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THE CYLINDRICAL ANTENNA WITH GAP
BY

RONOLD KING and T. W. WINTERNITZ
Cruft Laboratory and The Lyman Laboratory of Physics, Harvard University

1. Introduction. In the King-Middleton theory of the center-driven cylindrical
antenna1 current and impedance are defined in terms of a discontinuity in scalar
potential. Such a driving mechanism is unavailable physically, since actual potential
differences necessarily exist across finite distances. In practice, an antenna usually
is connected to the conductors of a transmission line across which a potential dif-
ference is maintained by a generator elsewhere along the line. A common arrangement
is shown in Fig. 1. The antenna in Fig. 1 differs from a conductor center-driven by a
discontinuity in scalar potential in several respects. First, there is a gap in place of a
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Fig. 1. Antenna center-driven from a two-wire line.

current-carrying section of conductor in the region between A and B or 2 = —5 and
z=h. Second, a part of the space around the antenna is occupied by the two con-
ductors of the transmission line carrying equal and opposite distributions of current
and charge separated a. finite distance b = 25. Third, there exist small junction regions
(of magnitude comparable with the radius a of the conductors) where each half of
the antenna joins one of the conductors of the line. These regions are not obviously a
part of either the antenna alone or the line alone, and thus introduce an element of
vagueness as to where the antenna ends and the line begins.

The rigorous analysis of the complete circuit of Fig. 1 (as of most other electric
networks including even a simple series circuit consisting of a coil and a condenser)
is excessively difficult if formulated as a three-dimensional boundary-value problem
in electromagnetic field-theory. Fortunately, it is possible to gain much in simplicity
at the price of a measure of rigor by requiring the radius a of all conductors to be
sufficiently small to satisfy the inequality,

/30 = ua/va = 2ira/\0 1. (1)

Subject to (1), it is a good approximation to assume that cross-sectional and axial
distributions of current in conductors are independent, and so reduce the analysis
of complex configurations to one-dimensional form.

1 R. King and D. Middleton, Quart. Appl. Math. 3, 302 (1946).
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2. One dimensional theory. The general formulation of one-dimensional electric
circuit and antenna theory is available in the literature.1'2,3'4'5 It is based on the funda-
mental relations,

- grad <p - juA = E, (2)

0odiv A + j — <p = 0, (3)
0)

where A is the Lorentz vector potential defined in general by (3) in conjunction with

curl A — B. (4)

A particular integral of the non-homogeneous wave equation in A obtained by sub-
stituting (2), (3), (4) into the Maxwell equation is

= _!_/ f W + f —e-'^da' 1
4w0 \JT R J 2 R )

(5)

where vq = 1/Vo = 107/47r meters/henry, i is the volume density of current, and 1 the
surface density of current. R is the distance from the unprimed coordinate of the
point where A is calculated to the primed coordinates locating the elements of integra-
tion. In good conductors, only i is used; in perfect conductors, i is zero and 1 is re-
quired. Integration is carried out over all conductors of the circuit so that the vector
potential A is uniquely defined by (5) and the scalar potential <p by (3).

For simplicity, let it be assumed that the dielectric is air and that the conductors
may be treated as perfect in writing the following boundary conditions for the tan-
gential component of the electric field:

dip
-—(- jo>Az — — Ei = 0 on the surface of the antenna; (6)
dz
dtp
 \- juA x = — Ex = 0 on the surface of each line conductor. (7)
dx

Since there are no currents in the y-direction, Ay vanishes everywhere. Hence, (3)
gives

dAz dAx /So
— b — hi — <P = 0 (8)

dz dx a)

on the antenna and on the line. Differentiation of (8) with respect to z and substitu-
tion from (6) gives the following equation:

d'A. d*Ax 2— + — + M,-° (9)
dz1 dzdx

2 R. W. P. King, Electromagnetic engineering, McGraw-Hill Book Co., New York, 1945, Vol. 1, Ch.
VI and pp. 193-195.

3 J. R. Carson, Bell Syst. Tech. Journal 6, No. 1 (1927).
4 A. T. Starr, Electric circuits and wave filters, Pitman Publishing Corp., New York, 1938, Ch. II,

