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1. Introduction. Next after the problem of the motion of a particle in a resisting

medium, the problem of the motion of a spinning shell is the major problem of ex-

terior ballistics. Many crude treatments have been given, but the problem was first

discussed exhaustively by Fowler, Gallop, Lock and Richmond.12 Reference may also

be made to treatments by Cranz' and Moulton.4

An exact treatment of the motion of a spinning shell as a hydrodynamical problem

is obviously out of the question. The problem must be treated aerodynamically. This

means that the forces exerted on the shell by the air must be regarded as dependent

only on the instantaneous motion of the shell. The connection between the aero-

dynamic force system and the motion cannot be deduced logically. It must appear in

the mathematical theory as a hypothesis, preferably supported by experimental ob-

servations.

But although mathematical theory cannot supply the aerodynamic forces, it does

give us some information about them. Two basic ideas are important here.

First, the shell has an axis of symmetry. This fact has been used in all existing

theories.

The second idea is a little more subtle. It concerns the connection between the

position of the mass center (or center of gravity) of the shell and the aerodynamic

force system. In one manner of speaking, there is no such connection. For two shells,

moving with identical motions but with different mass-distributions, the aerodynamic

forces are the same. But we cannot introduce the aerodynamic force system into the

mathematical argument without expressing that force system mathematically as a

force and a couple (or something equivalent). To do this, we must use a base-point,
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and reduce the force system to a force at that base-point, together with a couple.

It is well known that, for a given force system, the force is independent of the base-

point, but the couple is not.

Also, to describe the motion of the shell mathematically, we must use a base-

point. The motion is described by the velocity of that base-point and an angular

velocity. The angular velocity is independent of the choice of base-point, but the

velocity is not.

Now it is natural to use the mass center as base-point. If there are two shells,

Si and S2, with mass centers 0\ and 02, we may use Oi as base-point for Si and 0% as

base-point for St. Suppose that the two shells are of identical geometrical form (but

Oi and Oi are not geometrically corresponding points) and that their motions at the

instant are the same. (This means that geometrically corresponding points have equal

velocities; the velocities of Oi and 02 are not the same.) Then the force systems on the

two shells are the same. But the moments about Oi and 0% are not the same.

If we set out to formulate aerodynamic laws, using the mass center as base-point,

we must exercise great care. We must ensure invariance with respect to shift of mass

center. We must make sure, in the case described above, that when we apply our law,

first to Si and then to St, we get equivalent force systems.

Unfortunately, Fowler et al.1 paid no attention to this fact in formulating their

aerodynamic laws (pp. 302-305), although they draw attention to the necessity for

invariance (p. 305), and in fact make use of it. By considering a special case, it is

easy to see the fallacy in their basic laws.

Consider the two shells described above. Let the velocity of Oi be directed along

the axis of the shell, and let the shell have an angular velocity represented by a vector

perpendicular to the axis (plane motion). The yaw is zero, and the effect of the air

is a drag along the axis. But now consider St. On account of the angular velocity, the

velocity of Ot is not along the axis; there is a yaw, and hence a cross wind force in

addition to a drag. It is easy to see that the force systems on the two shells are not

equivalent, as they ought to be since the motions are the same.

Thus the theory of Fowler et al. contains a logical contradiction. It is very diffi-

cult to discuss critically a theory containing a logical contradiction, for from incon-

sistent hypotheses we may arrive almost anywhere (at 1=0, for example.) It may

well be, however, that the logical contradiction does not invalidate the physical con-

clusions of their paper. In the example given above, the yaw of St may well be very

small indeed in cases of practical interest, and the logical inconsistency may be no

more serious than that involved in writing 7t = 3.14. Used in one way, this statement

leads to 1=0; used in another way, it leads to important practical results.

Nevertheless it is sound policy, in building up a theory in applied mathematics

to make it logically consistent as far as possible. In the present paper we shall take

care to state the aerodynamic laws in such a way as to avoid logical inconsistency.

Apart from the thorough treatment of the theory of the aerodynamic force system

in sections 3 and 4, the following features of the present paper may be summarized

here.

The exact equations of motion of the shell (independent of any aerodynamic hy-

pothesis) are given a very compact form in (2.6). In section 5 it is shown how the aero-

dynamic functions may be found from high frequency photographs of a shell. Such

observations should provide the ultimate test of the validity of the aerodynamic
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method. In view of the success of the cruder jump card method of Fowler et al.,

it seems probable that the aerodynamic hypothesis is valid, and, if so, the pro-

posed method of observation should give us all information required concerning

the aerodynamic functions.

There are three conditions for the stability of a spinning shell (section 7), but

they are too complicated to interpret in the general case. If Magnus effects are

absent (section 8), they become much simpler, and in fact there is then just one

stability condition (8.19). In this condition the effect of the position of the mass

center is shown explicitly. The condition is stronger than the usual condition

(8.13b) based on the stability factor; a shell which is considered stable on the

basis of the usual condition may in fact be unstable. We are very much indebted

to Professor E. J. McShane for his critical comments on this paper in its original

form. He has informed us that the existence of second stability condition,

stronger than the usual one, has already been pointed out by R. H. Kent (Re-

port No. 85, Ballistic Research Laboratory). This condition is implicit in the

paper by Fowler et al. (1.332, equation 3.6234, and 4.12); this is discussed in

section 10, where their method is brought into line with the more general method

of the present paper.

Some well known facts are confirmed by theory in section 9. For a stable

shell, after the oscillations have been damped out, the axis of the shell always

points above the trajectory and to the right if the spin is right-handed. The

phenomenon of trailing is explained; the axis of the shell turns downward at a

rate approximately equal to the rate of turning of the tangent to the trajectory.

Drift also is discussed in section 9. A general condition (9.17) is obtained for

standard drift, i.e., drift to the right for right-handed spin. When we specialize

to subsonic velocity and flat trajec-

tory, this condition simplifies to (9.20).

When the numerical values of Fowler

et al. are inserted, this inequality is

liberally satisfied, so that the present

theory is in agreement with the ob-

served facts.

2. Exact equations of motion. We

shall now develop the equations of mo-

tion of a shell in convenient form. No as-

sumption is made here regarding the

aerodynamic forces, and the only as-

sumption regarding tile shell is that it

has an axis of dynamic symmetry (i.e.,

the momenta] ellipsoid at the mass cen-

ter is a spheroid). Thus our equations

would apply, for example, to a homo-

geneous projectile of square section or

to a bomb with three or more fins,

placed symmetrically.

