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THE ANALOGY BETWEEN MULTIPLY-CONNECTED
SLICES AND SLABS*

BY

RAYMOND D. MINDLIN
Department of Civil Engineering, Columbia University

1. Introduction. The analogy between the two-dimensional field of stress and the
transverse flexure of a thin plate was first applied by K. Wieghardt! to the solution
of a problem involving boundary loading of a simply-connected body. As is well
known, the analogy establishes the proportionality of the curvatures of the surface
of the plate to the components of stress in the two-dimensional field of stress. H. M.
Westergaard? introduced the useful terminology of slab and slice, free slice and con-
strained slice, and gave the boundary conditions for the slab when the slice is multi-
ply-connected and is stressed by boundary loads having no resultant force on an
internal boundary. Westergaard also proposed the use of the analogy in the investiga-
tion of the stresses in the Boulder Canyon Dam,? a problem involving gravity and
boundary loading of a simply connected body. An improvement in experimental
technique was contributed by H. Cranz* in introducing an optical spherometer® for
measuring the components of surface curvature. Cranz’s application was to boundary
load problems in simply connected bodies.

It is the purpose of this paper to give the general boundary conditions for the
slab when the slice is multiply-connected and is stressed by any combination of
boundary loading, body forces, dislocations and thermal dilatations. The analogy has,
in fact, its most useful applications in the last three cases as they are either difficult
to reproduce, or the resulting stresses are difficult to measure, in an experimental
model of the slice itself, while the analogous conditions for the slab, developed below,
are easy to handle.

In order to proceed, it is necessary, first, to set down the gencral boundary value
problem for the slice. It is convenient to do this along the lines established by
Michell,® with the additional consideration of dislocations and thermal dilatations.

2. Airy’s stress function and its differential equations. In a state of plane strain
defined by setting
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7y:=7zz=fz=0

and restricting the displacements « and v to be functions of x and y only, the relations
between strain, displacement, stress and temperature in an isotropic elastic body are

ou 1 2

€, =—=— [(l — oz — n(l + r)e,] + (1 + »)aiT, (2.1a)
0x E]
av 1 2

€y = — = — [(1 —_ Vl)o'v — V;(l + l‘l)ﬂ’z] + (1 + Vl)alTy (2.1b)
6y E1
dv ou 2(1 + 1'1)

y = — —_—— ———— T .. 2.1

Yzy 8x+ ay E, Tzy (2.1¢)

These are the relations for a constrained slice. The notations for stress, strain and dis-
placement are the usual ones and E,, », are Young's Modulus and Poisson’s ratio
for the material of the slice, o, is the coefficient of linear thermal expansion, and T is
the temperature in excess of a uniform initial temperature.

When the stresses are expressed in terms of Airy’s stress function (¢) and a body
force potential (V) by

¢,=—z—;2+ v, a,=z—:§+ V, 1= —aa::y: (2.2)
the equations of equilibrium are satisfied and the strain relation
a* %, 0
a;: Z;: - a:az; (2.3)
yields the differential cquation governing ¢:
Vig = — 11__2: v — i f : VT, (2.4)
In a state of plane stress, defined by
0, =Ty, = 17, = 0,
the strain-displacement-stress-temperature relations become
ou 1
€ = Fyte El (02 — vioy) + auT, : (2.5a)
dv 1
v E(a, — o) + aiT, (2.5b)
dw 121
€= —= —E(a,+o‘,,)+a1T, (2.5¢)
S 2.5

These are the relations for a free slice. If the components of stress are again ex-
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pressed in terms of an Airy function and a body force potential by (2.2), the equilib-
rium cquations are identically satisfied and the strain relations reduce to

Vig = — (1 — W)V — (1 + »)aV?T (2.6)

if terms associated with the coordinate z are neglected.

