of 1 /<f>k(u)

in ascending powers of the variable

s = sin2 m/2 = 1 — cos2 m/2 = 1 — x1. (25)

Let us assume for the moment that k is even. Then by (13)

<t>k(u) = Uk-2(x), (k even). (26)

Now Uk-i(x) is an even polynomial which, by Lemma 2, has purely imaginary zeros.

Being an even polynomial, Uk-i(x) may be expressed as a polynomial U*(s) in the

variable
5 = 1 - z2 (25')
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of degree K=(k — 2)/2. This change of variable transforms the purely imaginary zeros

of Uk-i(x) into the zeros

<*i, a2, • • • , a, (k = (k — 2)/2)

of U*(s) which, by (25'), must all be positive and greater than 1. Finally, since

Uh~2(1) = U*(0) = 1, we have the identity

4>k(u) = £/*_,(*) = ~ 7) _ ' (1 ~ ")• (27)

An entirely similar identity is derived for an odd k by repeating our arguments for

<t>k(u) = Vk-\{x),
instead of (26).

This establishes the following

Lemma 5. The reciprocal of the cosine polynomial <f>k(u) admits of an expansion

—— = X c2n\l sin m/2)2" (28)
<t>k{u) n=0

which converges for all real values of u and where the coefficients are positive rational

numbers

c(2n > 0, (« = 0, 1, 2, • • • ). (29)

Indeed, in view of (27), the expansion (28) may be obtained as

1 A ( s ^ \ ^ <*>, s»
—— = n H 1" ~- +••)= Z) c2„ (45)
<t>k\u) y~i \ a, a; / n_0

which reduces to (28), in view of (25). In conclusion we notice the following conse-

quences of the identity (28). Since

eo

<t>k{u)l=J 22 ik{u +~2tv),
?=—00

where
(2 sin u/2\k

«»> ' (-T") •

we have in the neighborhood of the origin u — 0

(2 sin u/2\k
<t>k(u) = ( J + m* • (regular function of «). (30)

On multiplying (28) by 4>k(u) we therefore have

<2 sin u/2\k

and also

(2 sin u/2\k " <*) . 2n k
I ) • 2-, (2 sm m/2) = 1 + w ■ (regular function)
\ W / n-0

(—  ■ 22 c^{2 sin m/2)2" = 1 + i/-(regular function). (31)
\ U / 0£2n <*



120 I. J. SCHOENBERG [Vol. IV, No. 2

It is of special interest to point out that if

(2 sin u/2\k ^ w . 2n
gk.m(u) = ( ) ■ 2^ cin (2 sin u/2)

\ u / „_0

then

(1 + w2m- (regular function) if 2m < k
$,k,m{u) = < (32)

(.1 + u • (regular function) if 2m — 2 < k ^ 2m.

As an illustration we find for £ = 6 by (13), and (11), and (25)

1 1 15 30 1

4>6(m) Ui(x) 2+ llx2 + 2x* 30 - 305 + 4*2 2
1 — s H s2

15
whence

1 13
 = 1 + s + — *2 + • • •
-M«) 15

or

——■ = 1 + - (2 sin u/2Y + — (2 sin u/2Y + • • • . (33)
<#>6(«) 4 240

The relations (32) now become (for k = 6, m = 1, 2, 3)

(2 sin «/2\6
[ J = 1 + m2 • (regular function),

(2 sin m/2\' (1 )
( J < 1 + — (2 sin m/2)2> = 1 + u*- (regular function),

(2 sin m/2\6 ( 1 13 1
I J < 1 + — (2 sin m/2)s + (2 sin m/2)4> = 1 + «6 - (regular function).

In the next chapter we shall need the numerical values of the coefficients

Ctn for 2n < k. (34)

It is of interest then to point out that these coefficients (34) may also be otherwise

computed as coefficients of a simple generating function. Indeed, from (30) it is clear

that the coefficients (34) will not change if on the left-hand side of (28) we replace

4>h{u) by the first term on the right-hand side of (30). That means, if

( U . ) = E ^s»>(2 sin u/2)U (35)
\2 sin m/2/ „_o

then

Cin = din (2m < k). (36)

However, the coefficients of (35) are readily determined. Indeed, if we set

v = 2 sin w/2 or u = 2 arcsin v/2, (37)

then (35) becomes
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'2 arcsin v/2\k

Since

(2 arcsin v/2\k " <*> 2
I ) = Z_j a2„ v
\ v / „=0

(38)

2 arcsin v/2 1 1 »2 1-3 1 i>4 1-3-5 1 w6
  - i _j_   1 1  1_ . . . (39)

v 2 3 4 2-4 5 16 2-4-6 7 64

we find the expansion (38) by raising (39) to the &-th power. Thus

,(*) ,(*) k ,<*) 5k2 + 22k
do =1, d2 = —> d4 =  > • • • . (40)

24 5760

Since all coefficients of (39) are positive, it is clear that the coefficients of (38) are

likewise positive. This however does not imply the positivity of the coefficients of

(28) beyond the /feth term. For k = 6 the values (40) agree with the coefficients of (33).

II. POLYNOMIAL INTERPOLATION FORMULAE

In this chapter we wish to apply our general Theorem 2 of Part A, section 2.23

and our Lemmas 4 and 5 of the last section in deriving three distinct classes of poly-

nomial interpolation formulae for each value of the positive integer k. The formulae

of the first class (Theorem 1 below) are of the ordinary kind (see Part A, section 2.21 a

and b), and of the type
(2k — 2 if k is even

DCk~\ Ek~\ s
(2k - 2 if

12* - 1 if k is odd.

The existence of ordinary interpolation formulae of degree k and class k — 2 was pre-

viously conjectured by Mr. Greville who verified their existence up to and including

k = 6. (See Greville, loc. cit., pp. 212-213.) The formulae of the second class are

smoothing interpolation formulae (Theorem 2 below). For a given integral k and

each integral m, such that Q^2m — 2<k, a formula is derived which is of the type

Dk~\ Ck~\ 5 = k + 2m - 2.

These formulae are derived from an ordinary interpolation formula of type

D"~\ Ck~\ Ek~\ s = 00,

discussed in Part A.

The formulae of the third and last class are again smoothing interpolation formulae

(Theorem 3 below). While in the second class the degree Z)*-1 and the "order of con-

tact" Ck~2 were fixed, while the degree of exactness £2m_1 and the span s = k + 2m — 2

increased apace, in the present class the span s = k is constant. More precisely, a

formula is derived for each m such that O^lmf^k — 1 which is of type

Dk-it 5 =

These formulae are derived from the formula of ordinary jfe-point central interpolation

in a manner somewhat reminiscent of Mr. Jenkins' original procedure.

