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LINEARIZED SUPERSONIC FLOWS WITH AXIAL SYMMETRY*

BY

WALLACE D. HAYES**

California Institute of Technology

1. Introduction. The study of spatial linearized supersonic flow may be aided by

the study of some simple fundamental flows with axial symmetry. Through the prin-

ciple of superposition, these flows may be combined to give more general flows about

various objects and about lifting systems. It is the purpose of this paper to express the

equations of linearized supersonic flow in a system of conical coordinates, to develop

a theory for fundamental flows with axial symmetry, and to describe examples of

such flows and of their combination by superposition.

Various examples of the fundamental equations and solutions here described will

be given in later papers, together with the development of some concepts useful in

this field.

2. The velocity potential. Steady-state compressible irrotational flow can be de-

scribed by a velocity potential <f> whose gradient is the velocity vector. Under the as-

sumption that the velocity deviations from a uniform supersonic flow of the Mach

number M are small, the differential equation for this potential takes the linear

form1,2

1 1
<t>rrH H r <t>tl ~ (Af2 — l)<t>zz = 0 (1)

r r2

in cylindrical coordinates.

The fundamental uniform flow is given by the potential <j>0= Vz where V is the

velocity corresponding to the Mach number M. Equation (1) will be considered as

yielding velocity deviations which must be added to the velocity of the fundamental

flow to describe the net flow.

A new coordinate is introduced to replace the coordinate r:

t = (r/zWM* - 1. (2)

This quantity is the ratio of the tangents of the polar angle and of the Mach angle.

Equation (1) with r eliminated and t introduced becomes

1 1
(1 — H (1 — 2P)<j>t H <t>ee + 2tz<t>tz — z2<t>z, = 0. (3)

t t2

By separation of variables a solution of the form
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4> = s"«>(/, 9) (4a)

or

<t> = s" sin (mO + 0) T(l) (4b)

is found. The function 4> satisfies the equation

1 1
(1 — 1*)$,, H (1 + 2(n — l)/s)4>< — h(h — l)<t> H <!>,, = o (5)

t l-

and may be called the velocity potential for generalized conical flow. If w = l, the

function $ describes conical flow. The function T satisfies the equation

1 1
(1 - t2)Ttl + — (1 + 2(« - 1)0r, - — {m- + »(» - l)/!)r = 0. (6)

t t"

Superposition of solutions of the type of (4a), (4b) will give a general solution.

The velocity components are

vw- i
u = <t>t (7a)

in the radial direction,

in the azimuthal direction, and

\ M* - 1
» —  <t>e (7b)

tz

t
k> = <t>, </>< (7c)

s

in the axial direction. The pressure in linearized supersonic flow is given in terms of

the velocity components by

/ M2 + V- \
p = - P f Vw H   j, (8a)

and the pressure coefficient by

r —p
( W M2 + V2 \

[ — + )• (8b)
\V 2 V2 )

The part of Eqs. (8a), (8b) in u and v is not necessary if w is of the same magnitude

as u and v. In many important cases, however, u2-{-v2 is of the same magnitude as Vw

and Eqs. (8a), (8b) must be used in its complete form. In these cases the validity of

the solution should be checked.

The singularity of (5) or (6) at /■= ±1 corresponds to the two Mach cones ex-

tending from the origin in the three dimensional flow. Various ranges of t correspond

to various regions of flow, as shown in the following table.
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Range of t i Region of Flow

0<<<1 inside downstream cone

—1</<0

1 <t < »

■ 06 <t< -1

inside upstream cone

outside both cones

3. Solutions of the differential equation (6). The parameter n is restricted to in-

tegers and the parameter m to non-negative integers. The differential equation for T,

Eq. (6), has regular singularities of exponents ( + m, — m) at /=0, (0, n + \) at

t= ±1, and ( —n, 1— n) at /= <*>. The solutions about the origin are

/ — n + m — » + w+ l \
   ;1+w;

/m + tw+1 n m -\- 2 \
= /'"XI -    , — ; 1 + m\ lA,

( — n — m — n — m 1 \

2 '—r—:i-m:n
(11 — m -\- 1 n — m + 2 \ 2 '  2 I-J,

(9a)

(9b)

(10a)

(10b)

where F denotes the hypergeometric function. The solution of negative exponent,

Eqs. (10a), (10b) is not well defined.

It is of considerably more value to express the solutions about f2 = 1, since then

both solutions are well defined and two distinct types of solution may be distin-

guished. One type of solution, designated as type I, is the solution of zero exponent

at t2 = 1 and is real throughout the range of t. The resulting solution for 0 has no singu-

larity on the Mach cones. The other type of solution, designated as type II, is the

solution of exponent n-\-\ at t2 = 1 and is real only for t2 < 1 or only for t2> 1. The re-

sulting solution for <f> is defined only within the Mach cones or only outside the Mach

cones. These solutions may be expressed as follows:

/ — n + m — 11 + m + 1 \
I) T = t'"F T   ,    (lla)

/ — ii — m — n — m -\- 1 \
= r"'F [—2—' 2 ~ ; ~ " + 1 ~ V'

