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—NOTES—

ON COMPRESSIBLE FLOW ABOUT BODIES OF REVOLUTION*

By W. R. SEARS" (Northrop Aircraft, Inc.)

The linear-perturbation theory of compressible fluid flow originated by Glauert

and Prandtl has recently been presented in a revised and clarified form by Goldstein

and Young.1 These authors show three alternative procedures by which the compres-

sible flow in an x, y, z-space can be deduced from a corresponding incompressible flow.

The linearized differential equation satisfied by the velocity potential <t> is

d2<t> d2<)> d2<f> , x
P + —: + -t = 0 W

dx2 dy2 dz2

where /32 denotes 1 — i/2/a2, JJ and a being the stream velocity and the velocity of

sound, respectively, in the undisturbed parallel flow. If the solution of (1) for the

case j8 = 1 (incompressible) is 0 = Ux+f(x, y, z), corresponding solutions for /3 < 1 are

given by the following alternative forms:

I) <t> = Ux + —/(*, /3y, fiz)
P

II) <f> = Ux + f(x, 0y, f)z)

III) <t> = Ux + f{x/[3, y, z).

Each of these variants represents a somewhat different compressible flow, but all

three are related to the given incompressible flow. The results determined by the the-

ory are consistent, of course, as far as the linear theory is applicable, and the proced-

ure used in any given problem is the one that provides the greatest ease of calculation.

For example, in I the geometry of a slender body remains unaltered as j8 varies; in

II the body is distorted but the pressures on its surface are unchanged; and so forth.

Method II is the one used by Tsien and Lees in a recent paper,2 while both I and

II are presented by Liepmann and Puckett in a new textbook.3 Sauer4 writes, in effect,

IV) 0 = Ux + X/(x, py, jfe)

and selects the value of X most convenient for any given problem; this includes both I

and II. Finally, B. Gothert,5 rejecting II because of a fancied discrepancy (actually
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caused by an error in his application of the method), introduces still another variant

by writing

V) * = PUx + f{x, py, jSjs).

We are particularly concerned here with the application of these procedures to

the flow about bodies of revolution. There is some confusion on this subject: Gold-

stein and Young,1 using I, find that the superstream velocities at a streamline body

in the absence of trailing vortices are 1//3 times those at the same location in incom-

pressible flow, while both Sauer4 and Gothert6 conclude that these velocities are un-

affected by compressibility, at least for slender bodies.6

This confusion is partly due to the fact that, while the procedures are equivalent

and must yield consistent results in the linear approximation, they may produce dif-

ferent results when they are applied outside this range. For example, let the maximum

velocity at the surface of a slender body in incompressible flow be denoted by

U- [l + .F(tt)] where n is the ratio of maximum diameter to length, so that F{n) is a

given function for any family of bodies. The several variants of the theory then yield

the following results for the maximum surface velocity (divided by the stream veloc-

ity) in the compressible flow:

I) i-2?(«)
P

II) F(n/ff)

1
III) —F{n)

P

IV) XF(»/X0)

V)
P

Obviously these results are all the same if F(n) is proportional to n or can be

approximated successfully in that form. But for a typical family of bodies, the ellip-

soids of revolution, F{n) actually has the form7

n2 log p — 2»2\/l — n2 1 + \/l — n2
F(n) = -—^2.  where p = ^ (2)

2\/l — ns — n2 log p 1 — \/l — n2

or, neglecting terms of order w2,

F(n) = — n2 log n. (2a)

The absence of a linear term in this expression is what leads Gothert to the con-

clusion that there is no correction for compressibility. Sauer's similar conclusion

apparently results somewhat analogously from the fact that he considers only the

6 Gothert admits a correction "for greater thickness ratio" and proceeds to calculate it by means of

Method V above.

7 This is obtained from H. Lamb, Hydrodynamics, Cambridge, 1932, §105. Note that the ratio

diameter/length, n, is equal to Vl — fiT2 in Lamb's notation.
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limiting case «M0. Actually, in

(2a) we have retained the leading

term while neglecting 0(«2), which

is consistent with the linear-per-

turbation theory.

F(n) according to (2) and (2a)

is plotted in Figure 1. It is clear

that Gothert's and Sauer's conclus-

ion cannot be correct in the range of

practical interest (1/10<«< 1/3

and 0.6 ^/3<1, say), since all of

the various procedures listed above

result in appreciable corrections to

the velocity ratio. It seems more

reasonable to conclude merely that

the linear-perturbation theory can-

not distinguish between the vari-

ous results. In this situation the

formula of Method I might well be Fig. 1. The superstream velocity ratio for ellipsoids

adopted by reason of its simplicity. of revolution in incompressible flow.

ON THE NUMERICAL TREATMENT OF FORCED OSCILLATIONS*

By ALVIN C. SUGAR" (Northrop Aircraft)

1. Introduction. The differential equation, with typical initial conditions, of an

harmonic oscillator subject to the action of a general disturbing force ma(t) is given by

x + o>2x = a(t), a;(0) = 0 = x(0). (1)

This equation occurs in problems involving from one to infinitely many degrees of

freedom. Its solution can be expressed as follows:

D C ' x
x = — > where D = I a(r) sin u(t — r)dr (2)

01 J o

is the so-called Duhamel integral. If in (1) we replace only x by D/u we obtain an

expression for the acceleration of the body.

x = a(t) — wD. (3)

In this note a simple expression which is an approximation of D is found. This

expression provides a convenient process for evaluating x and related quantities. Us-

ing the resulting simplified form of the acceleration a quick and easy vector method

of obtaining the maximum acceleration is explained. Rapid methods of finding the
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