2.1. Ordinary polynomial interpolation formulae of the Jenkins-Greville type.

We are returning to our basic functions

1 C x /2 sin u/2\k
Mk(x) = — | I ) eiuxdu (1)

2ir J \ w /
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and wish to show that the osculatory interpolation formulae of the type investigated

by Jenkins and Greville may be readily derived in terms of these functions. We shall

use the operational symbol a to mean

o/(*) = /(* + I) + f(x - §)•

Theorem 1. We define the basic polynomial function L(x) by the following two for-

mulae according to the parity of k:

L(x) = a0Mk(x) + a2b2Mk(x) + ■ ■ ■ + ak-idk~2M k(x)

+ a{<rMk+i(x) + a£ ar82Mk+i(x) + • • • + ak^tirdk-*Mk+i(x) (k even) (2)

L(x) = b0Mk(x) + + • • • + b^b^M^x)

+ b&cMk+l{x) + b{a8*Mk+1(x) + • • • + (k odd), (3)

where the numerical constants av, a!, b„ bI are those defined in Lemma 4. Then

00

F(x) = X y*L(x — n) (4)

is an ordinary polynomial interpolation formula of type

i

if k is odd.

(2k — 2 if k is even,
D\ Ck~\ E"~\ s={ (5)

l2fc - 1 »/ " "

Indeed, we notice that

5eiux = (eiu/2 — e~iul2)eiuz = 2i sin u/2eiux,

aetux — -f. e-iuii}eiux — 2 cos uj2eiux.

Let k now be even, hence L(x) defined by (2), and let

(6)

l r00
L(x) = — I g(u)eluxdu.

2irJ-x,

We evidently obtain this integral representation by performing the operation

flo + o-ib2 + • • • + ak~ 2bk~2

on the relation (1) and add to it the result of performing the operation

do <f "I" o^2 + • ■ • + ak—tohk~i

on (1), with k replaced by £ + 1- In view of (6) we have

S"eiux = (2i sin u/2)'eiux

cS'eiux = (2i sin «/2)'(2 cos u/2)eiux,

and therefore

(2 sin u/2\k, , -
S(u) ~ ( — J I®" — sin m/2)2 + • • • + ak-i(2 sin u/2)k~2j

(2 sin u/2\k+1. ,
+ ( J {a0 — ai (2 sin w/2)2 + • • •

+ ak-t(2 sin m/2)*~4}(2 cos u/2). (7)
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We now turn to Theorem 2 of Part A, section 2.23, which states that (4) is an ordinary

interpolation formula if and only if the following identity holds:

00

X) g(u + 2wv) = 1. (8)
r=L—oo

It should be noticed now that both expressions in (7) contained within braces are

periodic functions of period 27r. Since k is even we find that y^.e(u+2irv) is identical

with the left-hand side of our relation I (22). This proves (8) for even k. A precisely

similar reasoning for odd k will show that J*.g(u + 2irv) is identical with the left-hand

side of I (22').

There remains the problem of showing that (4) is of the type as stated in the Theo-

rem. Since L(x) is by (2), (3), a linear combination of functions of the form

Mk(x + »), Mt+i(x + \ + »),

it is clear that L(x) is a polynomial line of degree k, of class C*~J, with discontinuities

at x = n, or x = m + 1/2, according to whether k is even or odd. Finally (4) is exact for

the degree k — 1, again by Theorem 2 of Part A, section 2.23. There remains the

discussion of the span s of L{x). Now the span of Mk{x) is = k (see Part A, section

3.13) and therefore the span of h'Mk(x) is equal to k+v, while the span of <rb'Mk(x)

is equal to k-{-v-\-\. Now it is immediately verified that the two terms of (2) involving

5t-2 and <rSk~* are both of span 2k —2, while the similar two terms of (3) are both of

span 2k —I. This completes a proof of the Theorem.

As illustrations we mention that the identities 1(23) and 1(24) corresponding to

the cases k =4 and k = 5 give rise to the basic functions

L(x) = 5M4(x) + %52Mt(x) - 2vMt(x) (9)

and
213 991 83

L(x) = M„(x) + i'Mi(i) + 84Mi(x)
19 760 12160

194 83
■ oM<,{x) oVM ,(*). (10)

38 1216

These two basic functions give rise to ordinary interpolation formulae (4) which are

of the types

D\ C\ E3, 5 = 6 and Ds, C\ E\ s = 9, (11)

respectively.

Incidentally, the characteristic function of (9) is, by 1(23),

/2smM/2\4/ u\ /2 sin m/2\5
«<"> - (——) (5"2 sin! t) "4 {—r~ycos "/2

or
/2 sin m/2\4/ sin«\

g(u) = I J ( 4 + cos u - 4 J.

This agrees with our formula (11") of Part A, section 2.122, as in fact the basic func-

tion (9) is identical with Jenkins' function there described by formula (11).
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In concluding we wish to mention the numerical results for k = 6. In this case we

need the identity
Ut(x)Pt(x) + U6(x)P3(x) m 1. (12)

By (11) we have

1 1
Ut(x) = — (2 + 11a2 + 2 a4), Us(x) = — (17a: + 26a3 + 2a6).

15 45

By indeterminate coefficients we find

15 115 27 285 27
P4(a) = 1 x1 H x\ Pz{x) = x x3,

2 7 21 14 7

from which, on passing to the variable 1(25), the identity (12) becomes

(353 133 9 1
Pe(«)"! (2 sin m/2)2 H (2 sin «/2)*>

I 14 28 448 f

( 339 27 1
+ P7(«) •{ 1 (2 sin m/2)2> (2 cos m/2) = 1.

I 28 56 )

The basic function corresponding to & = 6 is therefore

353 133 9
L(x) = Jf,(*) + 5*M6(x) H 8W,(t)

14 28 448

339 27
 a M,(x) c82M:(x), (13)

28 56

giving rise to an ordinary interpolation formula of type

D6, C\ Eb and j = 10.

2.2. A first class of smoothing interpolation formulae derived from an ordinary

interpolation formula of type Dk~x, Ck~2. We start by recalling an ordinary polyno-

mial interpolation formula derived in Part A, section 4.2. Indeed, the formula (9) of

that section furnishes, for Z = 0, the following polynomial basic function

1 f00 <A*(m)
L*(x)=—  eiuxdu. (14)

2t «»(«)
The corresponding formula

oo

P(x) - H ynLk{x — ») (15)
n——oo

is, as we know, an ordinary polynomial interpolation formula of type

C c° if k ^ 3,
Dk~\ Ck~\ Ek~\ s = ^ (16)

\k if k = 1, 2.

