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THE PROPAGATION OF WAVES IN ORTHOTROPIC MEDIA*

BY

G. F. CARRIER

Harvard University

1. Introduction. The present article is an extension of a previous paper dealing

with the elasticity problems of orthotropic media.1 Here, the displacement potentials

which define the dynamic phenomena in such media are discussed.

2. The dynamic problem. Hooke's law for an orthotropic medium may be written

in the form
ax = bn^x + bv>ev + buet, • • • ,

T xy — b wy xyi ' ' ' i

wherein we use the conventional notation for the stresses and the strains. If we limit

ourselves to a consideration of those materials which are isotropic in the y, z plane2

and for which
2

b 66 = bf, 5 = (bub22 — bii)/(bu + ^22 + 2&12), (la)

the number of independent elastic constants is reduced to four and the dynamic

elasticity problem may be easily treated.3 We utilize the familiar equilibrium equa-

tions
d<rx drXy drXI d2u
—+-^+ —+ pX-p—= (2)
dx dy dz dt2

and define the displacements in terms of potentials as

du d2<f>\
6 x

dx dx2

du dv d2
Ixy = — + — = —— (<t>l + <f>2), ■ • • ■ (3)

dy dx dxdy

When Eqs. (1), (2), and (3) are combined, we obtain

a (r d2 / d* d2\ d2~\ /av2 d°-<t>A)
— \\a  + «( + ) L, + j3[ —— H — U + X = 0, (4a)

dx2 \dy2 dz2/ dt2 J \ dy2 dz2 /)

d ( / d2 d2 d2 d2\ d2<f>3)
— •s /3 1- ( a |- b 1- y ]<t>2 -|- 5 > -)- Y = 0, (4b)
dy I dx2 \ dx2 dy2 dz2 dt2) dz2)

d ( d2<t>i d2fa / d2 d2 d2 d2\ )
— ft ( a. 1- y  -|- b  )$3 V
dz I dx2 dy2 \ dx2 dy2 dz2 dt2) f

+ z = 0, (4c)

* Received August 18, 1945.

1 G. F. Carrier, The thermal stress and body force problems of the infinite orthotropic solid, Quart. Appl.

Math. 2, 31-36 (1944).
2 The isotropy implies that 622 = 633, 612 = 613, bti — (ba — 628)/2.

3 These conditions are imposed in order that the roots of Eq. (8) will appear in a useful form. They

include isotropic media as a special case.
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where a, b, a, y, /32, and 5, are given respectively by bn/p, b^/p, b66/p, {bn — bi3)/2p,

(a—a){b—a), and b—y.

If we now consider the homogeneous equations (i.e., vanishing body forces) and

require the <f>i to vanish at infinity,4 we may begin the integration by removing the

leftmost derivative of each equation, multiplying each term in the remaining forms

by exp [ — i(x£-\-yr)-\-z£) ], and integrating the equations so obtained over the infinite

region. We find5

+ a(ij2 + n + ^r] *1 + 0* V« + «■ V» = 0 (5)

and two similar equations. Here

<t>j(x, y, z, /) exp [- t(a$ + yv + z))]dxdydz. (6)

We now have three ordinary linear differential equations (in t) the solutions to which

are of the form
== A y(£, 1J, f) cos ut. (7)

In order that these solutions be non-trivial, the determinant of coefficients of Eqs.(5)

wherein d2/dt2 has been replaced by —w2 must vanish, that is

at? + a(V2 + f2) - w2, Pi2, /3f2

pe, a? + ty + 7f2 - w2, Sf2 = 0. (8)

pe, w, «£2 + w + h2 -

The three roots of this equation are easily shown to be

o>i = a£ + b(v + f ), (9)

oj2 = <*£ + y(v + f ), (10)

c4 = a«2 + „2'+f2). (11)

Corresponding to these roots, the A kj must respectively obey the relations6

A n: A a'. A u = a — a'.fi'.p, (9a)