In what follows, the case of plane strain (constrained slice) will be treated, but
the results are directly applicable to plane stress (neglecting z-dependent terms) if
Young’s modulus E,, Poisson’s ratio », and the linear thermal expansion coefficient o,
are replaced by E/, v/ and af where
_ E\(1 + 2») .= no ol = (1 + vy) ) 2.7

(1 + 1'1)2 14+ 14+ 2,

3. Conditions on ¢ at a point on a boundary of the slice. Michell® gave the condi-
tions to be satisfied, at each point of each boundary, by ¢ and its derivative normal
to the boundary:

E{

¢=f (Bl — Am)ds + ax + By + 7, (3.1)
[]

j—¢=Al+Bm+al+Bm, (3.2)
n

where a, 8, v are constants, in general different for each boundary, ds is an clement
of arc of a boundary, dn an element of normal to that boundary, and

dy —dx
== = ’ (3.3)
ds ds
A= —f ?ds+f Vmds, B =f J‘(’ds—f Vids, 3.4)
[] [ ] 0
X =0d+rm, Y = 1.0 + aym. (3.5)

In a simply connected body, «, B8, ¥ may be assigned arbitrary (including zero)
values as the addition of a linear function of x and y to ¢ does not affect the stresses.
In a multiply-connected body, three additional conditions on ¢ are required for de-
termining e, 8, v, on each additional boundary. Equations (3.1) to (3.5) are not al-
tered by introducing thermal dilatations and dislocations of the type considered here.

4. Conditions on ¢ for each boundary of the slice. The additional conditions on ¢
are obtained by assuming the strains (and hence the stresses) to be continuous and
requiring the rotations and displacements (a) to be single-valued or (b) to have pre-
scribed discontinuities (dislocations). Michell® gave the conditions for case (a). The
conditions for case (b), including, also, thermal dilatations, are derived by following
Michell’s procedure with modifications along the lines indicated by Volterra.”

(¢) Rotation condition. Considering the rotation

1/9v Odu
w, = —(— - ——), 4.1)
2\9x 3y

7 Love, Theory of elasticity, 4th ed., Cambridge Univ. Press, Cambridge, 1927, pp. 221-228.
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we require that the line integral of its differential have a value, say ¢, after one com-
plete circuit around (and along) a boundary. Thus,

p =}{dw,. (4.2)

Now,

Ow,
Fo-§5
)’
=f(i Nev ae,) dx
2 ox dy
Replacing the strain components by their expressions in terms of ¢, V and T, we find
E16 oV
- § (S0 - —(v2¢)dx> va-20 § (Zay- )
14 3y
+E f (aT J aT J )
101 P y 3y x

d(v? Ex 1—2n [dv E dT
f (V') 4o B¢ _ ! Sl N Gl N (4.4)
dn l—l': 1—1'1 dn 1—1'1 dn

ey 1 dvzy
_— - dy. 4.3
+<ax 2 ay) ? *-3)

Then

This is the first of Michell’s three conditions on ¢ for each boundary of the slice. It
may be observed that, if the circuit of the line integral in (4. 3) were reducible, the
integral would vanish because, by Green’s theorem,

1 = de. ] 1 ov.
$GE-5) G
\2 odx dy dx 2 9y
8? 9%, %y,
ff( e, ‘= _ 7') dxdy; (4.5)
ax? ~ 0xdy

and the surface integral vanishes by virtue of (2.3).
(#) Displacement conditions. We admit a translational dislocation a parallel to x

and set
ou 1
fdu—f—dx+—dy—f(ezdx+7'y,,dy)—fw,dy,
fw,dy= yofdw.—fydw.= yoc—fydw,,

where o is the y-coordinate of the starting point of integration. Also

Ow, aw.
§ o= $o G5 0)
=fy(i a'sz aez)dx +f (_‘?ﬁ;_i a')’zﬂ)d
2 odx dy ox 2 9y

Now
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rre= flenG S-Sl
J = z U -_— X
4 e “TN7T o oy

dey 1 67,,)]
, yW— - — dy. 4.6
+ f [ Yay + (ax 2 oy y (4.6)
We now note that

1 1 66, 1 B’Y.c
fezdx + — vedy = [we.]o + > [yv2ulo —f (x P E d_v)

Oe, 0Yzy )
= — ; ix + — dy},
f( 9x ( y ay 4

the terms outside the integrals vanishing because of the assumption of continuous
strains. Equation (4.6) then becomes

1 0 2 O€, 0 2 d a'Yz
a+yoc=f[y<—2- ;x'_ ;y) ‘ :| dx +f (e” ") dy. (4.7)

When the strain components in (4.7) are replaced by their expressions in terms
of ¢, V and T, we find

E](a + yoc) _ 9 2 — i 2
—_— Y =(1- Vl)f y[b_x(v ¢)dy 3y v ¢)dx]