We turn now to the expansion 1(28) of Lemma 5, substituting 1(28) into the integral

(14) and integrating term-wise we obtain the expansion

(k) o (k) 4

Lk{a) = Mk{x) - c2 5 M„(x) + « Mk{a) , (k ^ 3). (17)
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On comparing the present interpolation formula (15) with the formula (4) of the

Jenkins-Greville type, we notice, by (5) and (16), that they are both of class Ck~2

and that they are both exact for the degree k — 1. The degree of (15) is lower by 1 than

the degree of (4). This reduction of the degree to the lowest possible value k — \, for

a formula of class Ch~2, was achieved at the price of having an infinite span. The

infinite span of (15) clearly disqualifies this interpolation formula as far as numerical

purposes are concerned.

We now turn to the partial sums of the series (17). They will yield smoothing in-

terpolation formulae of considerable practical importance. Indeed, let

/l\ n   I (Jr\ 2m 2

Lk,m{x) = Mk(x) - Ci 8 Mk(x) + •••+(- 1) C2m-25 Mk(x), (2m — 2 < k).(18)

The characteristic function of this basic function is identical with the left-hand side

of the identity 1(32). In view of our Theorem 2 of Part A, this identity 1(32) proves

that (18) is the basic function of a smoothing interpolation formula which is exact

for the degree equal to min(2m— 1, k — 1). It is, moreover, visibly of degree £ — 1, of

class Ck~2, and of span s = k + 2m — 2. One further important point is in need of proof,

namely that the formulae based on (18) actually do smooth any given sequence (see

Definition b of Part A, section 2.2). This will readily follow from Lemma 5. Indeed

the characteristic function <t>m,k(u) of the formula

F(n) = £ yJLk.m(n - p) (19)
P

is, by Theorem 2, Part A, given by

00

<t>k.m(u) = 52 Sk.m(u + 2irv).
r—oo

By 1(32) and 1(28) we now have

» m— 1 ^ Jn

= X) gk,m(u + 2tv) = <pk(u) X «2n (2 sin u/2) n
r=—oo n=0

< <^>t(«)X Cjn'(2 sin u/2)S" =1, (0 < « < 2ir). (20)
n«=0

Since obviously <f>m,k(u) >0, for all u, we see that (19) is indeed a smoothing formula

according to our definition. Recalling the relations 1(36), 1(38), we may therefore

state the following Theorem:

Theorem 2. Let k be a positive integer and m an integer such that 0<2m<k + 2. Let

the positive rational numbers be defined by the expansion

(2 arcsin »/2\* ~ w 2„
I ) = JL v .
\ v / n-0

^2 arcsin v/2\k ^ 2„

Then

(21)

Lk,m(x) = Mk(x) - d[k)&Mk{x) + d[h)8*Mk(x) + (- 1)" *Mk(x) (22)

gives rise to a smoothing interpolation formula
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*(*) = E VnUAx ~ n) (23)
n—oo

o/ type

Z?*-1, Ck~\ &nin(Sm-l.*-l)t * = fe + 2«» - 2. (24)

Moreover, the formula (23) preserves the degree k — \. (See Part A, section 2.21, Defini-

tion d.)

7/ & is fixed and m increases then the smoothing power of our formula (23) decreases

according to our definition of Part A, section 1.12, Definition 2.

The last statement concerning the decreasing smoothing power of (23) follows

from (20), since 0*,m(w) increases strictly as m increases while u is constant

(0 <u<2tt).

Notice, by (24), how on increasing m by one unit both the degree of exactness, as

well as the span, increase by two units.

As illustration we find from 1(40) that

k
Lk,t{x) = Mt(x) - — iWi(j), (k £ 4), (25)

yields a smoothing formula of type

D*-1, Cw, s= k + 2. (26)

The characteristic function of (25) is

/2 sin tt/2\Y k u\
(1+7sin* 7) (27)

or
(2 sin u/2\* ( k k )

«..»(«) -( - ) {<+^-ncosT

For k — 4 this function gi,i{u) agrees with the integrand of our formula (12") of

Part A, section 2.123. Also Mr. Jenkins' basic function, as given by formula (12) of

Part A, section 2.123, may be derived by working out the various polynomial expres-

sions of
LM = M^x) - WM<{x) (28)

from the explicit expressions of M*(x) (see Part A, section 3.13, (14)).

Likewise, by 1(40)

k k(5k + 22)
!*.»(*) = Mt(x) - — PMt{x) + &<Mk(x), (k 5; 6), (29)

24 5760

yields a smoothing formula of type

Dt- i, ck~\ E\ s = k + 4. (30)

2.3. A second class of smoothing interpolation formulae derived from the ordi-

nary jfe-point central interpolation formula. Among the smoothing interpolation for-

mulae (23) described by Theorem 2 the one of most interest is obtained by letting m
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assume its largest value. If k is even, m is maximal if 2m — 2 = k — 2 or m = k/2. If k

is odd, m is maximal if 2m — 2 = & — 1 or m = (& + l)/2. In either case

rk + n
max m — ix = I—-—I, (31)

where [*] represents the largest integer not exceeding x. The corresponding basic

function (22) is

1 f/2 sin w/2\\ (*) t
Lk.vi*) - — J y—~—) I1 + (2 sin M/2) "t •' •

+ d£-i(2 sin u/2)i" 2}e du. (32)

We recall that the smoothing interpolation formula based on this function is by (24)

of the type

Z>*-\ Ck~\ E"~\ s = k + 2M - 2. (33)

Indeed, the formula is exact for the degree k — 1 because of

(2 sin «/2\ * (*) 2 tic) 2d—2 >
   J {1 + dt (2 sin «/2) + • • • + d2„-2(2 sin w/2) }

= 1 + (regular function). (34)

An interesting counterpart to (32) is obtained as follows. An identity of the type

(34) may also be obtained if in the expression within braces we replace 2 sin w/2 by u.

Indeed, rational constants 7^ may be determined such that

/2sinw/2\* <*) 2 (*) 4 (*) 2/t—2 \
I   1 {1+72 « +74 W + • • • + 72m-2« J

= 1 + «*• (regular function). (35)
Lemma 6. The basic function

, . 1 f °°/2 sin m/2\* 1 (*> 2 (t) 2d-2, »tii
r*,,,(a;) — ( ) {1+72 « + • • • + 72)i-2« je (36)

t5 identical, for all real values of x, with the basic function Ck(x) of the k-point central

interpolation method (see Part A, section 2.121).