A 2i :A 22 'A 23 = 0:j3f2: — firj2, (10a)

A31:AS1:A33 = (b - <*)(v2 + t2):- ft2. (Ha)

Because of Eq. (6) it is evident that

<#>;• = — J*J"J" $j((, V, f. 0 exp [i(x£ + yv + zf)]d£<Mf

= X) —: f f f V, f) cos ukt exp |»(*£ + yv + zf)]<*£<Mf. (12)
*-1,2,3 8lT3 J J J -x,

4 This condition may be justified by noting that functions describing a time dependent phenomenon

which originated at <» in a defined region of the medium must vanish at infinity for all time t.

6 The procedure thus far has been identically that of the reference in footnote 1.

8 Here, An is the Aj of Eq. (7) corresponding to w*.
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The solutions of interest are those for which the An,- are explicit functions of co* only.

We consider first the solution associated with «i and find it convenient to write An as

A n(wi) = (o - a) J J J —  exp [ill ■o>i\dxdydz.

Here, o! is defined as «i = ia1/2£+j&1/277+k£>1/2f, and Ti = ia~1/2x-hjb~1/2y+kb~1/2z; Bn

is an arbitrary function of r'i= | ri|.

If ij is the angle between ri and o>i, and v is the polar angle about wj, the value of

An becomes

An — (a - a)a^2b ifi: Bu(ri) exp [iriui cos ju]ri sin fidndvdri

/% 00

= 4ir(a — a)aI/!6cof1 I Bn(ri) sin rio>idri
J o

= 4ir(a — a)a1/2io>r1Cn(wi). (13)

Using the same notation7 and procedure, we find that <pu becomes8

4>u = (8x36o1/2)_1 hi: An(ui) cos u>it exp [irnwi cos /x] sin ndfidvdu)i

= [(a - a)/rri] I Cn(«x) {sin &>i(fi — t) + sin w^n + t) }do>i
J o

= (2x2ri)-i[Bn{n - t) + Bn{n + 0]. (14)

Thus we find that one of the possible propagation phenomena is described by a mo-

tion wherein the wave fronts are the ellipsoids ri = const., and whose amplitude at-

tenuates like \/r\. Equation (9a) indicates that the other displacement potentials

associated with u>i differ from <t>n by a constant factor. In fact we could now write the

displacements for this motion as the gradient of a single potential in a distorted co-

ordinate system. This fact will be useful later.

The determination of the motion associated with «2 requires only a slight variation

on the foregoing procedure. As required by Eq. (9b), we define Ai2 = — f2C(w2)/w2,

^23 = ^2C(co2)/a)t, where C(co2) is derived as before from an arbitrary function B(r2)

and and r2 are defined in the same manner as were <oi and rt. The expression for

<f>22 becomes

4> 22
1 r r r ~ f2C(o>2)

= ——- III  cos (Ji2t exp [i(x£ + yri + zf)J<i£«Mf
87r3 J J J «2

1 d2 r r r°° C(«2)
= TT T7 I I I  cos 0,21 exP + W +

OT2 OZl J J J _oo 0)2

l a2 rg(ra - t) B(r2 + /)-[

2ir2 dz2 L r2 r2 J
(15)

Similarly,

' The angle k should now be measured about ri.

8 The final step is due to the inverse relationship implied by Eq. (13).
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1 Biu + tT1

~2? 7?l~~ + ——J' (16)
The displacement v2 associated with this solution can now be written in the form

2tt2 I dydz L r2 Jj

The fact that the equations governing our problem are linear implies that the

d2/dydz of the foregoing expression is superfluous,9 that is, we may write

1 ( E{r2 - t))
v2 -  curl < i > . (18)

2w2 I r2 )