especially pp. 41-53.
6 J. Aharoni, Antennae, Oxford Univ. Press, 1946, Ch. II.
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on the antenna. Similarly, differentiation of (8) with respect to x and substitution
from (7) gives

diAx d2A, 2
 — H—  b PoA i = 0 (10)
dx2 dxdz

on each conductor of the line.
Since it has been assumed in (1) that all conductors have a radius a that is suffi-

ciently small so that /30a<Kl is a good approximation, the contributions to the vector
potential at all outside points (including the surface of the conductor) due to the
radial components of current in that conductor may be neglected compared with the
contributions due to the axial components of current. This is equivalent to assuming
that the currents in the antenna set up only a z-component of the vector potential,
the currents in the transmission line only an ^-component of A. It has been shown6,7
that if the current in a cylindrical conductor has rotational symmetry and the con-
ductor is long compared with its radius, the vector potential on the surface of the
conductor differs negligibly from the value it would have if the total current in the
conductor were concentrated on the axis instead of being distributed in the manner
predicted by skin-effect theory. That is, the component of the Lorentz potential on
the surface of the antenna due to the axial currents in the antenna is given by

i ( r~s ii rh iz ^
A i = < | —— e~'^adz' + I —— e~'^aRadz' > . (11)

4f»0U.» Ra J, Ra f
Similarly, on the surface of one of the conductors of the line, the component of the
Lorentz potential due to the equal and opposite currents in both conductors is given
by:

Qwvo Jo L

£ jPoRa f>~"'iPoRb

Ra R 6
dx'. (12)

Since Ax is determined entirely from currents in the line and Az entirely from
currents in the antenna, the terms with mixed derivatives in (9) and (10) represent
coupling between line and antenna. This is significant within distances from A and B
(Fig. 1) that are not great compared with b. At distances from A and B which are
great compared with b, these terms are both negligible and the two equations reduce to

d2A,

dz2

d2A,

dx2

+ p0A2 = 0 on the surface of the antenna, (13)

.2
+ 00^4 x = 0 on the surface of each conductor of the line. (14)

6 Ref. 2, pp. 239-243.
7 O. Zinke, Archiv fur Elektrotechnik, 35,67 (1941). This work of Zinke shows that the contributions

to At at z due to currents in different elements dz' at z' depend upon an effective radius rw that is smaller
than a for | z — z'\ <0.4d and larger than a for [ z—z'| >0.4o. The value of f'_ dz'/Rw where

Rw = V (z-z')2+»'l

differs from /) dz'/Ra, where i?0 = V(z—z')2+a2 by less than l%if s^2.5a for high frequency values of
skin depth in copper.
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Of these equations, the first is the one solved in the King-Middleton analysis of the
cylindrical antenna1 by an extension of the method of Hallen;8 the second is that used
in the fundamental derivation of the conventional transmission-line equations for
current and voltage.9

The derivation of the conventional transmission-line equation for current from
(14) involves certain approximations since the current does not actually satisfy the
transmission-line equation exactly, even for perfect conductors, as do both the vector
and scalar potentials. The current can be made to satisfy the transmission-line equa-
tions approximately only if the effect of radiation on the distribution of current is
made negligible by imposing the inequality,

|8ob « 1, (15)

and if, in addition, it is a good approximation to set

/.= [(^)i+0,)»]/fe (16)
where

1 T h 1 1 1 b
l0{x) -   In lnF(x) = In — = l0. (17)

tvo L a 2 J tvo a

The function F(x) reduces practically to unity10 at distances from the ends of the
line which are great compared with b. Only when this is true, i.e., when

(s — «)2^>&2; x2^S>J2; (18)

does (17) give the conventional external inductance per unit lergth of line, le0. On the
other hand, at the ends where x = 0 or i, F(x) = b/a, so that Iq(x) is only one half of
Iq, its normal value.11 Correspondingly, the capacitance per unit length, c = e^ia/l^(x),
becomes double the value far from the ends. Only when both (15) and (18) are satis-
fied does the current obey the transmission-line equations to a good approximation.