Notice first that by differentiation of

1 r "/I sin w/2\*
Mk(x) I ( —) e^'du

2r J -n\ U /
we obtain

(2») ► 1 C °° /2 sin u/2\k 2» <«x
Mi '(*) = (- 1) - I ( -) w e du, (2, < *). (37)

2tt J \ « /

Therefore the integral (36) may also be written as4

4 Assuming (41) already established, we see by (38) and the relations

Mu\x) = (OS^i- 1), (*)

(see Part A, section 3.1S, formula (23)) that we may express Ct(x) as follows
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r*,„(*) = Mk{x) - y™M£'(x) + y™M?\x) + (- lfVl-tM^""^). (38)

Now Mk(x) and all its derivatives are functions of span s = k. Therefore also

rt,„(jc) has the span s=k. Furthermore by (35), and Theorem 2 of Part A, we con-

clude that

P(x) = 12 VnTkAx ~ n) (39)

is an interpolation formula of the following type characteristics:

i = k. (40)

These last two properties (40) allow us to show readily that

r*,(i(s) = Ck(x) for all real x. (41)

Indeed, let k be even, k = 2n. Let Po(x) be the polynomial of degree k — 1 defined by

the following k conditions

Po(- « + 1) = i\>(- * + 2)   P,(- 1) = 0, P„(0) = 1,

Po(l) = P»(2) = •••=. P„(k) = 0. (42)

Since (39) is exact for the degree i-1 we have the identity

oo

Po(x) = ^2 Pn(n)rk,v(x — n), for all real x. (43)
*—«—o«

We now restrict x to the range
Ogigl. (44)

Then we may write (43) as
n—g

P»{x) = £ -Po(»)r*.„(* — n)
»—— *+1

since rt,M(a: — n)=0 if |* — n\ }£k. In view of (42) this identity reduces to the single

term, for n = 0:
Po(«) = TUx), (Ogxg 1),

and therefore (41) holds for the range (44). Likewise, applying the formula (39) to

the polynomial Pi(x), of degree k, defined by

Pi(~ k + 2)   iM- 1) = 0, P,(0) = 1, P,(l) = • • • = P,{k + 1) = 0,

we find that (41) holds in the range 1 ̂ x^2, and so forth. Similar arguments obvi-

ously apply, with obvious modifications, to the case of an odd k.

The coefficients are the expansion coefficients of

(r-r^Y (45)
\2 sm u/2/ ,=o

Ct(x) = Mk(x) - + yfVif^x) + •••+(- 1 (")

This formula reveals at a glance the following fact: If k is even, then Cjt(2">(*) (>"= 0, 1,2, • • • ) are continu-

ous. If k is odd then Ci(,|,+1>(*) (» —0, 1, 2, • • • ) are continuous. The author learned this property from

Kingsland Camp, Notes on Interpolation, Trans. Actuar. Soc. Amer., 38, p. 22 (1937).
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In N. E. Norlund's Differenzenrechnung, page 143, we find the expansion

(2,)!

The coefficient D^1 is a polynomial in k of degree v. Norlund's Table 6 on page 460,

loc. cit., lists these polynomials for ? = 0, 1, • • • , 6. We therefore have

t("l)'
\2 sin m/2/ f-o

(*>
M D 2,

«/2/ ^ (2r)l 2"
whence

(46)

n(i)
"' (47)

The first few values are

(*) . <*> * (t) ^(5* + 2)
70 71 'J* m

The expansion coefficients of //sin t are positive (see Norlund, loc. cit., Chapter II,

sections 2, 3). Therefore the coefficients y^ are all positive. We shall use this fact later.

In view of the results of our last section it seems natural to consider the partial

sums

r*,m(*) = Mk(x) — y[k)Mk'(x) + •••+(— 1)~ \im-iM?" "(x),

(**-<-m-(49)

of the sum (38). The properties of the interpolation formulae based on these functions

are described by the following theorem:

Theorem 3. The formula

F(x) = 2 *T*.«(* ~ "), C1 ̂ » < M = (5°)

is a smoothing interpolation formula of the type

Dk-lt C*-2m, E2n,-lt $ = (51)

The smoothing power of (50) decreases, as m increases from m = l to m=\x— 1, until for

m=n (50) reduces to the (ordinary) k-point central interpolation formula.

Indeed, the characteristic function of (49) is

(2 sin«/2\*. (Jfe) 2 (*) 2m—2j , ,
 J { 1 + 72 « + • • • + ytm-lU } . (52)

From (45) we conclude that

g(u) = 1 + uim- (regular function)
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and therefore (50) is exact for the degree 2m — 1, by Theorem 2 of Part A. The re-

maining three characteristics

Dk~\ Ck~im, s = k,

are evident on inspection of (49). There remains the investigation of the characteristic

function of the corresponding smoothing formula

F(n) = X) yyTt,m(n — v). (53)
P

By Theorem 2, Part A, this characteristic function is

oo

X»(«) = E «(«+ 2irv).
*"■—00

From (52) and 1(3), we obtain

2 (Jfc) 2 m 2
X»»(«) = <t>k(u) + 72 (2 sin w/2) 4>*_2(w) + • • • + 7ji»-j(2 sin m/2) <£*_sm+2(«). (54)

This expression is obviously positive for all values of u. For m=n, however, we ob-

tain the identity

X» = 1 (55)

since, by Lemma 6, we have before us an ordinary interpolation formula. Since (54)

is a partial sum of the left-hand side of (55) we have therefore proved the inequalities

0 < x»(«) <1 (1^w<m, 0<m< 2tt). (56)

Then (53) is indeed a smoothing formula. The final statement of the Theorem is evi-

dent from (54), since x».(«) increases with m.

As illustrations we mention the following four special cases, two from each end

of the range of values of m.

(i) m = 2. The formula based on

k
r*.2(*) = Mk(x) - — Mt"(x) (k > 4) (57)

has the type
Dk~\ Ck~\ E\ s = k. (57')

(ii) m=3. The formula based on

k k(5k -|- 2) (4)
IY3(*) = Mk{x) --Mi'{x)+ Ml \x), (k ^ 6), (58)

24 5760

has the type
Dk~\ Ck~\ Eb, s = k. (58')

The values (48) were used.

(iii) m=n~ 1. The formula based on5

6 The formula (59) is especially instructive because we can observe very clearly how the addition

to Ck(x) of the extra term removes the crudest discontinuities of Ct(x). Indeed, by the formula (*) of

our preceding footnote we may write (59) as
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r*^*) = Ck(x) + (- 1 (* 4) (59)

has the type
(C2 if k is even"!(C2 if

IC1 if
D"~\ < ^, E"-\ s = k. (59')

" iisodd J

(iv) m=/i — 2. The formula based on

„_j(x) = C

has the type

r*.„_2(s) = Ck(x) + (- 1 )"^mT 1 (x) + (- 1)" \ZLmT *\x) (k £ 6) (60

CC* if k is even")
D"~\ { }, Ek~\ s = k. (60')

IC3 if k is odd j v '

These formulae show clearly how an increase in "order of contact" is compensated

by a corresponding loss in "reproductive power" and vice versa.

