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This formula holds even when k is large, provided that the function F(x) can be

fitted with reasonable accuracy over the range 2h by parabolic arcs.

To avoid an infinity at the origin, the integral actually evaluated was

; f-Mfkn inJL^
J o Ll.4a aD(a) J aaD(a).

and when this had been found, the required integral was given by

1 / 12c\

nsi (t) _ '•

As a check that the substitution of the asymptotic series did not lead to unaccepta-

ble errors, the range of integration was also divided into 0 to 10, 10 to infinity and the

infinite integral was similarly computed on this basis. Little extra work was involved

and excellent agreement was obtained.

The results are shown below, together with those given by the approximate analy-

sis by Westergaard. It is seen that even his second approximation is quite crude.
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Present Method

0.450
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ON THE REPEATED INTEGRALS OF BESSEL FUNCTIONS*

By J. C. JAEGER (University of Tasmania)

It is well known that

CtlJn{t)1 r .
l|—= [(P2 + 1),/2 - py, n > 0, (1)

and

= — + ~ ' —' » ^ 0, (2)
(P*+ l)1'2

* Received Jan. 25, 1946.
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where L {/(/) j is written for the Laplace transform of f(t), that is,

L{M\ = f (3)J (i

These results have important applications in the theory of the semi-infinite dis-

sipationless artificial transmission line with simple terminations, and thus in the ex-

pression of the solutions of corresponding problems on finite lines in terms of multiply

reflected waves.

In an important class of similar problems in which the line is terminated by a

matching resistance, the Laplace transforms of the solutions contain powers of

[l + (^+l)1/s] or [p + l+(p*+\yn] in the denominator, and the functions which

have such Laplace transforms do not seem to have been given. The object of this note

is to show that they can be expressed in terms of repeated integrals of Bessel functions

and that numerical values of these can readily be obtained.

We use the notation

(D C1 C Jn(i)dt
Jin (t) =1 dl - \ , n > 0,

J o J o t

Jin.ri1) = C dt ■ ■ ■ f J„(l)dt, n ̂  0,
J 0 J 0

(4)

for the r-ple integrals of Jn{t)/t and Jn(t) respectively.

It is convenient to use both these types of integral though there are many relations

between them, the simplest being

+ Jin+i.r(<) = 2nJin \t) (5)

and

J in-l,r(0 — Jin+l.r(<) = 2Ji„,r ,(l), (6)

which follow immediately from the recurrence formulae for ) is tabulated1

and = (1 /n)-\-Jin(t) where Ji„{t) is the ordinary Bessel integral function. For

all values of n and r repeated application of the result

fJ 0

Jn(t)dt — 2 ̂ 2 -Ai+2m+l(/ 1
m=0

gives the formulae

" (m + r - 1\
J in At) = 2 Z U,+!»+r(/) (7)

m_0 \ m /

(r> r—i J!, (2m + r — 1) (m + r — 1\
nJin (i) = 2 Yl   ; — I )/n+2m+r_1(/). (8)

»j=o {m + r — 1) \ m /

For integral values of t, which are in fact close enough for many practical purposes,

(7) and (8) may be evaluated rapidly from the Tables in Gray and Mathews.2

1 Lowan and Abramowitz, J. Math, and Phys., 22, 2 (1943).

2 Gray and Mathews, Treatise on Bessel functions, 2nd ed., 1922, Table II.
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The Laplace transforms referred to above may now he written down. Firstly we

have immediately from (1) and (2)

L{nJu\t)) = p r[(p2 + \)m - p}" (9)

|7a2 I 1)1/2 _ a1»

L [J in At) } =  — ' (10)
pT{p2 + \yn

Then, since

it follows that

-  = (l + —)
'2+i)"2 V py

i i

i + (p2 +1)"2 \ py (p2 + iy2 p2

i

L 70(0 + JioAt) ~ t   (11)
1 ' l + (/>2+l)1/2 V '

In the same way if n>0

(2) , [(P2 + 1)1/2 - p]n

L{Ut) + JinM) ~ fJin (/)} = 1 + ( |+1)J, * (12)