14»
+ 1 - ZVI)f (a—V-dy—dex)
ax ay
aT T
+ Elalf v(;x— dy — ?y- dx)
aT
—f [(1 - 1'1) — (V2¢) + (1 - 2111) — + Eoy Ox]dx

9% %
—d ' dy). .8
+ f (x ye x4+ ) Py y> 4.8

62 .. 6‘2 62
[ ¢+ ¢] f(¢dx+ ¢dy>
dx* 7 dxdy dx? oxdy
(e}
-$ &)
ds\0x

the term outside the integral vanishing because the stresses are continuous. But,
from (2.2), (3.3) and (3.5),
(i)
“)-re-r
ds\9x

Hence

4
VN
£
Q:‘Q;
8|€
L
=
+
e
Se
N
Y
2
N—
1
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Hence (4.8) may be written:

d(V2¢) d(Ve) Ey(a + voc) 1 — 21y av dVv
y —-x ds = - y— — x—)ds
dn ds 1- 1 — dn ds
Ea dT aT
- y — — x—)ds
1 — dn ds

! f (¥ — Vm)ds. (4.9)

1—1'1

This is Michell’s second condition on ¢ for each boundary of the slice.
Similarly, admitting a translational dislocation b in the y-component of displace-

ment, we set
b= fdv
and we find
) d(V’) Eab— x0) 1 — 20 ( av dV)
Nas - — _ @& d
f(y s T T )" 1— 2 l—vlf Yo T )"

Eiy f( dT_'*_ dT)d
— 4+ x—)ds
1 -y yds dn

1 - .
1= vlf(X — Vi)ds, (4.10)

which is the last of Michell’s three conditions.

Corresponding to (4.5), a similar application of Green’s theorem to (4.6) reveals
that the right hand side of the latter vanishes for reducible circuits and the same
result is found for the corresponding step in the development of Michell’s third con-
dition.

The differential equation (2.6), the boundary conditions (3.1) and (3.2), and the
three conditions (4.4), (4.9) and (4.10) constitute a statement of the boundaty value
problem of plane elasticity for stresses induced by boundary loading, body forces,
dislocations, and thermal dilatations. The general formulation of the problem reveals
the analogies, discovered by M. A. Biot,® between gravity loading and boundary
pressures, and between thermal loading and boundary pressures and dislocations.

5. The slab equations. In the approximate theory of the bending of thin plates®
(slabs), the deflection (w) is governed by the differential equation

DVw = Z, (5.1)

where D is the flexural rigidity of the plate and Z is the surface load, normal to the
middle plane.
The components of curvature in the ¥, 2z and x, 2 planes are given by

¢ M. A. Biot, Distributed gravity and temperature loading in two-dimensional elasticity replaced by
boundary pressures and dislocations, J. Appl. Mech., 2, A 41-A 95 (1935).
? Love, loc. cit., p. 487.
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?w 0%w 5 2

Kz = -5;) Ky = 6_x2 ( . )

On a boundary of the slab, the shearing force (N) normal to the middle plane, the
flexural couple (G), and the torsional couple (H) (all per unit of arc length s) are

J
N =—D — (Viw), (5.3a)
an
G DI:az + v (32 + — 1 0w :I (5.3h)
= — , 5.3b)
on? ds? 'Y 6n
9 fow
=01 - ,,,)D ( (5.3¢)
ds

where p’ is the radius of curvature of the boundary of the unflexed slab and v, is
Poisson’s ratio for the slab material.

The resultant force and the components, parallel to the x and y axes, of the re-
sultant couple on a complete boundary are!®

F, = f(N - %E) ds, | (5.4a)
s
M.= f[y(N - %— +G ]ds, (5.4b)
dy ]
M,,=f[G——x<N——E—,):| ds. (5.4¢)
ds as

Substituting (5.3) in (5.4) we find
9 90 /ow
F,=— Df[— (V2w) + (1 — vz) —_ — —)] ds, (5.5a)

ds
M. = _uf{ [_(vzwn (1_”)31("’_‘”-)]
ds 9n \ Os
dx [0%w ?w 1 dw .
bt Grt oy Sl (:30)
9*w 1 dw
- _Df{ I:an2 o (6—32_+ 'y 61:)]
3 9 fow
- x [ (Viw) + (1 — vo) — — (——-)]} ds. (5.5¢)
ds 9n \ ds