III. A SECOND CLASS OF ANALYTIC INTERPOLATION FORMULAE

In Part A, section 4.2, we described a class of ordinary analytic interpolation for-

mulae of basic function

1 f " ^*(«. t)
Lk(x, /) = — I —7 -e^du (fc= 1, 2. — ; / > 0). (1)

2tr J t)

These interpolation formulae are exact for the degree k — 1. The basic function (1) as

well as those of the smoothing interpolation formulae derived from it in Part A, sec-

tion 4.3, dampen out like a descending exponential function. In the present last chap-

ter we wish to construct smoothing analytic interpolation formulae of basic functions

dampening out like
exp (— r2*2),

hence much more rapidly. In view of the development of section 2.2 it would seem

fairly obvious how such formulae may be derived. We clearly need an analogue of

Lemma 5 which we state as a conjecture: The reciprocal of <f>k(u,t) admits of an expan-

sion

IY^-iCx) = Ci(x) + (— l/V^isS (59')

Let k be odd, hence 2;j —2 = & — 1 and therefore

Im-jC*) = Ct(x) + (- lfy^&^M^x). (59")

As seen from the graph of Mi{x), the corrective term is a step-function with discontinuities at x = n +1/2

whose values are proportional with the binomial coefficients of order k — 1: (*„'). Their addition to Ck(x)

offsets the discontinuities of Ck(x) and turn it into a function (59") of class Cl. If k is even, hence 2^ — 2

= k — 2, we have

rt.„-i(*) = Ct(*). + (- (59"')

As seen from the graph of Mi{x), the corrective term is now an ordinary polygonal line with vertices at

x = n, whose ordinates (at these vertices) are proportional to the binomial coefficients of order k—2:

(*72). Again, the superposition of this polygonal line on Ct(x) offsets the corners of C*(x) and turns it

into a function (59'") of class C. The formulae (59'"), (59") are especially convenient for constructing

tables of these functions from existing tables of Ci,{x), i.e., tables of Lagrange interpolation coefficients.
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——— = 2 <"J»)(0(2 sin w/2)'\ (2)
/) n-0

which converges for all real values of u and where the coefficients are all positive

£\t) > 0, (n = 0, 1, 2, • • • ). (3)

A proof of this conjecture would require a closer function-theoretic study of the

entire periodic function #*(w, t) which has not been carried through as yet.

Since
00

0=2 f *(« + 2t», 0

(see Part A, section 4.1, formula (6)) we have

0 = ^*(«, <) + m*-(regular function).

Therefore the expansion (2) agrees in its terms of order less than k with the similar

terms of the expansion

~TT~T = L U /0V= ^ ^(0(2 sin «/ 2)'", (-rg«^). (4)
it(«, 0 \2 sin «/2/ „_0

Hence

<£'(0 = (0. (0 g 2» < *). (5)

The expansion (4) is readily determined and its coefficients are found to be positive

as follows. We turn back to section 1.3 where in terms of the variable

v = 2 sin u/2 (6)

we have by 1(35)'

(r^y-£*.fc (-»*«*»>•
\2 sin u/2/ „_o

Also by 1(39)

v 1 1 »» 1-3 1 vs
u 2 «= arcsin v/2 — — H 1 h • • • (— 2 ^ v £ 2). (8)

2 2 3 8 2-4 5 32

On substituting (8) into the exponential series we find the expansion

00

et(«/t)> = £ ein(t)v2" (- 2 ^ v ^ 2) (9)
0

with positive coefficients, the first three of which are found to be

«o(0 = 1, e2(t) = — i e4(t) = — + — • (10)

On multiplying the series (7) and (9) we obtain the expansion (4). From the values

1(40) and (10) we readily find
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(*) <t) k t a) 5k2 + 22k tk t t2
d, «)-i, i, 4. w—+ _ + _ +

Our arguments of section 2.2 may now be repeated leading to the following theo-

rem:

Theorem 4. Let kbea positive integer and m an integer such that 0 <2m <k-\-2. Then

Lk.m(x, t) = Mk(x, t) - d?\t)bMk{x, /) + •••+(- (t)52m~2Mk(x) (12)

gives rise to a "smoothing" analytic interpolation formula

oo

F(x) = ynLk,m(x - n, t) (13)
n»—oo

which is exact for the degree min (2iw — 1, <fe — 1). Moreover (13) always preserves the degree

k-\.

The adjective "smoothing" was purposely written in quotation marks in order to

indicate that there is no general proof as yet that (13) always reduces, for integral

values of the variable x, to a smoothing formula in the sense of our Definition 1 of

Part A, section 1.1. For indeed, (2) and (3), which imply such a proof, were only con-

jectured. In the Appendix we give 8-place tables of the three basic functions

Li(x) = Li,i(x, 1/8),

L2{x) = L^x, 1/2), (14)

L3(x) = Le,s(x, 1/2), .

as well as 7-place tables of their first and second derivatives. For these three sets of

values of the parameters k, t, and m, the interpolation formula (13) is indeed a smooth-

ing formula. This point is verified by an inspection of the corresponding characteristic

functions

<£<(«) = Li{0) + 21^(1) cos « + 2Li(2) cos 2m + • • • , (i = 1, 2, 3,). (15)

From the values of L<(n), as given by our tables, we computed the following table

for these characteristic functions:

u

0°
30"
60°
90°

120°
150°
180°

<t> i(«)

1.00000
.99734
.96332
.85492
.67727
.50474
.43283

<t>t(u)

1.00000
.99519
.93655
.76500
.51297
.29296
.20728

<t>)W

1.00000
.99952
.97760
.84693
.56702
.27879
.16123

Since 0<</>i(M)<l for 0<m^180°, all three formulae (13) are smoothing formulae

according to Part A, section 1.1. Also <j>i(u) <<f>i(u) implies that Li gives a stronger

smoothing formula as compared to L\.
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Our set of tables is intended mainly for the purpose of illustrating the method.

A more complete set of tables would be needed in order to furnish smoothing of a de-

sired strength, as required by the needs of the numerical data at hand.

APPENDIX

Description of the tables and their use for the analytic approximation of equidis-

tant data. In the Tables I, II, and III, we have tabulated the following three functions

19
U{x) = M 4(z, 1/8) 5W4(*, 1/8) (1)

96

7
L2(x) = M<(x, 1/2) - — 82M<(x, 1/2) (2)

3 199
£»(*) = Me(x, 1/2) - — 8*M,(*, 1/2) + — 5W6(z, 1/2) (3)

and their first two derivatives. The function Mk{x, t) occurring in these definitions

may be defined by the integral

1 , /2 sin u/2\k
Mk(x, t) = — ( e~Hu,2) ( ) cos uxdu.

2-k J _M \ u /

A given sequence of equidistant ordinates

{?»} (4)

is approximated by either one of the three analytic functions

00

Fi(x) = £ yM* ~ v), (i = 1, 2, 3). (5)
y=as 00

The choice among these approximations depends on the amount of smoothing de-

sired. The formula (5), for i= 1 and i= 2, is exact for (i.e., reproduces) cubic polyno-

mials. For i = 3 the formula (5) is exact for quintic polynomials. For the same data (4),

the sequence {Ft(n)} is always smoother than the sequence {Fi(n)}. Generally, the

sequence {F3(t$} should be smoother than the sequence {Fi(n)}.