We shall use the following notation, Fig. 1

the motion being referred to a Newtonian reference system:
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0 = mass center of shell,

»2 = mass of shell,

A, C= transverse and axial moments of inertia at O,

q = velocity of O,

o = angular velocity of shell,

h = angular momentum of shell about 0,

F = vector sum of aerodynamic forces acting on shell,

G = moment of aerodynamic forces about 0,

F' = weight of shell.

Then the equations of motion are

mq = F + F\ h = G. (2.1)

We introduce a right-handed unit orthogonal triad, i, j, k, fixed neither in

space nor in the shell (Fig. 1). We take k along the axis of the shell, and i, j

perpendicular to k, but the final choice of i, j is deferred for the present. LetQ

be the angular velocity of the triad.

We may now resolve the vectors as follows:

q = u'\ + vj + wk,

G> = Wii -f- COjj + C03k,

£1 = fiii -f- fijj -J- 123k,

h = .4u>ii + -f- Cw3k, (2.2)

F = Fx i+ F2j+ Ft k,

G = Gii + G%j + C^k,

F' = F{ i + F,'j+ Fi k.

Clearly ni = wi, 02 = «2-

In scalar form the equations of motion (2.1) then read

m(u — 1183 + wu2) = Fi + F{,

m(i — wi + uQ3) = Fi + Ft, (2.3)

m(w — uoii + »u>i) = F3 + Fz,

A (till — ^2^3) ~f~ CtO3CO2 — G1,

A (h>2 -f- OJifls) — Col3CO1 = Gi, (2.4)

Cd>3 — G3.

It is now convenient to introduce complex variables. We write

u -f- iv — a,

coi + ioii = rj,

F, + iF2=F, (2.5)

G\ + iGi = G,

F{ + iFi = F'.
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We multiply the second equation of (2.3) by i and add it to the first, and deal

similarly with the equations (2.4). Thus we reduce the equations of motion to

the form:

{ + — iitrr] = (F + F')/m,

7j + ir,ih - iC'wn = G/A, (C' = C/A),

w — uu2 + i>o)i = (F3 + Fl)/m,

W3 = Ga/C.

(2.6)

These equations are exact; no approximations have been made.

3. The general aerodynamic hypothesis. What is here set down is probably a little

more general and explicit than previous statements about aerodynamic force

systems. There is no implication that the hypothesis is physically accurate in

all cases. All we can hope is that deductions from these assumptions lead in suit-

able cases to results in fair agreement with observation. But it seems best to

make the hypothesis mathematically clear.

First we consider a fluid, at rest or in motion. We are not particularly con-

erned with the properties of the fluid. The important thing is that it defines

(i) a scalar field of density p;

(ii) a scalar field of local sound velocity c;

(iii) a vector field of velocity W.

This last field defines two other vector fields, vorticity (V = l/2 rot W) and ac-

celeration (a. = dW/dt).

Usually in ballistics we deal with the static case in which W = 0 and p, c are

functions of height only. A more accurate model is that in which W is horizontal,

but in different directions at different heights to allow for changes in the direc-

tion of the wind with variation of height.

Now suppose we wish to investigate the motion of a solid through this fluid.

To treat the problem adequately we should of course consider the disturbance

produced in the fluid by the solid. But we do not do this. We use the fluid merely

to compute from its undisturbed motion the aerodynamic forces acting on the

solid.

Let O* be the centroid of the solid, i.e., the position its mass center would

occupy were the solid of uniform density. Let the motion of the solid be de-

scribed by the velocity q* of 0* and the angular velocity <o*.

The basic hypothesis is then as follows:

Aerodynamic hypothesis: The aerodynamic force system exerted on the solid

by the fluid consists of

(i) an aerostatic force;

(ii) an aerokinetic force system.

The aerostatic force acts at 0* and equals

PV o(a-P) (3.1)

where p is the density of the fluid at O*, F0 is the volume of the solid, and P

is the body force per unit mass acting on the fluid at 0*. (Note that if a = 0 and P

is gravity, this is simply the Archimedean buoyancy.) The aerokinetic force sys-
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tern is represented by a force F* at 0* and a couple G*; these are functions of p

and c at 0* and of the vectors

q* — W, a>* — V. (3.2)

If q* = W and to*= V, then F*=0 and G* = 0.

Henceforth we shall assume W = 0, and so F*, G* depend only on p, c, q*, to*,

while the aerostatic force is — pVaP. If we were discussing the aerodynamics of a

dirigible, the aerostatic force would be very important. For a shell it is quite

trivial and we shall omit it altogether.

Thus for our purposes the aerodynamic force system consists of the force F*

at 0* and the couple G*; they are functions of p, c, q*, and u*.

It will be observed that our base-point O* has been chosen in a definite way

with respect to the geometry of the solid, and not with respect to its mass-dis-

tribution. This frees our laws from the objection raised in the Introduction to

the laws of Fowler et al.

It is to be noted that it is by no means essential to select the centroid as

base point. But it is least confusing to choose, once and for all, a point simply

related to the geometry of the solid, and the centroid seems the most natural

point to take.

4. The aerodynamic force system for a shell with an axis of symmetry. We now

consider a shell with an axis of aerodynamic symmetry. By this we mean that

its exterior is a surface of revolution. We might proceed for the present without

introducing the mass-distribution of the shell, but it seems simpler to proceed

at once to the case of complete symmetry. We shall therefore suppose that the

shell has a common axis of aerodynamic and dynamic symmetry. All that is

stated in section 2 is then valid and we shall use the same notation.

The mass center of the shell is at 0 and its centroid at O*. Let us write

00* = rk, (4.1)

and
q* = velocity of 0*,

<o* = angular velocity of shell,

F* = vector sum of aerodynamic forces,

G* = momentofaerodynamicforcesaboutO*.

(4.2)

Then
q* = q -f <o X rk, o>* = w,

\ (4.3)
F* = F, G* = G + F X rk. J

In the notation of (2.5) with asterisks attached to the symbols referring to 0*,

we have in consequence

|* = £ — iri}, w* = w,

v* - n, <«>3*

F* = F, F3* = f,,

G* = G - irF, G* = C3.

