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THE ANALOGY BETWEEN MULTIPLY-CONNECTED
SLICES AND SLABS*

nv

RAYMOND D. MINDLIN

Department of Civil Engineering, Columbia University

1. Introduction. The analogy between the two-dimensional field of stress and the

transverse flexure of a thin plate was first applied by K. Wieghardt1 to the solution

of a problem involving boundary loading of a simply-connected body. As is well

known, the analogy establishes the proportionality of the curvatures of the surface

of the plate to the components of stress in the two-dimensional field of stress. H. M.

Westergaard2 introduced the useful terminology of slab and slice, free slice and con-

strained slice, and gave the boundary conditions for the slab when the slice is multi-

ply-connected and is stressed by boundary loads having no resultant force on an

internal boundary. Westergaard also proposed the use of the analogy in the investiga-

tion of the stresses in the Boulder Canyon Dam,3 a problem involving gravity and

boundary loading of a simply connected body. An improvement in experimental

technique was contributed by H. Cranz4 in introducing an optical spherometer5 for

measuring the components of surface curvature. Cranz's application was to boundary

load problems in simply connected bodies.

It is the purpose of this paper to give the general boundary conditions for the

slab when the slice is multiply-connected and is stressed by any combination of

boundary loading, body forces, dislocations and thermal dilatations. The analogy has,

in fact, its most useful applications in the last three cases as they are either difficult

to reproduce, or the resulting stresses are difficult to measure, in an experimental

model of the slice itself, while the analogous conditions for the slab, developed below,

are easy to handle.

In order to proceed, it is necessary, first, to set down the general boundary value

problem for the slice. It is convenient to do this along the lines established by

Michell,6 with the additional consideration of dislocations and thermal dilatations.

2. Airy's stress function and its differential equations. In a state of plane strain

defined by setting
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and restricting the displacements u and v to be functions of x and y only, the relations

between strain, displacement, stress and temperature in an isotropic elastic body are

fx = — = — [(1 — J-iVx — vi(l + vi)<rv] + (1 + vi)axT, (2. la)
dx Ex

ty = — = — [(1 — vi)<rv — vi(l + vi)vx] + (1 + n)aiT, (2.1b)
dy E i

dv du 2(1 + Vi)
7 XV — — + ~~ = ~ rxy (2. lc)

dx dy E i

These are the relations for a constrained slice. The notations for stress, strain and dis-

placement are the usual ones and Eu Vi are Young's Modulus and Poisson's ratio

for the material of the slice, <xi is the coefficient of linear thermal expansion, and T is

the temperature in excess of a uniform initial temperature.

When the stresses are expressed in terms of Airy's stress function (<f>) and a body

force potential (V) by

d2<t> d2<6 d2<j>
+ " = ^ + F' '"-"W <2'2)

the equations of equilibrium are satisfied and the strain relation

d2tx d2(v d2yxy

dy2 dx2 dxdy

yields the differential equation governing <j>:

(2.3)

1 - 2n 1 + n
V*<t> = V2F «iV2r. (2.4)

1 — »»i 1 — Cl

In a state of plane stress, defined by

0z — Tyz — Ttx ~ 0,

the strain-displacement-stress-temperature relations become

du 1
tx = = — (az — vtfy) + ai T, (2.5a)

dx Ei

dv 1
(y =  = — (cry — Vi<7x) + aiT, (2.5b)

dy El

dw vi , _ ,
ez =  = (<s x + <rv) + aiT, (2.5c)

dz E

dv t du 2(1 + vO. ^
y xy — "r xy (2. 5d)

dx dy Ei

These are the relations for a free slice. If the components of stress are again ex-
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pressed in terms of an Airy function and a body force potential by (2.2), the equilib-

rium equations are identically satisfied and the strain relations reduce to

VV = - (1 - v,)V2F - (1 + Vl)aV2T (2.6)

if terms associated with the coordinate z are neglected.