The first and second derivatives of the approximation (5) may be computed by the

similar formulae

F'i (*) = Z) y^< (* - v), (6)

F'i (x) = Z yM'{x - v). (7)

The arrangement of our tables is such as to facilitate the computation of Fi(x)

by (5), as explained in the Appendix to Part A.

An example of smoothing with subtabulation to tenths. We propose to compute a

table of the approximation F2(x), in the range 31^x^34, for the same ordinates

{;yn} as were used in our example of Part A (Appendix). The ordinates which we now

require are given by the following table:
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y« A* A3 A4 A5

26
27
28
29
30
31
32
33
34
35
36
37
38
39

32840
34790
37260
40440
44750
51120
59390
67550
73820
77830
80240
81660

82330
82680

1950
2470
3180
4310
6370
8270
8160
6270
4010
2410
1420

670
350

520
710

1130
2060
1900

- 110
-1890

-2260
-1600
- 990
- 758
- 320

190
420
930

- 160
-2010
-1780
- 370

660
610

240
430

230
510

-1090
-1850

230
1410
1030

- 50
- 370

190

280
-1600
- 760

2080

1180
- 380
-1080
- 320

560

From these values and the Table II of Lt(x) and Li' (x) we obtain the following tables

of the approximation F2(x) and its second derivative Fi' (x) shown with their differ-

ences.

Ft(x) A' A' A4 Fi (*) A» A' A4

31.0
31.1
31.2
31.3
31.4
31.5
31.6
31.7
31.8
31.9
32.0
32.1
32.2
32.3
32.4
32.5
32.6
32.7
32.8
32.9
33.0
33.1
33.2
33.3
33.4
33.5
33.6
33.7
33.8
33.9
34.0

51232.76
51989.86
52764.62
53555.48
54360.69
55178.34
56006.39
56842.68
57684.98
58531.03
59378.53
60225.21
61068.82
61907.17
62738.12
63559.62
64369.71
65166.57
65948.46
66713.83
67461.25
68189.46
68897.38
69584.08
70248.81
70890.96
71510.12
72105.98
72678.41
73227.40
73753.07

75710
77476
79086
80521
81765
82805
83629
84230
84605
84750
84668
84361
83835
83095
82150
81009
79686
78189
76537
74742
72821
70792
68670
66473
64215
61916
59586
57243
54899
52567

1766
1610
1435
1244
1040
824
601
375
145

- 82
- 307
- 526
- 740
- 945
-1141
-1323
-1497
-1652
-1795
-1921
-2029
-2122
-2197
-2258
-2299
-2330
-2343
-2344
-2332

-156
-175
-191
-204
-216
-223
-226
-230
-227
-225
-219
-214
-205
-196
-182
-174
-155
-143
-126
-108
- 93
- 75
- 61
- 41
- 31
- 13
- 1

12

-19
-16
-13
-12
- 7
- 3
- 4

3
2
6
5
9
9

14
8

19
12
17
18
15
18
14

20
10
18
12
13

1901.77
1767.20
1611.60
1436.84
1245.42
1040.29
824.64
601.66
374.38
145.59

- 82.29
- 307.15
- 527.12
- 740.51
- 945.74
-1141.23
-1325.45
-1496.90
-1654.18
-1796.14
-1921.91
-2030.98
-2123.19

-2198.74
-2258.04
-2301.69
-2330.31
-2344.57
-2345.07
-2332.47
-2307.47

-13457
-15560
-17476
-19142.
-20513
-21565
-22298
-22728
-22879
-22788
-22486
-21997
-21339
-20523
-19549
-18422
-17145
-15728
-14196
-12577
-10907
- 9221
- 7555
- 5930
- 4365
- 2862
- 1426
- 50

1260
2500

-2103
-1916
-1666
-1371
-1052
- 733
- 430
- 151

91
302
489
658
816
974

1127
1277
1417
1532
1619
1670
1686
1666
1625
1565
1503
1436
1376
1310
1240

187
250
295
319
319
303
279
242
211
187
169
158
158
153
150
140
115
87
51
16

- 20
- 41
- 60
- 62
- 67
- 60
- 66
- 70

63
45
24
0

-16
-24
-37
-31
-24
-18
-11

0
- 5
- 3
-10

-25
-28
-36
-35
-36
-21
-19
- 2
- 5

7
- 6
- 4
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A comparison of the approximation Ft(x) with the strictly interpolating function

F{x), obtained in the Appendix of Part A, is of interest. The function F(x) was ob-

tained by the formula
oo

F(x) = YL y>Lk(x - V, t), (k = 4,t= 1/2),

where, in view of III(1) and 111(2), we may define Lk(x, t) by the expansion

(k} 2 (k1 4

Li,(x, t) = Mk(x, t) — ct (t)S Mk(x, t) + c4 (1)5 Mt(x, /) — •••. (8)

Our present approximation F2(x) was computed by the formula (5), for i — 2, where

Lt(x), by (2), 111(5) and 111(11), happens to be identical with the sum

Li(x) = Mk(x, t) — (t)5*Mk(x, t)

of the first two terms of the series (8). A comparison of the tables of F(x) and F2(x)

shows that their difference in the range 31^x^34 nowhere exceeds 0.23% of the

value of F(x).

Table I. £,(*)=£,,,(*, 1/8), L[ (x), L[ (x)

L,(x)

x+.O x+.l x+.2 x+.3 x+A

.00041123

.03462580

.14220425

.78566556

.14220425

.03462580

.00041123

.00018550

.02756299

.08277004

.77475976

.21251290

.04145730

.00083691

.00007621

.02099452

.03516336

.74281594

.29166041

.04699226

.00157669

.00000003

.00002830

.01533104

.00066601

.69204028

.37661030

.04985257

.00277249

.00000017

.00000943

.01073240

.02556532

.62577328

.46353840

.04841746

.00458632

.00000074

*+.5 x+.6 x+.7 *+.8 *+.9

.00000280

.00718751

.04092087

.54811118

.54811118

.04092087

.00718751

.00000280

.00000074

.00458632

.04841746

.46353840

.62577328

.02556532

.01073240

.00000943

.00000017

.00277249

.04985257

.37661030

.69204028

.00066601

.01533104

.00002830

.00000003

.00157669

.04699226

.29166041

.74281594

.03516336

.02099452

.00007621

.00083691

.04145730

.21251290

.77475976

.08277004

.02756299

.00018550
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L[{x)

x + .O x+.X x+.2 *+•3 x+,4

3 .0030922
2 .0709642
1 -.6512052

0 .0000000
-1 .6512052
-2 -.0709642
-3 -.0030922
-4

.0015611

.0690870

.5359047

.2168063

.7515608

.0638857

.0056121

.0000001

.0007155

.0616092
-.4163489
-.4183406

.8262912
-.0445045

.0094213
-.0000006

.0002953

.0514079

.3016954

.5915396

.8662852

.0099839

.0147669

.0000026

.0001089

.0405956

.1986416

.7269119

.8650057

.0416488

.0217952

.0000103

Li (x)

x+.5 i x+.6 x+.7 x+.8 x+.9

3 .0000357
2 .0304945
1 -.1113051

0 -.8188067
-1 .8188067
-2 .1113051
-3 -.0304945
-4 -.0000357

.0000103

.0217952
-.0416488

-.8650057

.7269119

.1986416
-.0405956
-.0001089

.0000026

.0147669

.0099839

.8662852

.5915396

.3016954

.0514079

.0002953

.0000006

.0094213

.0445045

.8262912

.4183406

.4163489

.0616092

.0007155

.0000001

.0056121

.0638857

.7515608

.2168063

.5359047

.0690870

.0015611

£>"(*)