Summarizing, it is clear that subject to /30a </30&<SCl the conventional transmis-
sion-line equations in the total current and the potential difference are good ap-
proximations only at distances from the ends of the line that are reasonably large
compared with the distance b between conductors. At such distances the line param-
eters are quite constant and, in addition, the coupling between line and antenna due
to the mixed derivative terms in (9) and (10) is negligible.

From the point of view of a three-dimensional boundary value problem in field
theory in which the boundary conditions of the terminated line are satisfied using an
expansion in terms of characteristic wave functions, the conditions (18) that make the
conventional line equations good approximations are equivalent to specifying dis-
tances from the ends of the line that are sufficiently great to make all exponentially
damped higher modes negligible. Current and voltage are then represented to a good
approximation by the dominant transmission-line mode.12

8 E. Hall6n, Theoretical investigations into the transmitting and receiving qualities of antennae, Nova
Acta Uppsala, (4) 11, No. 4 (1938).

9 See for example, Ref. 2, pp. 468-477.
10 Ref. 2, p. 473, Eq. 185.
11 E. M. Siegel, Univ. of Texas Publ., No. 4031 (1940).
12 J. R. Carson, A.I.E.E. Journal, 43, 908 (1924).
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3. Definition of impedance. Since the antenna in the circuit of Fig. 1 has been
shown to be coupled to the adjacent parts of the transmission line, it is not possible
to define for the antenna an impedance Za.b=Z& that is a function only of its own
physical properties. It is, of course, possible to define the impedance of the antenna
and an attached short section of transmission line that is sufficiently long so that
coupling to the termination and end effects are negligible. The impedance so defined

J-V„
2 0 <
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Figs. 2a, b, c. Antenna center-driven in different ways from a two-wire line.

may then be transformed to the actual location of the antenna using conventional line
theory. This is the procedure commonly used both for wave guides and conventional
lines in determining equivalent impedances or equivalent lumped-constant networks
for discontinuities or terminations. Evidently an impedance so determined is not a
characteristic property of the termination alone, e.g. the antenna in Fig. 1, but is that
fictitious impedance that would have to terminate a particular line if this had the
physically impossible property of having the conventional line equations everywhere



408 RONOLD KING AND T. W. WINTERNITZ [Vol. V, No. 4

rigorously true, including regions near the junction with the termination. The in-
vestigation of such equivalent or apparent impedances for an antenna driven in
various ways from two-wire and coaxial lines is in progress both theoretically and
experimentally. Three arrangements for a two-wire line different from that in Fig.
1 are shown in Figs. 2a, b, c. A moment's reflection suggests that the mixed derivative
terms in (9) and (10), as well as the ratio \{A1)1+ (A ^)i\/Ix may have quite different
values in the four circuits in Figs. 1 and 2 near the antenna. Therefore, it is not to be
expected that the equivalent dominant mode impedances will be the same in the
four cases even when the antennas themselves and the gap between their halves are
made identical. The quantitative effect of these special differences is not the subject
of this paper.

The present purpose is to generalize the King-Middleton theory as much as pos-
sible without limiting it specifically to one of the circuits shown in Figs. 1 and 2, or
to any other. What can be determined in general is the effect on the current and
impedance of a cylindrical antenna with hemispherical caps of a gap of length 25
between the halves of the antenna, across which a scalar potential difference Fj is
maintained in an unspecified manner. The driving potential difference is to be meas-
ured between adjacent rings on the cylindrical surfaces of the two halves of the an-
tenna. Depending upon the nature of the actual driving circuit, there may be exposed
fiat-end surfaces if the cylinders are solid, or inner surfaces and sharp edges if they
are tubes, or elbows, or other junction regions. These are not included in the anal-
ysis. In simple cases, they may constitute a capacitance in parallel with the antenna,
or they may be part of a four-terminal network, or account may be taken of them in
other ways in the analysis of an actual circuit such as is shown in Figs. 1 and 2. In
any event, they constitute a part of the problem of a particular complete circuit, not
of the general effect of a separation of the halves of a symmetrical antenna insofar
as the interaction of currents and charges in its cylindrical surfaces are concerned.
These alone are considered here.

