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—NOTES—

ON THE ELASTIC DISTORTION OF A CYLINDRICAL HOLE
BY A LOCALISED HYDROSTATIC PRESSURE*

By C. J. TRANTER (Military College of Science, Shrivenham, England)

When a hydrostatic pressure is applied over only a small part of the length of a

cylindrical hole extending through an infinite elastic solid, the stresses and displace-

ments differ considerably from those caused by the application of this pressure over

the entire length of the hole. This problem has been discussed by H. M. Westergaard1

using an approximate method but it is not easy to assess the accuracy of his numerical

results. It is the purpose of the present note to give an exact solution and to compare

numerical results with those given by Westergaard.

The analysis used here is a simple adaptation of that given by A. W. Rankin2

for the similar problem of a band of uniform pressure applied to a long cylindrical

shaft. The numerical calculations are not so formidable as would appear at first sight

and a method given by L. N. G. Filon3 for evaluating trigonometric integrals has

proved very valuable in this connection. The results for the maximum radial dis-

placement show that the approximation used by Westergaard is rather crude.

1. The analytical solution. We use cylindrical coordinates and consider the pres-

sure loading as being given by <rr= — p, |z| <c, crr = 0, |z| >c on the surface of the

cylindrical hole r — a. With the usual notation4 we therefore require to find a stress

function 4> satisfying

V4<£ = 0, r > a, — oo < z < oo, (1)

where V2 denotes d2/dr2 + (l/;-)(d/dr)+d2/dz2 and the boundary conditions

d ( .1

= 0, | z | > c,

d ( d2)

v being Poisson's ratio for the material of the elastic solid.

Once cj> has been found, the stresses aT, t„ are given by the expressions shown in

(2) and (3) and the remaining stresses and the radial displacement are given by

d ( Id) d ( 32 ")

E being the modulus of elasticity.

r = a, (2)

cc < 2 < oo, r — a, (3)

1 + v d~4>
u — > (4)

E drdz

* Received May 8, 1946.
1 H. M. Westergaard, Karman Anniversary Volume, 1941, p. 154.

2 A. W. Rankin, Shrink-fit stresses and deformations, Journ. Appl. Mech. 11, A77 (1944).

3 L. N. G. Filon, On a quadrature formula for trigonometric integrals, Proc. Roy. Soc. Edin. 49, 38

(1928-29).
4 S. Timoshenko, Theory of elasticity, McGraw-Hill Book Co., New York, 1934, p. 309.
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Following Rankin, we take

_ a

Rb sin c\ sin z\d\ (5)-J
J 0

where R is a function of r only and b is a function of X. To satisfy (1) we must have

/ d* Id V
( + X2)£ = 0,
\dr2 r dr )

and the solution, finite as r—»°°, of this equation is

R = AKo(p) + BpKtip), (6)

where K0(p), Ki(p) are Bessel functions of imaginary argument, A and B are constants

to be found and

P = Ar. (7)

Using the well known relations

Ko (p) = — Ki(p), )

pK{ (p) + Ki(p) = — pKo(p), J

we find

V2<£ = — 2 r BKo(p)b\i sin c\ sin z\d\. (9)
J o

With

a = Xa, (10)

substitution from (9) into (3) yields

(T„)r-a = f [- BaK0(a) + {25(1 ~i>) - A } K^a) ]&X» sin c\ sin z\d\
J o

so that, to satisfy (3)

A/B = 2(1 - p) - aKo{oi)/Ki(a). (11)

We also find

(<rr)r_0 = - J + (2i> - l)B}K0(a) + (— + sin cX cos

and since the boundary condition (2) can be represented by

2p C °° sin CX cos zX
(Or)r*a = I    d\,

■K J 0 X

we have

b = + (2" - l)5}*o(«) + + Da^jri(a)j . (12)
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Equations (11) and (12) yield

ir\4D(a)bA = [2(1 - y)aK1(a) - a2A0(a)J, 1

w \*D(a)bB = 2paK\(ot),

where

(13)

D(a) = {a + 2(1 — i>) } Ki(a) — a K0(a). (14)

bA, bB having now been found, the expressions for the stresses and radial displace-

ment are found to be given by

2 pa
<r, = ■—-

irr J o
I [apA'o(a) A'o(p) + aA'o(a) A'i(p) — pA0(p)Ai(a)

J 0

t c z
sin — a cos — a

- {p=+ 2(1 - v) } Ai(a)Ai(p)] a a da
aD(a)

c . 2
sin — a sin — a

Tr, = —f [aA0(a)A1(p) - pA0(p)Ai(a) ]    ° da
ir J o D\a)

cr, = - — f [aA0(«)A1(p) + (2v - l)pAo(p)A,(a)
vr J o

. c z |
sin — a cos — a !