*+.o *+.i x-\-.2 *+.3 x + .4

4 -.0000004

3 -.0197354
2 .0202421
1 1.0966561

0 -2.1943249
-1 1.0966561
-2 .0202421
-3 -.0197354
-4 -.0000004

-.0000001
-.0114013
-.0521077

1.1912649
-2.1159568

.8923803

.1269947
-.0311722
-.0000019

-.0059477
-.0926044

1.1844282
-1.8927238

.5868711

.2654156
-.0454298
-.0000092

-.0027759
-. 1078983

1.0974670
-1.5554043

.2020705

.4283134
-.0617347
-.0000377

-.0011500

-.1061742

.9568292
-1.1427100
-.2337191

.6058876
-.0788289
-.0001346

x+.5 x+.6 x+.7 X + .8 x+.9

3 -.0004201
2 -.0947351
1 .7867260
0 -.6915708

-1 -.6915708
-2 .7867260
-3 -.0947351
-4 -.0004201
-5

-.0001346
-.0788289

.6058876
-.2337191

-1.1427100

.9568292
-.1061742

-.0011500

-.0000377
-.0617347

.4283134

.2020705
-1.5554043

1.0974670
-.1078983
-.0027759

-.0000092
-.0454298

.2654156

.5868711
-1.8927238

1.1844282
-.0926044
-.0059477

-.0000019
- .0311722

.1269947

.8923803
-2.1159568

1.1912649
-.0521077
-.0114013
-.0000001
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Table II. U{x) =L4,2(*, 1/2), U (x), Li'(x)

U(x)

*+.0 x + .l x-\-.2 *+.3 x+A

5 -.00000001
4 -.00003297

3 -.00453670
2 -.04033977
1 .20271717
0 .68438455

-1 .20271717
-2 -.04033977
-3 - .00453670
-4 -.00003297
-5 -.00000001

-.00001721
-.00313034
-.03775949

.14753253

.67711287

.26343912
-.04070831
-.00640787
-.00006127
-.00000003

.00000871

.00210474

.03379714

.09914645

.65567464

.32793367

.03791256

.00882100

.00011052

.00000007

.00000428

.00137859

.02913417

.05829935

.62117134

.39399436

.03092183

.01183236

.00019364

.00000018

-.00000203

-.00087930
-.02429574

.02523450

.57534514

.45907812
-.01869149
-.01545906

-.00032972
-.00000042

x+.5 *+.6 x+.7 *+.8 x + .9

4 -.00000094
3 -.00054590
2 -.01965692
1 -.00024449
0 .52044824

-1 .52044824
-2 -.00024449
-3 -.01965692
-4 -.00054590
-5 -.00000094

-.00000042
-.00032972
-.01545906
-.01869149

.45907812

.57534514

.02523450
-.02429574
-.00087930
-.00000203

.00000018

.00019364

.01183236

.03092183

.39399436

.62117134

.05829935

.02913417

.00137859

.00000428

.00000007

.00011052

.00882100

.03791256

.32793367

.65567464

.09914645

.03379714

.00210474

.00000871

-.00000003
-.00006127
-.00640787
-.04070831

.26343912

.67711287

.14753253
-.03775949
-.00313034
-.00001721

Li(x)

*+.0

5 .0000001
4 .0002093
3 .0162494
2 .0162409
1 -.5820676
0 .0000000

-1 .5820676
-2 -.0162409
-3 -.0162494

-4 -.0002093
-5 -.0000001

*+.1

.0001145

.0120195

.0339777

.5195203

. 1448007

.6294198

.0104651

.0213049

.0003705

.0000002

x+.2

.0000607

.0086291

.0441321

.4469715

.2821139

.6567760

.0471784

.0270545

.0006358

.0000006

x+.3

.0000311

.0060153

.0482532

.3695748

.4050264

.6601752

.0943909

.0332049

.0010581

.0000015

*+•4

.0000154

.0040721

.0478931
-.2920635
-.5077160

.6369100

.1518602
-.0392596
-.0017083
-.0000034
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Li (x)

x+.5

4 .0000074
3 .0026769
2 .0444848

1 -.1876748
0 -.5858619

-1 .5858619
-2 .1876748
-3 -.0444848

-4 -.0026769
-5 -.0000074

*+.6

.0000034

.0017083

.0392596

.1518602

.6369100

.5077160

.2920635

.0478931

.0040721

.0000154

x+.7

.0000015

.0010581

.0332049

.0943909

.6601752

.4050264

.3695748

.0482532

.0060153

.0000311

*+.8

.0000006

.0006358

.0270545

.0471784

.6567760

.2821139

.4469715

.0441321

.0086291

.0000607

*+.9

.0000002

.0003705

.0213049
-.0104651
-.6294198

.1448007

.5195203
-.0339777
-.0120195
-.0001145

W (x)

x+.O *+.1 x+.2 x+.3 x+A

5 -.0000010
4 -.0012284
3 -.0465343
2 .2201282
1 .5579563
0 -1.4606815

-1 .5579763
-2 .2201282
-3 -.0465343
-4 -.0012284
-5 -.0000010

- .0000004
-.0007087
-.0380479

.1369510

.6842412
-1.4227560

.3809905

.3157558
-.0543645
-.0020585
-.0000025

-.0000001
-.0003952
-.0298698

.0687454

.7580806
-1.3118991

.1594624

.4193623
-.0601451
-.0033357
-.0000057

-.0002129
-.0225871

.0162834

.7819152
-1.1365778
-.0960473

.5245097
-.0620423
-.0052283
-.0000126

-.0001108
-.0164844
-.0210828

.7615818
- .9099683

.3711575

.6230076
-.0578316
-.0079270
-.0000270

x+.S x+.6 x+.7 x+.8 x+.9

4 -.0000557
3 -.0116249
2 -.0450247
1 .7053804
0 -.6486751

-1 -.6486751
-2 .7053804
-3 -.0450247
-4 -.0116249
-5 -.0000557
-6

.0000270

.0079270

.0578316

.6230076

.3711575

.9099683

.7615818

.0210828

.0164844

.0001108

-.0000126
-.0052283
-.0620423

.5245097
-.0960473

-1.1365778

.7819152

.0162834
-.0225871
-.0002129

-.0000057
-.0033357
-.0601451

.4193623

.1594624
-1.3118991

.7580806

.0687454
-.0298698
-.0003952
-.0000001

-.0000025
-.0020585
-.0543645

.3157558

.3809905
-1.4227560

.6842412

.1369510
-.0380479
-.0007087
-.0000004
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Table III. £,(*)=£„,,(*, 1/2), L'3 (x), W (x)