The impedance calculated in the next section is, by definition, the ratio of the
scalar potential difference maintained across equipotential rings separated a distanc3
25 and the total axial current entering the antenna across planes bounded by these
rings. In good conductors, most of the current is in a relatively thin layer near the
surface so that, as shown by Zinke,7 the entire current may be assumed concentrated
at one half the skin depth. (Note that the vector potential on the surface of the con-
ductor is always defined outside the region of non-vanishing current density.) The
impedance is defined as follows:13

13 A definition of impedance in terms of scalar potential difference instead of the line integral of the
electric field as used by other writers14'1616'17 is preferred because the scalar potential difference is uniquely
defined, whereas the line integral of the electric field depends upon the path of integration. The line integral
of the electric field coincides with the scalar potential difference only when a path is chosen along which w
times the line integral of the vector potential vanishes or is negligible, as along a radial path in transmis-
sion lines sufficiently far from the termination. It is difficult to see how in conventional one-dimensional
circuits involving conductors of small cross-section the impedance of a part of a circuit connected to
terminals that are separated a finite distance can be defined consistently except in terms of the scalar
potential difference maintained across those terminals. For example, the reactive drop across a loosely
wound coil of a few turns of wire is not correctly given by the line integral of the electric field along any
path. This is most easily seen if the coil degenerates into a straight conductor when the line integral of the
electric field along the conductor does not include the inductive reactive drop at all, although it is the
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Vs
zs = , Vs = V(8) - <p(- 5). (19)

Ih

4. Theoretical analysis. The integral equation for the current in the cylindrical
antenna which has its halves separated by a gap 25 differs from the former Eq. (8),
Ref. 1, primarily in the limits of integration and in the phase of the cosine function.
Thus, the equation for the upper half of the antenna is:

/- 0 /• hIZ'R~1e~'SoRdz' + I IZ'R~~le~ 'P&dz'
-h J 5

jAir r • C' 1
= — Ci cos 0o(z — 6) + iFj sin 0oz — z'cos 0o5 I I(s) sin 0o(z — s)ds

Rc cos 0O5 L J s J
(5 ^ z g h). (20)

The following symmetry conditions are satisfied:

/(-«) = /(*); z) = At{z). (21)

For perfect conductors z* = 0. The solution of (20) is carried out by the same method of
successive approximations. The mth order current corresponding to (24) of Ref. 1,
and to which it reduces with 3 = 0, is

m i

sin jS0(h - z) + X) Mn(z)/\pn
j2lrv 6 n=l

(/.)« = — —        (22)
Rc\i m s m s

cos /30 {h — 5) + cos 0o Sj2F„(h)/in + sin PobJ^Gn(h)/in
n= 1 n= 1

(5 g z S h) •

The functions M^(z), Ft(h), and G„{h) are like the functions Mn(z), Fn{h), and Gr{h)
previously defined but with limits of integration from — h to —5, 5 to h, instead of
from —htoh.

The wth order impedance corresponding to (29) in Ref. 1 is

m j m s
cos 00{h - b) + cos Po&52Fn(h)/tn + sin 0O5 G„{h)/\pn

   (»)

sin 0O(A - 5) + 22 MSn(d)/in
n= 1

principle contribution to the impedance if the conductor is copper. On the other hand, if the scalar poten-
tial difference is used both ohmic resistance and inductive reactance drops are included.

In this connection, it is well to note that the field impedances in wave-guide theory defined in terms
of line integrals of the electric field are not simply generalizations of circuit impedances in one-dimensional
theory. Rather, they are quantities that have properties analogous to those of circuit impedances but in
terms of quite different and much more arbitrary variables than are scalar potential difference and total
current in conductors of small cross-section.