- 2(1 - ,)*,(«)*,(p)] , a doc
odJ(a)

■m = - — f [«Ao(a)Ao(p) + 2Ao(p)A,(a)
IT J 0

C Z
sin — a cos — a

- pAi(a)Ai(p) ] g da
D(a)

Eu 2pa rK
7— = - — [aAo(a) Ai(p) - pA„(p)Ai(a)
1 + P X J 0

(15)

C 2
sin — a cos — a

- 2(1 - v)Ai(a)X,(p)] a———— da
aD(a)

2. Numerical results for the maximum radial displacement at r = a. When r = a,

p = a and the greatest displacement occurs when 2 = 0, so that we have

£(«nm)r=« 4/><i(l — v) f °° Al(a) # C
■ ada.

l + r

.1 - v) r Ki(oQ . c
  I  sin — ado
ir J o aD(a) a
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If the pressure p acts over the entire length of the hole, the displacement (tt'),_„ is

given by

E(u')r,a

— to
1 + V

so that

(«max)r=a 4(1 — v) /* °° Kl(a) , C= 4(1 - v) I"

T J 0(«')r-o r J o aD(a)
sin — ada. (16)

The numerical work was performed with v = 0.3 and, above a = 12, it was found

that the first three terms of the asymptotic expansion of K\{a)/aD{a), viz.,

K\(a) 1 0.4 0.965

aD(a) a2 a' a4

gave an adequate representation. Integration by parts then leads to

After) c r cH 12c c 12c
—— sin — ada = \ .08176 + .01340 — sin .01778 — cos 

is aD(a) a L a*J a a a

c'Tt / 12c\~| r c-l c /12c\

+ '2^[T-si(v)J-L1+ 16083>J7c'(v)'

where

/'1 sin x C°° cos x
 dx, Ci(x) = — I  dx.

o x J x x

The evaluation of the integral in equation (16) from a = 0 to a= 12 was performed as

follows. The function K\(a)/aD{a) was computed at intervals of a = 0.2 from a = 0

to a = 2 and at intervals of a = 0.5 from a = 2 to a = 12. The integral was then evalu-

ated by a method due to Filon6 in which Simpson's rule is replaced by the formula

J.BF(x) sin kxdx = h[a\F(A) cos kA — F(B) cos kB\ + /3S2, + 7S2.-1],
A

where the range of integration is divided into intervals of length h, S2. is the sum of

all the even ordinates of the curve y = F(x) sin kx between A and B inclusive less half

the first and last ordinates, S2.-1 is the sum of all the odd ordinates, and a, f), y are

given in terms o{\f/ = hk by

1 sin \f/ cos ^ 2 sin2 ^ J"1 + cos2 ̂  2 sin ^ cos
a — 1 j /3

^ ^ yj/3

[1 + cos2 2 sin f cos f~|

^ ^ J'
tsin^ cos^ "|

' Filon, loc. cit.
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This formula holds even when k is large, provided that the function F(x) can be

fitted with reasonable accuracy over the range 2h by parabolic arcs.

To avoid an infinity at the origin, the integral actually evaluated was

; f-Mfkn inJL^
J o Ll.4a aD(a) J aaD(a).

and when this had been found, the required integral was given by

1 / 12c\

nsi (t) _ '•

As a check that the substitution of the asymptotic series did not lead to unaccepta-

ble errors, the range of integration was also divided into 0 to 10, 10 to infinity and the

infinite integral was similarly computed on this basis. Little extra work was involved

and excellent agreement was obtained.

The results are shown below, together with those given by the approximate analy-

sis by Westergaard. It is seen that even his second approximation is quite crude.

0.25
0.50

Values of (Mmox)r-e/(«')r-i>

Westergaard

First Approximation

0.557
0.806

Second Approximation

0.537
0.770

Present Method

0.450
0.633

ON THE REPEATED INTEGRALS OF BESSEL FUNCTIONS*

By J. C. JAEGER (University of Tasmania)

It is well known that

CtlJn{t)1 r .
l|—= [(P2 + 1),/2 - py, n > 0, (1)

and

= — + ~ ' —' » ^ 0, (2)
(P*+ l)1'2

* Received Jan. 25, 1946.