In what follows, the case of plane strain (constrained slice) will be treated, but

the results are directly applicable to plane stress (neglecting z-dependent terms) if

Young's modulus Eh Poisson's ratio vx and the linear thermal expansion coefficient «i

are replaced by E[, v[ and a{ where

Zsi(l + 2fi) vi a,(l + fi)
E{ =  , v{ =  1 a i   (2.7)

(1 + vi)* 1 + vi 1 + 2vi

3. Conditions on 0 at a point on a boundary of the slice. Michell6 gave the condi-

tions to be satisfied, at each point of each boundary, by <f> and its derivative normal

to the boundary:

<t> = (* (Bl — Am)ds + ax + /3y + y, (3 ■ 1)
J o

d(j>
— = Al + Bm + al + 0m, (3.2)
dn

where a, /3, 7 are constants, in general different for each boundary, ds is an element

of arc of a boundary, dn an element of normal to that boundary, and

dy — dx
I = — > m = 1 (3.3)

ds ds

/» I /» « /» • /» <

Yds+ I Vmds, B = I Xds - I Vlds, (3.4)
0 J 0 J 0 J 0

X = Tzvm, Y = Tzyl + <r„m. (3.5)

In a simply connected body, a, (3, 7 may be assigned arbitrary (including zero)

values as the addition of a linear function of x and y to <j> does not affect the stresses.

In a multiply-connected body, three additional conditions on <f> are required for de-

termining a, (3, 7, on each additional boundary. Equations (3.1) to (3.5) are not al-

tered by introducing thermal dilatations and dislocations of the type considered here.

4. Conditions on </> for each boundary of the slice. The additional conditions on

are obtained by assuming the strains (and hence the stresses) to be continuous and

requiring the rotations and displacements (a) to be single-valued or (b) to have pre-

scribed discontinuities (dislocations). Michell6 gave the conditions for case (a). The

conditions for case (b), including, also, thermal dilatations, are derived by following

Michell's procedure with modifications along the lines indicated by Volterra.7

(i) Rotation condition. Considering the rotation

1 /dv du\
(41)

Love, Theory of elasticity, 4th ed., Cambridge Univ. Press, Cambridge, 1927, pp. 221-228.
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we require that the line integral of its differential have a value, say c, after one com-

plete circuit around (and along) a boundary. Thus,

c = £ du,. (4.2)

Now,

/C du, du,
du, = ®  dx dy

J dx dy

_ (4.3)
J \2 dx dy J Vda; 2 dy J

Replacing the strain components by their expressions in terms of <£, V and T, we find

Eic f/d d \ f (dV dV \
 = (1 — t>i) <p (— (V2<l>)dy (y2<l>)dx) + (1 — 2ci) ® ( dy dx)
1 + vi J \dx dy J J \dx dy J

f/dT dT \
+ £i«i m { dy dx).

J \dx dy )
Then

Hs.filds. (4.4)
J dn 1 — 1 — v\ J dn 1 — v\J dn

This is the first of Michell's three conditions on 4> for each boundary of the slice. It

may be observed that, if the circuit of the line integral in (4.3) were reducible, the

integral would vanish because, by Green's theorem,

C( 1 dyxv dtx\ /dtv 1 dyxv\

J \2 dx dy) X \dx 2 dy ) V

_ f f (— + — - -^) dxdy; (4.5)
J J \dxi dy2 dxdy)

and the surface integral vanishes by virtue of (2.3).

(it) Displacement conditions. We admit a translational dislocation a parallel to x

and set

a = (j) du = (j)— dx + — dy = J) ^tjlx + —y*ydy^ — (j) u,dy.
dy

Now

£ udy = y0 £ da), — £ ydu, — y0c — £y du

where yo is the y-coordinate of the starting point of integration. Also

/C /do), du, \
ydo>, ~ y y ^x y)

//I dyxy dex\ r (dtv 1 dy xv\

y\l 177 " +f y\te~T 177iy■
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Hence

/T / 1 dy xy a€A"|
a + roc = ® tj + v( I \dx

J L '\2 dx dy)\

+/[yT" + '(^-T ^7)]dy- <4'6)

We now note that

/I r -o 1 r ,0 r ( dtx 1 dyxy \
txdx H yxvdy = l^exjo -\ b'T^Jo - <p [ x dx H y  dy )

2 2 J \ dx 2 ay /

= - <£ (xdJldx + LydJl^dy\t
J \ dx 2 dy )

the terms outside the integrals vanishing because of the assumption of continuous

strains. Equation (4.6) then becomes

•+y*" / ["(t i?- -57) - * If] ■" +/ 17) <4 "
When the strain components in (4.7) are replaced by their expressions in terms

of <£, V and T, we find

-Ei (o + yoc) C rd ^ "1
« , = (1 - *1) <h y\- (V'tfdy - — (V*<j>)dx
1 + vi J |_d* dy J