(4.4)
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Now F* and G* depend on q* and o>*. It follows from the aerodynamic sym-

metry that if the pair of vectors q*, to* is given a rigid body rotation about the

axis of symmetry, then the pair of vectors F*, G* is also rotated rigidly about

the axis through the same angle. Hence the following ten scalar quantities are

unaltered by such a rotation:

Fa, Gi,

u*F1* + v*F2*, v*Fl* - u*F*, u*G* + v*G*, »*Gi* 1

(*>1*F * -f- Oi*F*t CO?*F * — W]*Z^2*| &*G* "1" CO 2*( J 2*, W2*C 1* — COi*(. *. j
(4.5)

But, to within such a rotation, the vectors q*, to* are determined by the quanti-

ties
w, co3, u*2 + v*\ co,*2 + co2*2, «W + tV, MW-fW, (4.6)

between which there exists the identity

(k*2 + »*2)(Wl*S + CO,*2) - (jtW + D*C02*2)2 = (m*C02* - V*0>!*y. (4. 7)

Therefore the quantities (4.5) are functions of the quantities (4.6); in fact, for

a shell of given size and shape, (4.5) are functions only of (4.6) and the airscalars

p, c at O*.

We now write
u*F* + v*F2* = 5j, v*Fl* - u*F* = i2. (4.8)

Multiplying the second equation by i and subtracting it from the first, we get

| *F* = Sl-is2, (4.9)

the bar denoting the complex conjugate. Dealing similarly with the other quanti-

ties in (4.5), we see that

m i*g*,
i)*F*, v*G*,

(4.10)

are complex functions of the real quantities in (4.6).

We cannot proceed further without an additional hypothesis. We shall as-

sume that
F*, F 2*, G*, Gf

are linear functions of
«*, V*, 0>f, w2*.

This is certainly a reasonable assumption when the latter quantities are small.

We can then write

F* = aiu* + a2»* + fauf + /W, |

G* = 7i«* -j- y2v* - r- Sjcoi* -f- 52co2*, J
(4.11)

where the eight complex coefficients are functions of w, u3, p and c. When we

form the quantities (4.10) and use the fact that these must be functions of the

quantities (4.6), we find a2 = iai, /82 = i/3i, etc., and so

F* = £*P* + V*Q*,

G* = £*P'* + 7j*<3'*, j

where -P*, Q*, P'*, Q'* are complex functions of w, w3, p, c.

(4.12)
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The components F3, G3 are functions of the quantities (4.6). We shall assume

that they are functions only of w, U3, p, c. This also is a plausible assumption when

u*, v*, u*, oij* are small.

To sum up: There are ten real aerodynamic functions of w, oj3, p, c, contained

in the set
P*, Q*, P'*, Q'*, Ff, G*. (4.13)

Let us see what these assumptions amount to in the case of a shell in a wind-

tunnel. We think of the shell as moving and the air at rest. We put

V* = 0, = 0)2* = U3* = 0,

and (4.12) gives
F1* + iF2* = u* P*, G* + iG* = u* P'*.

In this simple case we must have, by symmetry since W3* = 0,

Ft* = G* = G* = 0,
and so we have

Fj* = u*P*, iG* = u*P'*. (4.14)

It is easy to see that these equations imply that (for small yaw), the cross wind force

and the moment are proportional to the yaw. This is the usual assumption.

We now pass from the centroid 0* to the mass center O by the transformation

(4.4). We get for the force system F, G on the shell

F = Fi + iF2 = fP + VQ, F3 = F3*,

G = Gi + iGt = ^P' + vQ', G3 = G3*,

where P, Q, P', Q' are complex functions of w, u3, p, c, given by

P = P*, Q = Q* - irP*,

P' = p'* 4- irP*, Q' = Q'* - irP'* + ir(Q* - irP*).

(4.15)

(4.16)

This gives the transformation of the aerodynamic functions when we pass from the

centroid 0* to the mass center 0. Actually this is the transformation for passage from

any base-point to any other, provided of course that both lie on the axis.

To show the real and imaginary parts of the aerodynamic functions, we shall

write (with similar equations in asterisked form)

P — Pi + iP 2, Q = Qi + iQi,

P' = PI + iPl, Q' = Ql + iQl.

The transformation (4.16) then gives

(4.17)

1 >

Pi = P*,

Qi = Qi* + rP2*,

Ql = QS - rP *,

Pi = P{* ~ rP*,

Pi = Pi* + rPi*,

Q{ = Ql* + rPl* + r(- Qt + rP,*),

Qi = Qi* ~ rP{* + r{Qf + rP *).

(4.18)
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The method used above for the resolution of the aerodynamic force system is not

the usual one. Three important vectors are involved: k the axis of the shell, q the ve-

locity of the mass center, to the angular velocity. In resolving vectors, it is necessary

to pick out one of these three as a fundamental vector and build a basic triad on it.

The traditional plan is to pick out q as fundamental and take k as a secondary vector,

so that q and k together give one of the planes of the basic triad. Resolution of F

along q and perpendicular to q in this plane gives the usual drag and lift. However

convenient this may be for wind-tunnel work in which q is fixed while k is altered,

it certainly appears less convenient than the method of the present paper for a simple

mathematical formulation of the problem of the spinning shell. There is a further

objection to the usual plan; the direction of q depends on the mass center.

The conventional terminology does not suit the present resolution. The following

is suggested. The asterisk indicates that the centroid is used as base-point. The same

notation without asterisks refers to the mass center.

u*i + w*j = cross velocity,

wk = axial velocity,

coii + &)2j = cross spin,

w3k = axial spin.

-Pi* | £* | = cross force due to cross velocity ( —),

P* | £* | = Magnus force due to cross velocity (-f),

Q* | v* | = Magnus force due to cross spin (+),

Q* | V | = cross force due to cross spin (+),

F3 = axial force ( —).

P{* | £* j = Magnus torque due to cross velocity ( —),

Pi* | £* I = cross torque due to cross velocity ( —),

Q{* | r\* | = cross torque due to cross spin ( —),

Qi* | v* I = Magnus torque due to cross spin (+),

Gs = Magnus axial torque (—).

(4.19)

(4.20)

(4.21)

It is a consequence of symmetry that where the word "Magnus" is included above,

the quantity in question changes sign with co3; where the word "Magnus" does not

occur, the quantity in question does not change sign with U3. For uniformity, we have

called the axial (viscous) torque "Magnus"; there is justification for this in the fact

that it is the viscous torque that sets up the circulation which is responsible for the

other Magnus effects. The signs in parentheses indicate probable signs of the various

quantities when u3 is positive, assuming a center of pressure in front of the centroid.