6. The analogy for singly-connected bodies. Noting the similarity between the
differential equations (2.6) and (5.1) for ¢ and w, we set

w= K¢, (6.1)

10 Love, loc. cit., p. 460.
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where K is a conversion constant having the dimensions of length/force.
Then, from (6.1) and (2.6),

1—2V1KV2V- 1+V1

- n 1—y

Viw = —

KayVeT (6.2)

becomes the differential equation for the deflection of the analogous slab. Hence

1-2 1
Z=— L A

1—1’1 1‘—'111

KDo,V:T (6.3)

is the normal surface loading to be applied to the face of the slab. In the case of a
steady statc temperature distribution,

VT = 0. (6.4)

If, in addition, the body force potential is harmonic, the slab is subjected to edge load-
ing only. If either V or T is not harmonic, transverse loading is required on the sur-
face of the slab, and the load may vary slowly with time.

The edge conditions (i.e., the elevation and slope at each point of a boundary) of
the slab are specified by substituting w= K¢ in (3.1) and (3.2). Thus

%:f (Bl — Am)ds + ax + By + v, (6.5)
0

L 4t Bmtats (6.6)
e dn_‘,. m + al + Bm. .

The normal components of stress in the slice arc obtained by combining (2.2),
(5.2) and (6.1), with the result

Ky
Vv vy = V. 6.7
% + o X + (6.7

The principal stresses and their directions may be calculated from two sets of curva-
ture measurements at each point.* If the boundary of the slab is a scale model of the
boundary of the slice, e.g., if the ratio of a linear dimension of the slab to the corre-
sponding linear dimension of the slice is &, the stress components in the slice are given

by

k. k2,

+V, o, =

+ V. (6.8)

For a singly-connected body, (6.1) to (6.8) completely specify the analogy, since
the unknown constants «, 8, ¥ may be given arbitrary values.

7. Additional conditions on the slab for multiply-connected bodies. For a multi-
ply-connected body, «, 8, ¥ must be prescribed for cach boundary. Now, it will be
observed, from (6.5) and (6.6), that «, 8, v specify a rigid body translation and rota-
tion of each complete boundary of the slab. Such rigid body movements may be
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cffected by applying, on cach boundary, a resultant force, normal to the middle plane
of the slab, and a couple about an axis properly oriented in the plane of the slab. The
magnitudes of the force and the ¥ and y components of the couple on cach boundary
are determined by expressing F,, M., M, (sce (5.5)) in terms of the specified boundary
loadings, body forces, dislocations, and temperature distribution of the slice.

i. Resultant force on a boundary of the slab. Replacing w by K¢ in (5.5a), we have

F, = — KDf [—— (V) + (1 — "’)3' — (%)] ds. | (7.1)

0 9 [
FanG) e
ds dn \ds

because of the assumption of continuity of the components of stress in the slice. Hence

Now

F,= — KD f ;;(vap)ds. (7.2)

Therefore, from (4.4),

(1 = wF, B La 2)fdvd +E ded (71.3)
= — - —ds — ds, K
KD 14»n " dn e . dn

whereby F, is expressed in terms of known quantities.
5. x-component of couple on a boundary of the slab. Substituting K¢ for w in (5.5b):

e -mo g plamo -l ()]

dx [0% 9% 1 d¢
— | — —_— ds. 7.4
* ds [am t (6 2 + ' 8n>]} * 79

i)
f y — (Vig)ds
on
between (7.4) and (4.9), we find

M. d(V) ¢
KD—_f{ ds +(1_”’)ya_sa_n(5)
02 a2 1
+ 2l Grr s e
on? p on
_E1(0+y06)+1—2nf( iV——xﬂ-)ds
1—4 1—y dn ds

E;al dT dT l —
+ f y——x——) ds + f(Y—Vm)ds. (7.5)
1 - dn ds 1 -

Eliminating
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Now,

a(Ve) a o (3¢ g0 ~ 9 (%
f[x 3 + (1 —v)y-ga—n a—s]ds— [.tV¢]o+(l v2) [\a (68)]

d% oo N B
-f[d Vi (1= w) =~ (as)] is.  (1.6)

The terms outside the integral vanish on account of the assumption of continuity of
the stress components. Therefore the first integral on the right hand side of (7.5) be-
comes

dy 0 [(3¢\ dx % % 1 0¢
1 - — (= ey I 2 — — oy (— d 7.7
f {( 2 ds on (6s> + ds [ ¢- on? ”2 (6:;2 T I’y an)]} > (7.7)

On a boundary

9% 1 ¢ 0%
Vi = — 4+ — —
¢ on 2-*-p’ 8n+ ds?

