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—NOTES—

ON COMPRESSIBLE FLOW ABOUT BODIES OF REVOLUTION*
By W. R. SEARS** (Northrop Aircraft, Inc.)

The linear-perturbation theory of compressible fluid flow originated by Glauert
and Prandtl has recently been presented in a revised and clarified form by Goldstein
and Young.! These authors show three alternative procedures by which the compres-
sible flow in an x, y, z-space can be deduced from a corresponding incompressible flow.

The linearized differential equation satisfied by the velocity potential ¢ is
% % %

+2 =0 (1)

8 ax?  9y* 9z

where 32 denotes 1 — U?/a?, U and a being the stream velocity and the velocity of
sound, respectively, in the undisturbed parallel flow. If the solution of (1) for the
case 3=1 (incompressible) is ¢ = Ux+f(x, ¥, 2), corresponding solutions for 8 <1 are
given by the following alternative forms:

1
1) ¢ = Ux + f(x, By, B2)
1) ¢ = Ux + f(x/B, y, 2).

Each of these variants represents a somewhat different compressible flow, but all
three are related to the given incompressible flow. The results determined by the the-
ory are consistent, of course, as far as the linear theory is applicable, and the proced-
ure used in any given problem is the one that provides the greatest ease of calculation.
For example, in I the geometry of a slender body remains unaltered as 8 varies; in
I1 the body is distorted but the pressures on its surface are unchanged; and so forth.

Method II is the one used by Tsien and Lecs in a recent paper,* while both I and
IT are presented by Liepmann and Puckett in a new textbook.? Sauer* writes, in effect,

1v) ¢ = Ux + M(x, By, B2)

and selects the value of A most convenient for any given problem; this includes both I
and II. Finally, B. Géthert,’ rejecting 11 because of a fancied discrepancy (actually
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caused by an error in his application of the method), introduces still another variant
by writing

V) ¢ = B*Ux + f(x, By, B2).

We are particularly concerned here with the application of these procedures to
the flow about bodies of revolution. There is some confusion on this subject: Gold-
stein and Young,' using I, find that the superstream velocities at a streamline body
in the absence of trailing vortices are 1/8 times those at the same location in incom-
pressible flow, while both Sauert and Géthert® conclude that these velocities are un-
affected by compressibility, at least for slender bodies.® _

This confusion is partly due to the fact that, while the procedures are equivalent
and must yield consistent results in the linear approximation, they may produce dif-
ferent results when they are applied outside this range. For example, let the maximum
velocity at the surface of a slender body in incompressible flow be denoted by
U- [14+ F(n)] where 7 is the ratio of maximum diameter to length, so that F(n) is a
given function for any family of bodies. The several variants of the theory then yield
the following results for the maximum surface velocity (divided by the stream veloc-
ity) in the compressible flow:

) %—F(n)
II) F(n/B)
11I) %—F(n)
V) AF(n/\B)
V) : % F(Bn).

Obviously these results are all the same if F(n) is proportional to #n or can be
approximated successfully in that form. But for a typical family of bodies, the ellip-
soids of revolution, F(n) actually has the form?

ntlog p — 2n*\/1 — n? 14+ V1 —nt
F(n) = . where p= ——— 2
2V/1 — n®* — n?log p 1—+1—n?
or, neglecting terms of order n?,
F(n) = — n?log n. (2a)

The absence of a linear term in this expression is what leads Géthert to the con-
clusion that there is no correction for compressibility. Sauer’s similar conclusion
apparently results somewhat analogously from the fact that he considers only the

8 Gothert admits a correction “for greater thickness ratio” and proceeds to calculate it by means of
Method V above.
7 This is obtained from H. Lamb, Hydrodynamics, Cambridge, 1932, §105. Note that the ratio

diameter/length, #, is equal to /1 —¢72in Lamb’s notation.
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limiting case n#MO. Actually, in
(2a) we have retained the leading .20 I
term while neglecting O(n2), which F(n)
is consistent with the linear-per- ‘ -
turbation theory. 16 -7
F(n) according to (2) and (2a) ~
is plotted in Figure 1. It is clear
that Géthert’s and Sauer’s conclus- 12 ' /
ion cannot be correct in the range of (2a) ~J /
practical interest (1/10<n<1/3 ey
and 0.6 =83<1, say), since all of .08 4
the various procedures listed above

result in appreciable corrections to /

. . .
the velocity ratio. It seems more .04 /
reasonable to conclude merely that

the linear-perturbation theory can-
not distinguish between the vari- 0 0 i 2 3 4 5
ous'results. In this situation the n

formula of Method 1 might well be Fi1G. 1. The superstream velocity ratio for ellipsoids
adopted by reason of its simplicity. of revolution in incompressible flow.

ON THE NUMERICAL TREATMENT OF FORCED OSCILLATIONS*
By ALVIN C. SUGAR** (Northrop Aircraft)

1. Introduction. The differential equation, with_typical initial conditions, of an

harmonic oscillator subject to the action of a general disturbing force ma(?) is given by

%+ wix = a(t), x(0) = 0 = x(0). 1)

This equation occurs in problems involving from one to infinitely many degrees of
freedom. Its solution can be expressed as follows:

D t

x=—, where D= f a(7) sin w(t — 7)dr (2)
w 0

is the so-called Duhamel integral. If in (1) we replace only x by D/w we obtain an

expression for the acceleration of the body.

i = a(f) — wD. 3)

In this note a simple expression which is an approximation of D is found. This
expression provides a convenient process for evaluating x and related quantities. Us-
ing the resulting simplified form of the acceleration a quick and easy vector method
of obtaining the maximum acceleration is explained. Rapid methods of finding the

* Received Oct. 1, 1945.
** Now at Brown University.