Li(x)

*+.0 x+.l x+.2 X+.3 x+,4

6 .00000024

5 .00008286
4 .00268003
3 .00146844
2 -.06657958
1 .20814167
0 .70841267

-1 .20814167
-2 -.06657958

-3 .00146844
-4 .00268003
-5 .00008286
-6 .00000024

.00000012

.00005169

.00209760

.00384345

.06134625

.14737265

.70114512

.27390708

.06856746

.00197317

.00333890

.00012978

.00000049

.00000005

.00003150

.00160285

.00530620

.05394260

.09315196

.67967926

.34268907

.06617125

.00659556

.00404886

.00019870

.00000096

.00000002

.00001874

.00119677

.00602933

.04532872

.04655844

.64500315

.41215975

.05825575

.01244745

.00476644

.00029745

.00000183

.00000001

.00001088

.00087361

.00618622
-.03631488

.00818720

.59869152

.47975381
-.04376882
-.01948472

.00542627

.00043550

.00000340

*+.5 x+.6 *+•7 *+.8 *+.9

5 .00000616
4 .00062367
3 .00593823
2 -.02754330
1 -.02182865
0 .54280388

-1 .54280388
-2 -.02182865
-3 -.02754330
-4 .00593823
-5 .00062367
-6 .00000616
-7

.00000340

.00043550

.00542627

.01948472

.04376882

.47975381

.59869152

.00818720

.03631488

.00618622

.00087361

.00001088

.00000001

.00000183

.00029745

.00476644

.01244745

.05825575

.41215975

.64500315

.04655844

.04532872

.00602933

.00119677

.00001874

.00000002

.00000096

.00019870

.00404886

.00659556

.06617125

.34268907

.67967926

.09315196

.05394260

.00530620

.00160285

.00003150

.00000005

.00000049

.00012978

.00333890
-.00197317
-.06856746

.27390708

.70114512

.14737265
-.06134625

.00384345

.00209760

.00005169

.00000012

L[ (x)

*+.0 x+.l x-\-.2 x+.3 x+A

6 -.0000017
5 -.0003813
4 -.0062356
3 .0288514
2 .0379708
1 -.6356363
0 .0000000

-1 .6356363
-2 -.0379708
-3 -.0288514
-4 .0062356
-5 .0003813
-6 .0000017

.0000009

.0002500

.0053949

.0189098

.0648953

.5771501

.1447858

.6763588

.0001221

.0401754

.0069002

.0005675

.0000033

-.0000004
-.0001598
-.0044992

.0106360

.0815717
-.5054638
-.2828738

.6953825

.0497076
-.0523583

.0072273

.0008239

.0000063

.0000002

.0000996

.0036324

.0041176

.0893524

.4254184

.4080067

.6897327

.1103706

.0646105

.0070158

.0011670

.0000116

- .0000001
-.0000605
-.0028472
-.0007095

.0898535
-.3417929
-.5147714

.6576776

.1808527
-.0758656

.0060307

.0016121

.0000206
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U (*)

*+.5 K+.6 x+.l *+.8 * + .9

5 - .0000358
4 -.0021709
3 - .0040148

2 .0847953
1 -.2590022
0 -.5989336

-1 .5989336
-2 .2590022
-3 -.0847953
-4 .0040148
-5 .0021709
-6 .0000358
-7

.0000206

.0016121

.0060307

.0758656

.1808527

.6576776

.5147714

.3417929

.0898535

.0007095

.0028472

.0000605

.0000001

.0000116

.0011670

.0070158

.0646105

.1103706

.6897327

.4080067

.4254184

.0893524

.0041176

.0036324

.0000996

.0000002

.0000063

.0008239

.0072273

.0523583

.0497076

.6953825

.2828738

.5054638

.0815717

.0106360

.0044992

.0001598

.0000004

-.0000033
- .0005675
-.0069002

.0401754
-.0001221
-.6763588

.1447858

.5771501
-.0648953
- .0189098

.0053949

.0002500

.0000009

U (x)

*+.0 *+.1 x+.2 x+.3 *+.4

6 .0000117
5 .0015631
4 .0077612
3 -.1069900
2 .3239975
1 .5032414
0 -1.4591699

-1 .5032414
-2 .3239975
-3 -.1069900
-4 .0077612
-5 .0015631
-6 .0000117
-7

.0000061

.0010868

.0088518
-.0913730

.2160536

.6588169
-1.4253081

.3045939

.4384255
-.1186224

.0052612

.0021860

.0000217

.0000031

.0007350

.0089242
- .0739648

.1197566

.7667843
-1.3259553

.0708748

.5526106
-.1237228

.0009447

.0029705

.0000392

.0000015

.0004835

.0083240
- .0565175

.0385786

.8261081
-1.1676245
- .1867923

.6585611
-.1195410
- .0055676

.0039174

.0000685

.0000001

.0000007

.0003094

.0073357
-.0403140
- .0256675

.8390021
-.9605716
- .4548011

.7474910
- .1033391
-.0145672

.0050049

.0001165

.0000001

x+.5 x+.6 x+.7 *+.8 x+,9

6 .0000003
5 .0001926
4 .0061776
3 -.0261859
2 - .0726654
1 .8104398
0 -.7179590

-1 -.7179590
-2 .8104398
-3 - .0726654
-4 -.0261859
-5 .0061776
-6 .0001926
-7 .0000003

.0000001

.0001165

.0050049

.0145672

.1033391

.7474910

.4548011

.9605716

.8390021

.0256675

.0403140

.0073357

.0003094

.0000007

.0000001

.0000685

.0039174
-.0055676
-.1195410

.6585611
-.1867923

-1.1676245

.8261081

.0385786
-.0565175

.0083240

.0004835

.0000015

.0000392

.0029705

.0009447
-.1237228

.5526106
-.0708748

-1.3259553

.7667843

.1197566
-.0739648

.0089242

.0007350

.0000031

.0000217

.0021860

.0052612
-.1186224

.4384255

.3045939
-1.4253081

.6588169

.2160536
-.0913730

.0088518

.0010868

.0000061