Since
| {* | = q* sin (q*, k), | r,* | = to sin (w, k), (4.22)

it is clear that the usual sine law of variation is implicit in (4.20), (4.21). But since

we suppose the angles in question to be small, the sine, tangent and circular measure

are not distinguishable.

It is convenient to introduce positive dimensionless aerodynamic functions, as is

done by Fowler et al. So we write, paying attention to dimensions and signs,
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Pi* = - pa'-wff, P2* = pa*w3f2*,

Qi* = Q* = pa'wgS,

= - pa>o>3f{*, Pi* = - pa'wfr,

Qi* = - pa'wgi*, Qi* = pasu3gi*. J

(4.23)

Here p is the air-density and a the radius of the cross section of the shell. The func-

tions (f*, g*) depend certainly on w/c, and possibly also on au3/c and the Reynolds

number. The above equations may be regarded as definitions of the eight aerodynamic

functions (f*, g*), which are analogous to the //., Jm, etc. of Fowler et al. To the above

equations we may add

F3 = — pfl2w2/3, G3 = — pa4wu3g3, (4.24)

where f3 and g3 are dimensionless; /3 is the usual drag except for the slight difference

that we resolve along the axis of the shell and treat w as basic instead of q*.

As the notation is necessarily somewhat complicated, let us summarize as follows:

Askerisked quantities refer to the centroid, unasterisked to the mass center.

The aerodynamic force system is denoted by

F* = Fi* + iFt*, G* = G* + iG*, F3, G3.

There are ten real aerodynamic functions contained in the set

P\ Q*, P'\ QF3, G„

and these may be expressed in terms of the ten positive dimensionless aerodynamic

functions

/.*, /■/, gf, gf, /{*, fi*, gi\ gi\ f3, gz.

The same notation may be used with reference to the mass center, but since the aero-

dynamic force system has nothing to do with the mass center as such, the asterisked

quantities are the more fundamental. If we wish to pass from O* to 0, we must trans-

form by (4.18) and (4.23). Thus/i*=/i,/2*=/2, f*=f3, g*=g3, but the other functions

change.

One more notation will be introduced for convenience in (6.4).

It is clear from (4.20), (4.21), (4.23) that if the dimensionless aerodynamic func-

tions (/*, g*) are constants, we have the following proportionalities, 8 denoting the

small yaw:
cross force due to cross velocity <x w2S,

cross torque due to cross velocity « w2d,

axial force <x w2,

axial torque <x wco3.

(4.25)

The first three of these are in agreement with experiment for subsonic velocities—the

effects vary as the square of the velocity. The last (axial torque) requires comment.

The form of G3 in (4.24) agrees with Fowler et al., but one may ask why (apart

from the theory of dimensions) the factor w should be present. The following is a pos-

sible explanation. The rotation of the shell generates a rotating wake. If this wake has,

throughout, the same spin as the shell, it has angular momentum %rpa4co3 per unit

length. In unit time a length w of wake is generated, and so, by the conservation of
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angular momentum, the rate of loss of angular momentum of the shell is

— G 3 = %Tpa4wu>3.

This argument not only confirms the form G3 of (4.24); it gives

= !*-. (4.26)

A crude argument of this sort must be accepted only provisionally in the absence of

experimental check.

5. Determination of the aerodynamic functions by observation. Fowler et al.

stressed the importance of avoiding the simple empirical assumptions previously em-

Fig. 2

ployed. As in the case of the drag function, it is necessary to determine the aerody-

namic functions experimentally. What follows is a refinement and generalization of

the jump card method of Fowler et al. Unless there are technical difficulties, or unless

the basic aerodynamic hypothesis is wrong, the following method should yield all the

aerodynamic functions quite simply, except perhaps g3, and no doubt a method could

be devised for it also.

Let a shell be fired horizontally and observations made of it not long after it leaves

the muzzle. These observations consist of high-frequency photographs, one set of

photographs being taken vertically and the other set horizontally from the side. These

photographs show successive positions of the shell at short intervals of time.

We now turn to the exact equations of motion (2.6). There is some indeterminacy

in these because we have not yet chosen the vector i definitely. Let us choose it in

the vertical plane through the axis of the shell (k), pointing downward (Figure 2).
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Then
F' = mi> cos 0, (5.1)

and the first two equations of (2.6) may be written

F = w(£ + i£fi3 — iwrj) — tng cos 0, )
r (5.2)

G = A(i + — iC «3). J

These equations are exact. We may put cos 0 = 1, since the axis of the shell is approxi-

mately horizontal. Then fl3 = 0 by (6.2).

Now m, A, C' are known for the shell; w may be found from the observations or

otherwise (muzzle velocity), and w3 deduced from the rifling. To find £, 77 as functions

of t, it is merely necessary to measure on the photographic plates the linear displace-

ments of the mass center and the angular displacements of the axis of the shell, cor-

responding to the short intervals between successive photographs. Smooth graphs

might be made showing u, v, u>i, w2 as functions of t or the complex quantities £, 77

might be plotted on an Argand diagram with the values of t marked in. In any case

it should not be difficult to obtain £ and 1} also as functions of t from these graphs.

When these functions are inserted in the right-hand sides of (5.2), we have F

and G as functions of t. By (4.15) we have

£P + vQ = F, tP' + vQ'=G. (5.3)

If we use two values of t, each of these equations yields two complex equations, and

from them P, Q, P', Q' can be found. Here we have a good test of the aerodynamic

hypothesis, for the values of P, Q, P', Q' should be independent of the particular in-

stants chosen.

It may be advisable, as a refinement, to allow for the decrease in w between the

two instants in question. This can easily be done from our knowledge of the drag

function.

By repeating the experiment on the same shell, but using different muzzle veloci-

ties and riflings, we obtain P, Q, P', Q' as functions of w and «3.

The next step is to transform from the mass center to the centroid. This is done

by (4.16), and we obtain P*, Q*, P'*, Q'* as functions of w and w3. Finally, the dimen-

sionless aerodynamic functions (/*, g*) are found from (4.23).

It should be stressed that these last functions are characteristic of the form of the

shell and completely independent of the mass distribution. Indeed, to a certain ex-

tent they will be independent of the size of the shell, but this must be accepted with

caution.