//dv dv \
^ \d~ ^ d— ̂  /

/(dT dT \v ( dy dx )
\dx dy )

/r d dv ari
* (1 - »,) — (VV) + (1 - 2vx)   + EiCXl   \dx

L dx dx dxA

r / d3<t> d'<t> \

+f\"^i' + y^iy} (48)
Now,

r ( d3<t> d3<j> \ r dfy d"-<t> I0 r /d2<t> \
® I x dx + y  dy) — \ x K y  — ® { dx + -—— dy )

J \ dx3 dxdv2 ') L dx2 ' dxdvJo J \dx2 dxdv /

the term outside the integral vanishing because the stresses are continuous. But,

from (2.2), (3.3) and (3.5),

d /d<j>\  
—( —) = Vtn - V.
ds\dx)
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Hence (4.8) may be written:

f( d(V24>) d(V24>)\ Ei(a + yac) 1-2vx f ( dV dV\
<t I y x ) ds =    (ply x Jrfs

J \ dn ds / 1 — vj 1 — vi J \ dn ds /

Ei°t\ f ( dT dT\

- -j——j) (7 - Vm)ds. (4.9)

This is Michell's second condition on <f> for each boundary of the slice.

Similarly, admitting a translational dislocation b in the y-component of displace-

ment, we set

and we find
-/

dv

rz rf(VV) , d(V'4,)\ J E1(b- x0c) \ — 2v\ f ( dV dV\
ft ( y 1- x  I ds = ® | y 1- x ) ds

J \ ds dn ) 1 — j»i2 1 — j»i J \ ds dn)

E\a\ rfdT dT\
 m ( y (- x J ds

1 - pi J \ ds dn)

-Thj<x- Vl)ds, (4.10)

which is the last of Michell's three conditions.

Corresponding to (4.5), a similar application of Green's theorem to (4.6) reveals

that the right hand side of the latter vanishes for reducible circuits and the same

result is found for the corresponding step in the development of Michell's third con-

dition.

The differential equation (2.6), the boundary conditions (3.1) and (3.2), and the

three conditions (4.4), (4.9) and (4.10) constitute a statement of the boundary value

problem of plane elasticity for stresses induced by boundary loading, body forces,

dislocations, and thermal dilatations. The general formulation of the problem reveals

the analogies, discovered by M. A. Biot,8 between gravity loading and boundary

pressures, and between thermal loading and boundary pressures and dislocations.

5. The slab equations. In the approximate theory of the bending of thin plates9

(slabs), the deflection (w) is governed by the differential equation

DViw=Z, (5.1)

where D is the flexural rigidity of the plate and Z is the surface load, normal to the

middle plane.

The components of curvature in the y, z and x, z planes are given by

8 M.- A. Biot, Distributed gravity and temperature loading in two-dimensional elasticity replaced by

boundary pressures and dislocations, J. Appl. Mech., 2, A 41-A 95 (1935).

' Love, loc. cit., p. 487.
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d2w d2w
K x J Ktj ~~' * (5*2)

dy2 dx2

On a boundary of the slab, the shearing force (N) normal to the middle plane, the

flexural couple (G), and the torsional couple (H) (all per unit of arc length s) are

a
N = — D — (V2w), (5.3a)

dn

r d2w /d2w 1 dw\~|

G=-Dfc + nsr+7^)]' <5',b)
d /dw \

= (1 - v2)Z)—( ), (5.3c)
dn \ ds )

where p' is the radius of curvature of the boundary of the unflexed slab and is

Poisson's ratio for the slab material.

The resultant force and the components, parallel to the x and y axes, of the re-

sultant couple on a complete boundary are10

F, = £ ds, (5.4a)

(5-4M

■(*-•*)]*• <s'4c)

Substituting (5.3) in (5.4) we find

rrd d d /dw\~\
F' = - D <f> — + U -»«) — — \-r)\ds• (5-5a)

J \_dn ds dn \ ds /J

r ( rd d d /dw\-\

dx rd2it> /d2w 1 dw\~n

+ *U? + "w+7 wJ/^' (5'5b)
f (dy rd2w /d"w 1 dw\~|

fcL^ + "t + 7WJ
ra d d /dwvn

- * -(V2W) + (1 - v2)- -( —) \}ds. (5.5c)
Ldn ds dn \ ds / J J

6. The analogy for singly-connected bodies. Noting the similarity between the

differential equations (2.6) and (5.1) for (f> and w, we set

w = K<f>, (6.1)

10 Love, loc. cit., p. 460.
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where K is a conversion constant having the dimensions of length/force.