Similarly

L{jn(t) + 3Jin,t(t) + 2JinM) ~ 2nj£\t) - 2nJu\t)}

= (p2 + i)1/2[(/>2 + i)"2 - pY

[i + (p2 + i)1/2]2

if w>0, and if w=0 the term nJi^(t) is to be replaced by x/(r — 1)!. Again with this

convention we have

rfi 7-(1)/A 1/ i t [(^ + 1)1/2 - />]"
L {Win (0 - K« + l)Jtn+i(t)} = p+l + {p2+1)lli' (14)

L \j n+z{t) ~ 2/,1+l(/) + J „(/) + ~ 2Jtn+l,i(t) + Jin,1.{t)\

= 4(p*+ l)"2[(j>2 + 1)1/2 ~ p)n

[p + 1 + (p2 + I)1'2]2

(13)

(15)

These expressions may be transformed in many ways using (5) and (6) and gen-

eral results for higher powers in the denominators® may be obtained in the same way.

As an example of the way in which the above functions arise, we consider a semi-

infinite artificial transmission line with mid-series termination, in which the series

elements are inductances L and the shunt elements are condensers of capacity C.

Suppose that all condensers are charged to unit potential, and that at time t = 0 the

line is discharged through the matching resistance V(L/C)- Then if To is the current

in the resistance, /„ that in the wth inductance L, and Cv„ is the charge on the nth

condenser, applying the Laplace transformation method in the usual way we find that

r(r) aC[(l + p2/a2)112 — p/a]-T
L \ I r\ —  r ; > r = 0, 1, • • • (16)

1 ' 2p[\ + (1 + p2/a*yi2]

3 The extension of (IS) is trivial; for that of (13) the results needed are given in Chrystal, Textbook

oj algebra, 2nd ed., 1906, vol. 2, pp. 204-205.
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£ _ [(1 + p*/a*y'2 - p/a]*-'

7 Ml + (i + />7«2)1/2]

r , J 1 LU 1- r/«T" - p/aj" , „
L\vr\ =      ' r = l, 2, ■ • • , (l/)

where a = 2(LC)~lli.

It follows from (12) that
(3)

»r = 1 — Jii — Jhr-iAat) + (2r — l)Ji2r-i(at) (18)

Ir = (C/L)l,i\Jiir.i{at) + JiirAat) — 2rJiZ\at)! (1(^)

/o = (C/Lyn{ji0.\{ai) + ./io.s(ai) - haH-\ (20)

= i(C/L),/2{( 1 + a-t-)Jia.Mt) - «V-(1 + /,(«/)) + «</«(«/)!. (21)

where (21) follows from (20) by integration by parts.

If the line is discharged into inductance \L and resistance \ (L/C) in series, tin-

solution follows from (14) in place of (12).

ON CERTAIN INTEGRALS IN THE THEORY OF
HEAT CONDUCTION*

By STEWART PATERSON (I.C.I. (Explosives) Limited, Stevenston, Scotland>

In a recent note1 W. Horenstein evaluates the integrals

<t> = J" x~31- exp ^ — — — b-x^dx.

\f/ = J x~1/5 exp ^   b'2x^<lx.

(I)

(2)

in terms of the tabulated exponential and error functions. The evaluation of the more

general integral, viz.

i

exp (— s2 — ti-/s-)ilsI
from which <j> and \p are easily derived, was given by Riemann."

Integrals of the above type arise in the solution by classical methods of various

heat conduction problems. It is the purpose of this note to point out that treatment

of many such problems by the Heaviside "operational" or equivalent Laplace trans-

form method leads directly and naturally to the required solution in tabulated func-

tions.

Thus, to take a simple case, the classical solution of

dd 1 d2d
— = 0->O, /-»0. 0-— 1, a->0 +, (3)
dt 4 da-

* Received Nov. 24, 1945.

1 W. Horenstein, Quart. Appl. Math. 3, 183-184 (1945).

2 B. Riemann, Partielle Different ialgleichun. 2nd ed., 1376. p. 173.