6. Plan of solution and partial linearization of the equations. We now introduce

fixed axes OoXoyoZo, O0Zq being directed vertically upward. Let 0 be the inclination of k

to the horizontal (Figure 2), and <f> the inclination of the horizontal projection of k

to OoXo- We have already made the vector i definite in section 5. We have then

F' = me cos 0i — me sin 0k, \
. : •' (6-i)

£i = — <t> cos 0i — 0j + <t> sin 0k. J

Hence
77 = — (<j> cos 0 + »0), Q3 = <t> sin 0. (6.2)
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We substitute from (4.15) in (2.6), and the equations of motion become

£ 4" 3 — twj = £X + i;F + g cos 8,

jj + it)Qs — iC'o>3i} = £X' r]Y',

where

w — w«2 + vui = F3/m — g sin 8,

(i>3 — G3/C,

(6.3)

X = P/m, Y = Q/m, X' = P'/A, Y' = Q'/A. (6.4)

If we substitute from (6.2) for tj, and regard X, Y, X', Y', F3, G3 as known func-

tions of w, u3, p, c, we have six real equations for the dependent variables u, v, w,

6, <j>, u3. But unless we assume p, c to be constants, we must bring in further equations.

Let us assume them to be functions of height (z0) only. By resolution of velocity we

have
x0 + iyo = (m sin 8 + iv + w cos 8)e'*, 1 ^ ^

zo = — u cos 6 + w sin 8. J

When the last of these equations is associated with (6.3), we have seven real equa-

tions for seven unknowns, namely, those stated above and z0. When they have been

solved, the trajectory of the mass center is given by (6.5).

We now make the following two assumptions: (i) the vertical plane through the

axis of the shell turns slowly; (ii) the angle of yaw is small. The first assumption

implies that <j> and hence $l3 is small; the second implies that £/w is small. On account

of the smallness of we reject the second terms in the first two equations of (6.3),

and on account of the smallness of £/w we reject the second and third terms in the

third equation.

Our partially linearized equations now read

(6.6)

{ — iwr) = %X + r\Y + g cos 8,

V - iC'o,3V = + VY\

w - F3/m — g sin 8,

C03 = G3/C,

where
V = — (</>' cos 8 + id). (6.7)

7. The stability of a spinning shell. In discussing rapid oscillations of the shell,

we treat w and w3 as constants in the first two equations of (6.6). Consequently

X, Y, X', Y' are constants. In rapid oscillations differentiation with respect to t

greatly increases the importance of a term. Hence we shall treat cos 6 as a constant in

the first equation of (6.6); the term corresponding to a small change in 0 will be neg-

ligible in comparison with the terms in 77.

We have then linear equations with constant coefficients, which have solutions

of the form
f = A ie"i' + AiC*' + A 3,

v = Bie^' + B2ea»' + B3,
(7.1)
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where «i, «2 arc the roots of the equation

a2 - (iC'ois + X + Y')a + i(C'u3X - wX') + XV - X'Y = 0, (7.2)

and

A3 — — — cos d(iC'o}3 -(- I"),
E

B3 = — cos 0-X',
E

E = t.(C'to3X - wl') 4- XY' - X'Y.

(7.3)

The condition for stability is that both roots of (7.2) should have non-positive real

parts.

If we write

(7.4)

A, = X^ + Yi,

K2 = C'to3 + Xt + Y2 ,

K3 = - C'u>3X2 + wXi + XxY{ - XiYi - XI Yi + XI F2,

Kt = C'«8X, - wX{ + X\Y{ + X2Y{ - X{ Yi - Xi Yu

then (7.2) becomes

a2 - (Ki + iKt)a + (A, + iKt) = 0. (7.5)

The condition for stability may be written

f cos x ^ 0, (7.6)

where f, x are defined by

f4 = (A* - K\ - 4A3)2 + 4(A,*2 - 2A4)S, f ^ 0,

f2 sin 2X = - 2A4),

f cos 2x = Ki — K2 — 4A3, — %-ir ̂ x ^ 7"".

(7-7)

It is immediately evident that there is instability if K\ >0. If K1 ^0, then the con-

dition (7.6) is equivalent to

k\ ^ f2 cos2 x. (7.8)

or

2Kl ^ f2(l + cos 2X). (7.9)

On substituting for f2 cos 2x from (7.7), this becomes

K.\ + K\ + 4A3 ^ (7.10)

Thus there is instability if Ki ^0, K? +K£ +4K3 <0. If K\ ^0, K? +K£ +4A"3^0, the
condition (7.10) is equivalent to

(A'i + K.\ + 4A3)2 jg (7.11)
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and, on substitution from (7.7), this bccomes

+ KxKtKt - kI ^ 0. (7.12)

To sum up, the motion of the shell is stable if, and only if, the following three condi-

tions are all satisfied:

Kl ^ 0, (7.13a)

K\ + KI + iKt ^ 0, (7.13b)

K,K3 + KtKtKt - K,^ 0. (7.13c)

The K's are given by (7.4).

These conditions are more general than any given previously.

If there is strong stability (i.e., if the real parts of «i, «2 are negative and large),

then the first terms in (7.1) die away quickly. In fact, the rapid oscillations are

damped out, and we are left with

{ = - — cos 6 (iC'u3 + Y'),
E

77= — cos 8 • X'.
E

(7.14)

With these we associate the last two equations of (6.6), viz.

(7.15)
w = Fi/m — g sin d,

UI3 = Gs/C,

and also ij= —(</> cos 6+i6).

In (7.14), (7.15) and the last of (6.5) we have seven real equations for the seven

quantities u, v, w, d, <t>, W3, Zo- £ is a function of w and o>3 as in (7.3); it also involves z0,

since the properties of the air depend on z0 and aerodynamic functions X, Y, X', Y'

depend on the properties of the air. The above equations determine the motion of the

stable shell.

We note that the equations (7.14), (7.15) are simply (6.6) with the terms £, tj de-

leted. To test whether this treatment is valid, we should solve (7.14), (7.15) for £, ?/,

calculate £, 17 by differentiating these solutions, and compare these calculated values

with the other terms in (6.6). They should, of course, turn out to be small.