Then, from (6.1) and (2.6),

1 — 2vi 1 + pi
V4k> = KV2V KaiV2T (6.2)

1 — 1*1 1 — Vl

becomes the differential equation for the deflection of the analogous slab. Hence

1 — 2vi 1 -f v\
Z = KDVW KDaiVT (6.3)

1 — Vl 1 — V\

is the normal surface loading to be applied to the face of the slab. In the ease of a

steady state temperature distribution,

V2r = 0. (6.4)

If, in addition, the body force potential is harmonic, the slab is subjected to edge load-

ing only. If either V or T is not harmonic, transverse loading is required on the sur-

face of the slab, and the load may vary slowly with time.

The edge conditions (i.e., the elevation and slope at each point of a boundary) of

the slab are specified by substituting w = K<f> in (3.1) and (3.2). Thus

w C'
— = I (Bl — Am)ds + ax + py -f 7, (6.5)
K J 0

1 dw ,
 = Al -f Bm -f al + 0m. (6.6)
K dn

The normal components of stress in the slice arc obtained by combining (2.2),

(5.2) and (6.1), with the result

ax = ^+V, = (6.7)
K K

The principal stresses and their directions may be calculated from two sets of curva-

ture measurements at each point.4 If the boundary of the slab is a scale model of the

boundary of the slice, e.g., if the ratio of a linear dimension of the slab to the corre-

sponding linear dimension of the slice is k, the stress components in the slice are given

by

k2Kx k2Kv
<Tx = + v, -+V. (6.8)

K K

For a singly-connected body, (6.1) to (6.8) completely specify the analogy, since

the unknown constants a, /3, y may be given arbitrary values.

7. Additional conditions on the slab for multiply-connected bodies. For a multi-

ply-connected body, a, /3, y must be prescribed for each boundary. Now, it will be

observed, from (6.5) and (6.6), that a, /3, y specify a rigid body translation and rota-

tion of each complete boundary of the slab. Such rigid body movements may be
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effected by applying, on each boundary, a resultant force, normal to the middle plane

of the slab, and a couple about an axis properly oriented in the plane of the slab. The

magnitudes of the force and the x and y components of the couple on each boundary

are determined by expressing Fx, Mx, Mv (see (5.5)) in terms of the specified boundary

loadings, body forces, dislocations, and temperature distribution of the slice.

i. Resultant force on a boundary of the slab. Replacing w by K(f> in (5.5a), we have

F,= - KD <f ["i- (W) + (1 - ,2) A A (^Yl ds. (7.1)
J Ldn di dn \ds/J

Now

o
J ds dn \ds/

because of the assumption of continuity of the components of stress in the slice. Hence

F, = — KD (f — (V2<t>)ds. (7.2)
J dn

Therefore, from (4.4),

(1 - vi)F„ E\c f dV

KD 1 + Vl

/dV r dT ds + Eiai(f)  ds, (7.3)
dn J , dn

whereby F, is expressed in terms of known quantities.

it. x-component of couple on a boundary of the slab. Substituting K<f> for w in (5.5b):

{,£(*« + ( 1-^s©]
dx rd2<t> 1 d<t>\-\\

+ *b+"fe+7WJr (7-4>
Eliminating

/

d
y — (vi<t>)ds

dn

between (7.4) and (4.9), we find

Mx r ( d(V2<t>) d d /d<t>\

KD

+

r ( d(V24>) d d /d<t>\

ds Idn8 \ds2 p' dn)])

Ei(a + yoc) \ — 2v\ T ( dV dV\
—    1 ® [ y x ) ds

1 — 1 — vi J \ dn ds)

Eton r ( dT dT\ 1 r _
+    d) (y—-x—)ds   <p (Y — Vm)ds. (7.5)

1 — v\J \ dn ds / 1 — v\ J
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Now,

f Vdx dy d /d<b\~!
(7.6)

The terms outside the integral vanish on account of the assumption of continuity of

the stress components. Therefore the first integral on the right hand side of (7.5) be-

comes

C ( dy d /d<t>\ dx r d-<f> /d2<f> 1 d<t>\-\)