/ tl + W+1 « + w + 2 \
II) T = *'»( 1 - t2)"+*F f-  —- .    ; » + |; 1 - t-J (12a)

(;/ — m + 1 ii — m + 2 \
 — »  — I2). (12b)

(lib)
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Three special cases are distinguished according to the relative values of n and m:

case A: — oo < w — m — 1,

case B: — m^n^m — 1,

case C: m^n< °°

The distribution of these cases for small values of m and n is shown in the table:

-3 -2-10 1

A A A C C C
A A B B C C
A B B B B C
B B B B B B

From a consideration of Eqs. (9) to (12) the forms of the two types of solutions

in the various cases may be found. For all solutions except solutions I-A (i.e., solutions

of type I in case A) and solutions II-C, the form is explicit in terms of a polynomial

in t2 or in (1— t-). Solutions I-A and II-C have logarithmic singularities at <=0 and

are discussed later. The polynomial forms are expressed as follows:

Solutions Form
Order of P(tr)

whichever is integral of

Equation for

Calculation

I-A
I I-A
I-B

II-B
I-C

II-C

logarithmic

/m(l — f)n+^P(tt) \(—n—m — 1) or §(—»—»» —2)

t~mP(tr) ' %(n+m) or \(n-\-m — 1)

/~"(1 —t*)n+''P(l') \( — n+m — 1) or J( — n+m— 2)

tmP(t!) |(n — m) or \(n—m — 1)

logarithmic

(9b) or (12a)

(10a) or (lib)

(10b) or (12b)
(9a) or (11a)

There is a connection between the solutions of Eq. (6) and the Legendre functions

with the same values of n and m, except that — n — 1 is used when n is negative. How-

ever, since Legendre functions are customarily defined only for m^n or m^n — 1,

respectively, they are of assistance here only in cases A and C. The polynomial solu-

tions are

I-C) T = (1 - tY2P: [(1 - <2r5]. (13a)

I I-A) T = (1 - /')n/V!:n_1[(l - <2)-*]. (13b)

These solutions are most easily obtained by transforming Eq. (1) into Laplace's equa-

tion by introducing the variable iz/y/M2— 1.

The polynomial solutions may be obtained in another form from an expression

given by A. R. Forsyth,3 and the law for differentiating the hypergeometric functions.

When n is not positive, these solutions are

5 A. R. Forsyth, A treatise on differential equations, 6th ed., Macmillan, London, 1933, p. 235.
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I) T = /-'»—— [(1 + v/r-=T=)-«+'« + (l - \ T- >)-+-], (14)
</(/2)-"

d~n ,   
II) T = t±m ——— 1(1 + Vl- /2)-"Tm - (1 - y/\ - J1)""*"]. (15)

d(<2) "

and when m + 1 is not negative,

d»+i   , 
I) T = /±m(l - /2)"+i — [(l + Vl - '5)B+i:fm - (i - vT - i5)-*"-]. (16)

d(t2)n+1

<i«+i    
ii) r = rm(i - <2)"+i [(i + Vi - /2)"+1+'» + (l - v"i - <2)»+»+-]. (17)

4. Logarithmic solutions. The logarithmic solutions I-A and II-C are most easily

expressed in terms of the Legendre functions, as in Eqs. (13a), (13b). They are

I-A) T = (1 - <S)n/S<rn_J(l - t )-*], (18a)

II-C) T = (1 - t*)nnQn [(1 - <*)^]- (18b)

Since the validity of Eqs. (14) to (17) does not depend upon m being an integer,

and since an appropriate solution of the form of these equations vanishes as a log-

arithmic solution is approached, the logarithmic solutions may also be obtained by

differentiating such solutions with respect to m. The logarithmic solutions in this form

are

d~n r ,   

I-A) T = t±m [(1 + \/l - /*)-**" log (1 + y/\ - I2)

+ (1 - log (1 - vr=~p)], (19)

d"+1
II-C) T = t±m( 1 - /2)»+* d^n+1 [(1 + VFr72)B+i:f "* log (1 + y/\ - <2)

+ (l - vT^T2)^""1 log (l - vT^T2)]. (20)

5. Generating equations. The fundamental equation, Eq. (1), expressed in Car-

tesian coordinates is invariant under differentiation with respect to any of these co-

ordinates. Solutions of the type of Eq. (4b) expressed in Cartesian coordinates and

differentiated with respect to these coordinates are still solutions of Eqs. (1) and (3).

This fact permits a given solution of parameters n and m to yield solutions of parame-

ters n — 1 and m, m + 1, or m —1:

d
T(n - 1, m) = nT - IT, = - /»+> — (21a)

dt

T(n - 1, m + 1) = — T - Tt = - /+»' — (trmT), (21b)
t dt

m d
T(n - 1, m - 1) = — T + T, = + t~" — (t+mT). (21c)

t dt

The procedures yielding these new solutions can be considered procedures of super-
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position; for example, one solution superposed on its negative an infinitesimal dis-

tance downstream yields the new solution given by Eq. (21a)

These equations are not to be considered recurrence relations, as no system has

been established for specifying solutions with respect to the multiplicative arbitrary

constant.