8. Stability in the absence of Magnus effects. If we accept the linear law (4.11),

the aerodynamic force system (4.13) is the most general possible. As we shall see in

section 10, the force system of Fowler et al. is a special case. The system (4.13) con-

tains ten real functions, and it appears impossible to make any deductions of physical

interest without introducing some simplifications. We shall retain a force system a

little more general than that of Fowler et al.; our system satisfies the fundamental

condition of invariance with respect to shift of mass center, whereas theirs does not.

Let us refer to (4.20), (4.21), and assume that all Magnus effects vanish, except G3;

this means that

p* = Q* = = Q>* = 0. (8.1)
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This leaves us with four real aerodynamic functions, in addition to h\ and (7;t

l'i* < 0, Q2* > 0, Pi* < 0, Q!* < 0. (8.2)

There can be no doubt that these inequalities are physically valid.

We now transform to the mass center 0 by (4.18). We find

P2 = Qi = PI = Qi = 0. (8.3)

Thus the Magnus effects do not reappear with change of base-point; in fact, the

vanishing of Magnus effects is an invariant condition. For base-point 0 there are again

just four real aerodynamic functions in addition to F3 and G3:

Pi = Pi*,

Qi = Q2* - rP*,

Pi = Pi* + rP*,

Qi = Qi* + rPi* + r(- Q2* + rPf).

Then by (6.4), (7.4) and (8.3),

Ki = Xx + Y{ = P^/m + Qi/A,

K2 = C'wj,

(8.4)

wPi 1
K3 = wXi + X^Yi + Xi Yt = + — (P,Qi + PiQ2),

A mA
(8.5)

C'oizPl
K 4 = C'u3Xi = 

m

The stability conditions (7.13) read
Xi+Yi ^ 0, (8.6a)

(C'ui)2 + 4wXi + (X! + Y{ y + 4(XiY{ + Xi Yt) ^ 0, (8. 6b)'

XMiCu,)* + (X! + Y{)\wX{ +XiY{ + X2'F2) ^ 0. (8.6c)

These are the stability conditions in the absence of Magnus effects. Now by (4.23),

(6.4), (8.4), we have (since A* =mri+A)

pa2w

Xj = f?,
m

pa3w i
r2 =

m

Xi = -
pa3w , + h/i*)
pa*wr r r2

Y{ = - *'* + - (g2* + /,'*) + — St .
A \_ a a2 J

pa*wr r A* 1
X, + Y{ = — ——— gl'* + - (g2* + fi*) + — fx* ,

A L a ma2 J

p2a6w2

XJ7 + X2'F2 =  —ifi*gi* ~ gffi*).
mA

(8.7)
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If we substitute these expressions in (8.6) we get stability conditions in terms of the

functions (/*, g*). However, these conditions are somewhat complicated, and we shall

make approximations.

The/"s of Fowler et al. hardly exceed 10 in value. Our (/*, g*) functions are defined

in a slightly different way, but it certainly seems legitimate to assert that the dimen-

sionless quantities

pa3

< = / (8.8)
m

are much less than unity, / standing for any one of the (/*, g*) functions. Then it is

clear that

(X1 + F1')2, X,Yi+XiYt

are both small relative to wX{. Consequently our stability conditions (8.6) may be

simplified to

Xi+y/gO, (8.9a)

(CVO2 + HwXi ^ 0, (8.9b)

XtY{ (C'wj)s + (*i + YlYwXi ^ 0. (8.9c)

It will be noticed that Yt has disappeared from the stability conditions in the last

approximation. This aerodynamic function corresponds to cross force due to cross

spin relative to the mass center [cf. (6.4) and (4.20) ]. Thus it might be asserted that,

for the discussion of stability in the absence of Magnus effects, cross force due to

cross spin may be neglected. But this statement is not entirely correct, because this

cross force contributes to the moment Y{, and Yi remains in the stability conditions.

Let us examine the first stability condition (8.9a). On substitution from (8.7) it

reads

T A *
— (s* + fi*) + g{* + — /i* fc 0. (8.10a)
a maz

If r is positive (so that the mass center lies behind the centroid), this inequality is

certainly satisfied; it is also satisfied for some negative range of r. But an interesting

question arises: Can we make the shell unstable by pushing its mass center forward

towards the nose ? This is hardly to be expected on physical grounds, and it may well

be that (8.10a) is satisfied for all permissible values of r, i.e., all values which place

the mass center inside the shell.

It is tedious (and perhaps of little physical interest) to discuss the other stability

conditions for sufficiently large negative values of r. We shall therefore assume either

that r is positive, or, if it is negative, it is such that (8.10a) is satisfied and also

Xi <0, Yi < 0. (8.11)

Let us write

(C'co3)2
5 = — — • 8.12)

- 4wX2'
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This is essentially the same as the usual stability factor.6 Then the second stability

condition (8.9b) takes the familiar form

j ^ 1, (8.13b)

while the third condition (8.9c) may be written

(Xj + r,')2
   (8.13c)

4 XiYl

Since the fraction on the right is never less than unity, this condition replaces (8.13b).

Let us substitute in (8.13c) from (8.7) and sum up as follows:

Stability condition. The following assumptions are made:

(i) Magnus effects are negligible (except that G3 may exist).

(ii) The quantities t of (8.8) are very small.

(iii) The mass center is behind the centroid, or, if in front, its negative coordinate

r is such that (8.10a) is satisfied and also

fi* + —h*> 0,
a

gl* + ~(gf + fi*) + —J? > 0.
a a2

(8.14)

Then the motion of the shell is stable if, and only if,

; > ma? [g{* + (r/a)(g2* + fi*) + Q4*A»«2)/i*]2

S = 44 fx*[g{* + (r/a)(gt* + fi*) + (r2/a!)/i*] '

where J is as in (8.12), or equivalently

(8.15)

cV
5 = 7   A = A* — mr2. (8.16)

4 pa3Aw2[fi* + (r/a)/*]

To show the dependence on r more explicitly, we introduce the dimensionless quantity

(8.17)
r,2 2C co3

4 pasmw

so that

ma

Then the sole condition for stability reads

P - s—.(/{• +j f1*). (8.18)

^ (fi* + (r/a)f*) [gi* + (r/a)(g2* + fi*) + {A*/ma*)f1*]2
P ^   —     * (o.lV)

4h* [g!*+ (r/a) (gi* + //*) + (r2/a2)/:* ]

s T. J. Hayes, Elements of ordnance, J. Wiley and Sons, New York, 1938, p. 418.
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Since A* is the transverse moment of inertia at the centroid, the position of the mass

center is involved in this formula only in the symbol r.