J V1 "^5U) + *Lvv" ̂ " W + 7 £/Jh (7'7)
On a boundary

d2<£ 1 d<£ d2<t>
V2<#> =  + + » (7.8)

dn2 p' dn ds-

so that (7.7) becomes

r rd\ d /d<t>\ dx /d2<t> 1 d<t>\-](1-*> I* = U+*W+7*).]*■
However, along a boundary,

d /d<t>\ d24> 1 d<t>
(7.10) _+v,

Hence, (7.9) becomes

Substituting back in (7.5), we have, finally,

(1 — t>i)M i Ei(a + yoc)

KD

/(■v^ "

dT\
+ E\a\ (f) ( y — x ~~j~) ds

(7.11)

dy dx _
Am *» = Y. (7.12)
ds ds

- [(1 - *)( 1 - n) + 1] y (F - Fw)(fs. (7.13)

This gives Mx in terms of known quantities.
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Hi. y-component of couple on a boundary of the slab. Substituting K<t> for w in (5.5c),

f (dy rav l d<t>\-1
Mv = - KD 6 — + I-, (—-+ — —)

J \_dn2 \ds2 p dn/J

ra(vv) d a /d<t>\i)

-■[^ + (I-*i;£U)]r <714)
Eliminating

/* — (V2
<t>)ds

between (7.14) and (4.10), we have

My r i d a a /a</>\
 = — ® <y — (V20) — (1 — v2)x (—)
KD J \ ds ds dn \dsj

dy m /av i d<t>\-]\

aLw+ " w+7.wJr'
l(J - *«c) 1-2n f ( dV rf7\
   <b ( y 1- x J ds
1 — v\ 1 — vi J \ ds dn/

r( dT dT\ 1 r
<f> [y + * J ds <P (x - Vt)ds. (7.15)

\.J \ ds dn f 1 — v\J

+

E\{b — x0c)

1

E\a\

1 — Vl.

Now,

f Vdy dx a /aAl
-/[-W-a-,)--(-)]*. <7.16,

The terms outside the integrals in (7.16) vanish on account of the assumption of con-

tinuity of stresses. Therefore the first integral on the right hand side of (7.15) becomes

r (dy r d2<t> /av 1 aA"i dx a /a<>\)
<f> 1— VV   - "2 I — + — —) - (1 - "2) ( — )[ds. (7.17)

J \dj L dn2 W p' dn)J ds dn\dsj)

Then, using (7.8), (7.10) and (7.11) and noting that

dx dy _
r„.— + <r„ -f- = X, (7.18)

ds ds

(7.17) may be written in the form

(1 - n) j> ( X - VT)ds. (7.19)

Substituting back in (7.15), we have
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(1 — v\)Mv Ex{b — x0c)

KD 1 —J— »»i

'■» ■ ,

ds dn)

r/ dV dV\

r( dT dT\
— E\ot\ (ply — 1- x ) ds

+ [(i - *2)(i - vi) -1] y (x ~ vi)ds. (7.20)

8. Recapitulation. The stresses, in a multiply-connected slice, resulting from

boundary loadings X, Y, a body force potential V, dislocations a, b, c and tempera-

tures T, are related to the curvatures of a slab according to

Kx Ky

Cz = T + v' ,Tv = T+v

if the following conditions are satisfied on the slab:

(i) The surface loading on the slab is

1 — 2vi 1 -f- Vl
* Z = KDV-V KDaiViT; (6.3)

1 — i»i 1 — Vi

(ii) The boundaries of the slab are geometrically identical with those of the slice,

with elevations and normal slopes given by

w r' 1 dw
— =1 (111 — Am)ds + ax + fiy + y, = Al + Bm + al + |3m, (6.5)
K J o K dn

at each point of each boundary;

(iii) There are a resultant force (Fz) and resultant couples (Mx) and (Mv), on each

boundary, with magnitudes given by

(1 - vi)F, E\c f dV f dT
+ (1 — 2vC) (p  ds + Eiai 0  ds, (7.2)

J dn J dnKD 1 +

(1 -vi)Mz Ei{a + y»c) f( dV dV'

KD 1 -(- vi

r / dV dV\
ds

r ( dT dT\
4 E\ai <p ( y x ) ds

J \ dn ds /

- [(1 - ri)(l - »») - 1] y (7 - Vm)ds, (7.13)

(1 — vi)Mv Ei(b — x0c)

KD 1 + vi

dT\

f / dV dV\

r ( dT
— Eicti (ply h * ) ds

J \ ds dn /

+ [(1 - vi)(l - v2) - 1] y (X - Vl)ds. (7.20)