In a similar manner solutions with the parameter n increased by 1 may be ob-

tained by reversing Eqs. (21a), (21b), and (21c) with suitable integrations.

6. Integral relation. An integral relation connecting two solutions whose parame-

ters differ in value may be obtained either from the corresponding relation for the

Legendre functions or directly from Eq. (6). If T\ denotes a solution corresponding

to ri\ and «i and 7*2 a solution corresponding to «2 and m2, the relation is

(*? - »!) f <_1(1 ~ /J)-K">+"'+1)7,17V/

b

+ («i - »«)(»! + «2 + i) f /(i - /2)-!<"i+"»+3>r17v/
J «

r / dTl dTA
= /(I - /2)-i(»!+"»->) ( T2 Ty )

l_ \ dt dt /

+ (»1 - n2)t\l - /t)H(-i+"rt-i)r1ril I . (22)

Setting «i = n2 or = we obtain simpler equations as special cases which may be

used to obtain orthogonality relations between solutions.

7. Two-dimensional cross-flow. The solutions of type I for which m = \n\ are

given by T = /". The corresponding solutions for <f> in cylindrical coordinates are

<t> = rn sin ( | n \ d + /J).

These solutions give two-dimensional cross-flow because of the fact that z does not

appear. This cross-flow, as a result of the linearizing assumptions, appears as an in-

compressible flow.

8. Conical flow. The solutions of either type for which n = 1 give solutions of

conical flow, of which only those of type II are here treated. Since the exponent of

these solutions at t2= 1 is 3/2, both the potential and the velocity vanish on the Mach

cone. The first few solutions are:

m = 0) Vl —/2 —tanh-1 Vl— t2,

m = 1) rVl-i!-f tanh-1 Vl-f2,
m=2) r2(l-/2)3'2,

m = 3) /-'(l-/2)8'2,

The flow about an infinitesimal circular cone at zero incidence is given by the first

solution (II, 1, 0), the solution of type II with « = 1 and m=0. The flow about the

same cone at a small angle of attack is obtained by superposing solutions (II, 1, 1)

and (I, 1, 1) with appropriate constants on the (II, 1, 0) solution. A standard treat-

ment of this case will be found on pp. 46 to 49 of Sauer's book.1

9. Infinitesimal horseshoe vortices. An infinitesimal horseshoe vortex can be

represented by a semi-infinite line dipole in the same manner as a planar vortex
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system can be represented by a planar dipole system. Thus a lifting element and other

lifting systems can be represented by solutions of type II with m = 1, as shown in the

following table.

Solution
Semi-Infinite Line

Dipole of Strength

Designation in Terms of

Lifting Properties

(II, —1, 1): <-1(l—/,)~1 Constant

(II, 0, 1): i_1(l — t*)+l Proportional to z

(II, 1,1): /"'(I — t tanh-1 (1 — <*)+* Proportional to s!

"Lifting element"

"Lifting line"

"Lifting infinitesimal triangle"

The "lifting element" solution, since the potential has exponent —5 and the veloci-

ties —$ at t2 = 1, has a troublesome singularity on the Mach cones. A simpler sin-

gularity has the "lifting line" solution, whose potential vanishes and whose velocities

have exponent — £ at <! = 1. When these solutions are superposed to give lifting sys-

tems of finite dimension, the singularity in the velocities usually disappears. The third

solution is the same as the one which gives the lift on an inclined circular cone. Ex-

amples of the superposition of such solutions to form a lifting system will be given in

a later paper.

10. The acceleration potential. Since the axial velocity component w is a deriva-

tive of the velocity potential in Cartesian coordinates, it satisfies the same equations,

Eqs. (1) to (6), as does the velocity potential. The acceleration potential, whose fun-

damental theory will be found in a paper by L. Prandtl,4 equals —p/p for linearized

flow, and also equals Vw+\{w2+r5) from Eq. (8a). Hence the approximate accelera-

tion potential defined by \f/= Vw satisfies Eqs. (1) to (6). The relation of this quantity

to the velocity potential for a given fundamental flows is of the type which leads to

Eq. (21a), and hence the corresponding acceleration potential is given by a solution

with n decreased by 1. It is important to note that this does not give the true linear-

ized acceleration potential where w!+»2 is not of smaller magnitude than Vw. Thus

the two-dimensional cross-flow described above has no approximate acceleration po-

tential, and the acceleration potential is given incorrectly in the vicinity of the axis

for other flows. However, the true acceleration potential may not itself be superposed,

and often the difference between the approximate and true linearized acceleration po-

tential disappears under superposition.

The "lifting element," "lifting line," and " lifting infinitesimal triangle" have ap-

proximate acceleration potential solutions (II, — 2, 1), (II, —1, 1), and (II, 0, 1),

respectively. With conical flow, the approximate acceleration potential is a function

only of t and 0 and can be shown to satisfy Laplace's equation in two dimensions.

4 L. Prandtl, Theorie des Flugzeugtragflugels in zusammendriickbarem Medium, Luftfahrtforschung,

13, 313 (1936).