The displacements corresponding to u3 arise in an entirely analogous manner and are

given by
i(b - a), j/3, k/3

v3 =

d d d

dx dy dz

P(r3 - t) Q(r3 - t)
0,  >  

r 3 r 3

(19)

where it is required that d(P/r3)/dy-\-d(Q/r3)/dz=0. The first of the three foregoing

solutions corresponds mathematically to the potential solutions found for the iso-

tropic solid and the latter two to the rotational motions; together they suggest a

way of factoring the equations for the displacements. We write the body forces in

the following manner, choosing the coefficients of the various derivatives in the opera-

tors to correspond to those found in the foregoing results; namely

where

and

(X, F, Z) = grad* 4>(x, y, z, t) + curl* M(z, y, z, t), (20)

grad* = i (a — a)d/dx + ifid/dy + k fld/dz

curl* M =

i(b - a), }0, k/3

d d d

dx dy dz

xi yt g

(21)

We must require that dMv/dy+dM„/dz = 0. We now assume the displacement in the

form
v = grad* <£ + curl* G, (22)

substitute into equations (1), (2), aad (3), and obtain a set of equations which are

separable into the following:

9 Actually, all derivatives of B/r2 constitute solutions.
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d2<f> / d2<t> 3V\ d2<t>
a— + bl— *, (23a)

ds2 Vd-v2 W d*2

3>G, /d*Gx d*Gz\ d*Gx
a + 7( h ) = - Mx, (23b)

dx2 \ dy2 dz2 / a<2

r / a2 a2 a2 \ di i

L°fc+^+■ -{M"M,)- (23c)
The relation dGt/dy+dGz/dz = 0 will be automatically satisfied.

Although the above equations may be transformed into the familiar Poisson form

by trivial transformations, it is interesting to extend the foregoing procedures to ob-

tain a formal method for the solution of, say, Eq. (23a). The steps jeading to Eq. (5)

transform Eq. (23a) into

K + + + fS)]* = (24)

where \p is defined as before and

'■///: HP, q, S, t) exp [— t(pi + qr; + Jf) ]dpdqds. (24a)

Conventional operational procedures then give a particular integral of Eq. (24) as

1 r'
+ «= — I 7({, i), f, a) sin «,(/ - a)da (25)

COj J 0

and <(> becomes (according to Eq. (12)),

sin wi(/ — a)-bin: [/>***///:
•exp [»'{(x — />)£ + (y — q)v + (z — s){} ]d£dridt;da~^dpdqds (26)

= [Jo *iP' q' *'
where10

1(a) = -—- f f f cos ui(t — a) exp [t'urRi] sin ndfidvdui
baUiJ0 J0 J 0

4ir r

~ ~ba^J 0

4ir °° cos «i(/ — a)
sin

R1U1

2ir rx sin «i(J?i + t — a) + sin &>i(/?i — / + a)

nTiF  dwi- <27>
ball'Ri J 0 u 1

The foregoing integral is a step function which (since 0 ^a^t, and l?i>0) has a single

10 Again we use the type of coordinate transformation which led to Eq. (12).
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step of magnitude ir at a — t — Ri. Ri is defined by R21 — (x—p)2/a+(y—q)2/b

-\-(z — s)2/b. The evaluation of the Stieltjes integral of Eq. (26) now yields

1 r r r » $(<,1/2* bl'2q, bWs, t -
4> = — \ I —         dpdqds (28)

4ir J J J Ri

and we have the familiar retarded potential. The expressions for the components of G

can be obtained in analogous fashion.

3. More general media. It is quite evident that one might start with the general

linear law relating the stresses and strains in an aerolotropic material and by the

same procedures arrive at three equations analogous to Eqs. (4), using either the dis-

placements themselves or the potentials defined in the foregoing. One would then ar-

rive at a determinantal equation of the same form as Eq. (8). The roots could be

found and Eq. (12) would be valid. However, the to* of this general problem would

not appear in the concise polynomial form found in the foregoing considerations. In

fact, the integrand of Eq. (12) becomes sufficiently complex in this general case that

it does not seem worth while to present in more detail the procedure outlined here.