(7.8)

so that (7.7) becomes

dy 3 (3¢ % 1 0
- — —)| ds. 7.9
“ y,)f [ds an( ) ds <é)s2 + 'y an)] s (7.9)

However, along a boundary,

d¢ 9% 1 d¢
= T Thae 7.10 i —_———= n‘_V, 7.11
mn (as) T ( ) ds? + p on 7 ( )
d dx
= =7, (7.12)
ds ds

Hence, (7.9) becomes

CaSw (T

Substituting back in (7.5), we have, finally,

(l—Vl)Mz_ _ Ey(e 4+ yo0) _ av _ﬂ’_
KD 135, T4 2"‘)f (y n ds)ds
‘ dT LAY
+ '“‘f(-”ﬁ‘ xd—,;) g
- [ —w)A =) + I]f(l_/' — Vm)ds. (7.13)

This gives M, in terms of known quantitics.
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111, y-component of couple on a boundary of the slab. Substituting K¢ for w in (5.5¢),

02 93 1 4
el )
n? Js? p on

3(V2e) d 9 (3¢

P
5 s
on

between (7.14) and (4.10), we have

M, { d ) — (1 — v 3 9 (a¢.
KD = f y (Vi ( Ve xa an )
3% % 1 9¢
% [am t o (32—"' o a_)]}

Ei(b — 1-— av
1( ::oc) 2mf‘(y__+ x——)ds

l—lll 1—mn

E1a1
- f(y—‘-i-x )ds—- f(X—Vl)ds. (7.15)
1-—n 11—
Now,

FL g Qe tmsti-a - [-20)]
Y § |- ) PR

The terms outside the integrals in (7.16) vanish on account of the assumption of con-
tinuity of stresses. Therefore the first integral on the right hand side of (7.15) becomes

dy 9% 9% 1 99 dx 9 [0
— vy — — — —t — =) -1 =) — —‘ d 7.17
f {ds[ ¢ on? ’2 (Os’ * 'y an)] (1 =) ds on )} > ( )

Then, using (7.8), (7.10) and (7.11) and noting that

Eliminating

Tae— + 0p — = X, (7.18)
(7.17) may be written in the form

1- n)f (X — Vids. (7.19)

Substituting back in (7.15), we have
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Q-=w)M, Er(b — x0c) |4
= — —(1—2v0f(y—+x—-;)ds

KD 14+n
— E,a;f(y———+ x—)ds
+ [(1 = »)(1 — »y) — 1] f(f — Vbyds. (7.20)

8. Recapitulation. The stresses, in a multiply-connected slice, resulting from
boundary loadings X, ¥, a body force potential V, dislocations a, b, ¢ and tempera-
tures T, are related to the curvatures of a slab according to

0z =

Ky
oy =—+V
K

if the following conditions are satisfied on the slab:
(i) The surface loading on the slab is

! KDoyV*T; (6.3)

- ¥ 1—V1

(ii) The boundaries of the slab are geometrically identical with those of the slice,
with elevations and normal slopes given by

1 d
E—f (Bl — Am)ds + ax + By + v, —-—13—A1+Bm+al+ Bfm, (6.5)
K K dn
at each point of each boundary;

(iii)) There are a resultant force (F;) and resultant couples (M) and (M), on each
boundary, with magnitudes given by

(1 — »)F, Eqc -2 )f dVd +E f aT p 7.2)
_ = - - —ds+ E —ds, .
KD 1+ n WP in P dn
1 -w)M, El(a + yoc) f( dV)
U (1-2 — —x—)d
KD T 8 At )
4 E ( daT )d
1a1f 4 dn ¥ ds *
— (1 = v = vp) — 1] f(? — Vm)ds, (7.13)
(1 - w)M, Ey(b — x00) }{ ( av dV)
Sy T (12 2 )a
KD 14 ( ") yds+xdn s

E f( 4 )d
— — - —_— S
1 yds |—xdn

+ [(1 = »)(1 — ») — 1] f (X — Vdds. (7.20)