We see therefore that the usually accepted criterion for stability (8.13b) is not

the true one; it must be replaced by one of the inequalities (8.13c), (8.15) or(8. 19),

which are of course equivalent to one another. As we remarked in the Introduction,

the existence of a second condition for stability has been noticed by R. H. Kent. We

shall refer to stability again in section 10.

9. The trajectory of a stable shell in the absence of Magnus effects. Let us as-

sume, as in the preceding section, that Magnus effects are absent, except that G3

may exist. Then, using (8.3) and (6.4) with (7.14), we get for the trajectory of a stable

shell, after the disturbance has been damped out,

{ = - — cos OiiC'ui + Yl),
E

g
t; = i — cos 8 ■ Xi , 7) = — cos 8 —

E

(9.1)

Here E is as in (7.3); let us make the approximation indicated above (8.9), so that

E = wXi + iC'oisXu (9.2)

Splitting (9.1) into real and imaginary parts we get

g
u = —

E
cosdlXxiC'wtY + wXiY{]

(9.3)

v = j j— cos 6-C'o>aivXJ,
I EV

(where we have dropped a term Xx Yl in comparison with wXi ) and

<A= — Te[^ c'uzX{ Xi,

8= —. cos S-w^Xi)*.
\E\*

(9.4)

We shall assume, as in section 8, that Xi, Xi, Y{ are all negative. Further, since the

shell is stable, we have as in (8.9c)

But

and therefore

XiY{ (C'<o3)2 + (Xt + YlYwXi ^ 0. (9.5)

(X, + Y(Y > Y{\ Xi <0,

X1F1'(C'oo3)2 + Y{*wXi ^ 0. (9.6)

It follows at once from (9.3) that u is positive. This means that the nose of the shell

points above the trajectory.
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From (9.4) we see that <fi<() if co3>0. Thus for positive (right-handed) spin the

vertical plane through, the axis of the shell turns to the right.6 For negative spin it

turns to the left.

These two facts are well known to be true in practice.

There remain two outstanding physical facts to explain. These are (i) the trailing

of the shell along the trajectory, (ii) the drift.

We see from (9.4) that 6 is negative, i.e., the inclination of the axis of the shell

to the horizontal decreases steadily. But does it decrease at that rate required for

trailing? We must be careful to avoid a circular argument. We have assumed that

trailing takes place—otherwise the yaw is not small, and all our arguments are based

on the smallness of the yaw. We must now verify that 0, as given by (9.4), is approxi-

mately equal to the rate of turning of the tangent to the trajectory of the mass center.

The theory of the plane particle-trajectory gives, on resolution along the normal,

e cos d0
do = > (9.7)

w

where 60 is the inclination of the tangent to the horizontal. To establish the required

result, we must compare this with (9.4), and show that

I £|J——— - 1, (9.8)
(wXi)*

approximately. Now by (9.2), (8.12), (8.7), this fraction is

2

l + x\
C'u3 y 4jXj

wXi
(^)= 1 -
\wXi )

pa3 A /,*2
= 1 + 4s   -  (9.9)

m ma2 f*f -f- (r/a)f*

The last expression here is of the order of se, where e is as in (8.8). Hence, unless the

stability factor 5 is very great, this expression is very small, and the condition of

trailing is approximately fulfilled.

It is interesting that if s is very great the verification breaks down, for this is just

what we would expect. If, by some mechanism, an enormous spin were imparted to a

shell, the gyroscopic stability would be so great that the direction of the axis would

remain fixed and the shell would not trail.

To discuss the drift, we write down (6.5) again:

x0 + iyo = (u sin 6 + iv + w cos d)e{*. (9.10)

This is the horizontal velocity of the mass center in complex form. Consider the com-

plex quantity

£o + iyo
a + i/3 =   (9.11)

*0 + iy 0

It is obvious that the vector tfo+tyo turns to the left if /? is positive, and to the right

if /3 is negative. It is our business to investigate the sign of /3.

' Hayes, op. cit., 420.
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We differentiate (9.10) logarithmically and simplify the result by the fact that

u/w and v/w are small. This gives

J / v \
(} = —[ :l + *. (9.12)

With the approximation (9.8), we have from (9.3), (9.4)

V gC' 0)3 . gC' 0)3

4>=-1r^7*1. (9-13)

and so

where

w cos 8 w2X2' wiXi

P d . ,
log \Z\ + Xu (9.14)

z at

gC' 0)3
Z=--  (9.15)

v?Xi

As a terminology, let us say that a shell has standard drift when it goes to the

right (fi <0) for right-handed spin (a>3>0), and vice versa. Now Z has the same sign

as o)3. Hence we get a standard drift if

4-=4 log |Z| + *, <0. (9.16)
Z at

Substituting from (8.7), we see that this condition for standard drift reads

m d o)j
fi*> log (9.17)

pa2w dt pwKfl* + (r/a)f*)

Let us look into the meaning of this inequality, assuming that the dimensionless

aerodynamic functions are constants. This corresponds to a subsonic velocity [cf.

(4.25)]. Further, let the trajectory be flat, so that p is constant and 6 so small that

it may be neglected.

Then by (6.6) and (4.24)

pa2 pa4
w   to, = waizgi. (9.18)

m C

Let j be the arc length of the trajectory (do not confuse with the stability factor).

Then w=ds/dt, w = wdw/ds, and so we have

1 dw pa2 1 <fo)3 pa4
- — = /a, - — ^3. (9.19)
w ds tn o)3 ds C

The right-hand side of (9.17) becomes

m d o>3 wo2
— 7log^ = 3/a ~
par ds ur C
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and so the condition for standard drift reads

»m2

(i* + -~ (9.20)

We may write f\ in place of f*—they are equal. We note that ma-f C will lie between

1 and 2.

We observe from (9.20) that cross wind force and axial torque tend to give stand-

ard drift, but axial force acts the other way. Let us use the numerical values of Fowler

et al. in (9.20). We have ([l ], pp. 306, 309)

fi = Jl + Jii = fx - 3.34, |

/» = /« = 0.34. j

We see that|(9.20) is liberally satisfied, even if #3 = 0. Thus the present theory appears

adequate to explain drift without bringing in Magnus effects.

10. The aerodynamic force system of Fowler, Gallop, Lock, and Richmond.1 In

the preparation of this section we are very much indebted to Professor E. J. McShane,

who read our paper in its original form and pointed out in detail the connections be-

tween our work and that of Fowler et al.

(9.21)

Fig. 3

The axis of the shell is indicated in Figure 3; Ois the mass center and 8 the yaw.

The aerodynamic force system of Fowler et al. is represented by seven vectors—three
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forces (plain arrows) and four couples (arrows with crossbars). Their terminology is

as follows:

R = drag,

L = cross wind force,

K = swerving force,

M = moment tending to increase yaw, } (10.1)

H = yawing moment due to yawing,

I = axial moment,

J = swerving moment.

We shall use the notation of the present paper for velocity, angular velocity and the

radius of cross section of the shell (a), and consider only the case of small yaw

(5= l^l/wO- Then the dimensionless aerodynamic functions of Fowler et al. are de-

fined by

R = pa2w2fR,

L = pa2w2SfL = pa2w | £ | fL,

K = pa3wo}3SfK = pa3u3 | £ | /k,

M = pa3w28fM = pa3w | £ | fM, (10.2)

H = pa4w | ij | fH,

I = pa4woi3fr,

J = pa4wo}35fj = pa4u31 £ | fj.

Let i', j', k be an orthogonal triad of unit vectors, with k along the axis of the shell.

The vector i' lies as shown in the plane containing k and the velocity of 0. Then, to

the first order in 5,

R = - R8i' - Bk,

L = - Li',

K = Kj\

M = - M]',

CO i <j>2

H = - H -j—r i' - H -j—r i'>

(10.3)

1^1 111

I = - Ik,

J = - Ji',

where «/, u4 are the components of <o along i', j'.

Let i, j be any orthogonal unit vectors, perpendicular to k, so that the triad i, j, k

is that considered in the present paper. It does not matter at present whether i lies

in the vertical plane through k. We have

ui + nj — vi + «j
i' = —j—j—' j' = j—j ' i' + j' = + ^j. (10.4)

I«I I £|
The total aerodynamic force is
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(u u v \
- R5 -r—p - L T-n- - K-r—r )

Ul Ul Ul /
(V V u \

-K'u\-Lw+Ku\)
-k R, (10.5)

and so, since = | £ |,

/ R L iK\

F-Fl + tF^*\w~TTl+TI[)'

F3 = — R.

The total aerodynamic couple is

/ V 0)1 M \

G = M+H + I+J=i( M —j H —j / —r )V U U U /Ul M Ul
(U 0)2 V \

"Mur"*T7n/T?r)

and so

$ v £
G = G\ -f- iGi = — iM -j—j H —;— J -r—p >

Ul Ul Ul
G3 - — I.

Certain quantities are defined as follows:

L K Mw

"~m\T\' x"^7TfT' ""TfT
R H I Jw

V = K -J » h —  j r> T =  > 7 =  j j-
mw A | ri I Cm3 Co>3 I £ |

Then (10.6), (10.8) give

F — !-(i\tno)3 — mv), F3 = — mw(v — k),'

(M yCu3 \
-i  ) - i)Ah, G3=-

w w /
Co)3r.

(10.6)

+ J!

- k/, (10.7)

(10.8)

(10.9)

(10.10)

Comparing these with (4.15), we see that the force system of Fowler et al. is a par-

ticular case of our general system, with

P = — mv + im\o>3,

<3 = 0,

yCu3 . n
P' = i — ,

w w

Q' = - Ah.

(10.11)
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The general system has eight real parts in these terms; the system of Fowler etal.

has only five:

P i = — mv, P2 — m\o>3,

p, - yCus P> _ "
r i — ) r 2 — y

w w

QI = - Ah.

(10.12)

It is clear from the transformation (4.16) that Q = 0 is not invariant with respect to

shift of mass center. Thus Eqs. (10.11) describing the aerodynamic force system can-

not be valid in general. It may happen of course that they are true for one particular

mass center, but they cannot remain true when we shift the mass center.

Fowler et al. find little evidence for the existence of the Magnus effects J, K, or

equivalently y, X. If we put them equal to zero, the survivors in (10.12) are

P\ = — mv, P2' = - —, Q{-= -Ah. (10.13)
w

These should be compared with (8.4), which are the general survivors in the absence

of Magnus effects. We note that Qt is absent from (10.13), which means that the mass

center is chosen so that Q* — rP* is zero, or at least negligible.

By (6.4) we obtain from (10.13)

Xi = - v, Xi = - —, F,' = - h, (10.14)
Aw

and so the stability condition (8.13c) reads

(» + hy-
s = ——  (10.15)

4 vh

We have referred in the Introduction to a second stability condition implicit in the

work of Fowler et al.; it is

(« + hy
—~ ■ (10.16)
4 Kh

The difference between (10.15) and (10.16) does not appear to be very great in prac-

tice. It is a question of replacing v by k, and by (10.9), (10.2)

v — k R | J | fR 1 = y — = F = T7i' (10-17)
k L w Jl 10

roughly.

There are very simple relationships between the dimensionless aerodynamic func-

tions in the two theories. We take the mass center 0 as base-point, and use (4.23)

without asterisks, together with (10.12), (10.9), (10.2); we find

/i — fit + /i — Jn, ft = fx,

fl ~ fj< ft = /m, gi = fu- .
(10.18)
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The functions gi, g2, gi are zero in the theory of Fowler et al.

As the paper of Fowler et al. is one of the basic papers of modern ballistics, it will

be useful to summarize our criticisms as follows:

(i) Their aerodynamic force system is not the most general system consistent

with

(a) the aerodynamic hypothesis,

(b) linear dependence on the cross components in the case of small yaw,

(c) the symmetry of the shell.

(ii) Their system does not satisfy the fundamental requirement of invariance with

respect to shift of mass center.

(iii) If only shells with mass centers near their centroids are considered, it may be

that the above theoretical objections are of small practical importance.

We believe that our exact dynamical equations (6.3) provide a clearer approach

to the problem of the spinning shell than do the dynamical equations of Fowler et al.

But it is frankly admitted that our simple treatment of the equations of motion in

section 7 does not appear to be as satisfactory mathematically as their method. We

have made the plausible but rather crude assumption that it is permissible to regard

cos 9, w, as constant during the oscillation. It would be interesting to apply their

more refined methods to our differential equations, but this we must defer for the

present.