14 J. A. Stratton and L. J. Chu, J. Appl. Phys. 12, 230 (1941).
16 S. A. Schelkunoff, Proc. I.R.E., 29, 493 (1941).
16 L. Infeld, Univ. of Toronto, Radiation Theory, Report No. 2 (1942).
17 J. L. Synge, Univ. of Toronto, Radiation Theory, Report No. 4 (1942).
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In so far as the formal theoretical analysis is concerned, there is no restriction regard-
ing the gap length 28. In practice, one-dimensional circuit impedances are useful
primarily for terminals that are close together compared with the wavelength. Hence,
a reasonable restriction on the gap is

/305 « 1. (24)

Subject to (24) it is possible to expand the current (22) in a Maclaurin series in
powers of the small quantity (308. For sufficiently small values only the first two terms
are required, viz.,

T dl.ii3oS)l
I.(fio«) = [/.(/M) ]i-o + Po*  1 •

L Ja_o

T di.jpo&y
3/305

The current at the driving-point is at z = 5. Hence, setting z = 8 in (25),

(25)

r dl a(/305)"l
1,03o5) = /o(0) + /305 —. (26)

L 3/3 o Jj-c
In (26), Io(0) is the driving point current calculated by King and Middleton and given
in Ref. 1 by equation (24). Thus,

Is(Po&) — /O(0)[l — e], (27)

where

Pod \-dhipo8)
e = e" — J £ = —

In expanded form,

— \*M\ . (28)/o(0) L dpot J 5=0

(sin p0h + Giih)/i + G2(h)/i2 + ■ • •
€ = Pod < 

Icos Poh + + F,ih)/r + ■••
2 e~'^h (1 - cos p0h) + [Fi(0) - F^h)]/* +

\p p0h cos p0h + F^h)/^ + F2(h)/\(>2 +

2 e~'^h sin p0h + Gijk)/+ + • • •

\f/ p0h sin p0h + + M2(0)/^2 + :}•

The impedance (23) may be obtained from (25) by noting that

Zj/Zo = Jo(0)/I.(«) = 1/(1 - e), (30)
so that,

(1 - e")2 + (e')2

w-o-w,
(1 - e")2 + (e')2

18 The differentiation is straightforward; use is made of the relation Fi(z) sin fioh—Gi(z) cos (SqIi — O
with Fi(z) and Gi(z) as in Ref. 1.
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Fig. 3. First order correction factor e' .

 r
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Fig. 4. First order correction factor .
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I.I 1.2 1.3 1.4 1.5 1.6

Fig. 5. Second order correction factor «/'. Calculated points are shown; extrapolation below
/3o^ = 1-3 is estimated using first order curves.

!!|3 second order

Fig. 6. Second order correction factor tt. Calculated points are shown; extrapolation below
poh is estimated using first order curves.
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Fig. 7. Second order Rq—Rs, X0 — Xg for several values of 0o5 with il = 2ln(2h/a) = 10.

Fig. 8. Same as Fig. 7 with f2 = 15.
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Fig. 10. Second order Ra as a function of /Soh.
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Fig. 11. Second order Xo as a function of poh. (Small errors in the curves of Figs. 17-19 in Ref. 1
have been corrected in these curves.)
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Fig. 13. Second order resonant and anti-resonant values of i?o; Ra and Xo at floh = 7r/2; ir/1 —/3o/w
and t—iSo^anti-reB. as functions of 0.

The first and second order correction factors in the form be/h are shown in Figs. 3-6
as functions of /30h for three values of 12 = 2ln(2h/a). It is seen that the correction
is significant primarily near ^0h = ir/2, 3ir/2, etc. Curves showing second order values
of Ro — Rs and X0 — Xs are found in Figs. 7-9 for several values of /305 and with
Q=10, 15, 20.

5. Conclusion. The King-Middleton theory for the cylindrical antenna has been
generalized to show the effect of a finite gap on the current and the impedance. The
analysis shows that for small gaps the impedance is not very sensitive to gap length
so that impedances calculated for zero gap are good approximations for a large class
of antennas for which /305 <0.01. If /3o5 2:0.01 the correction curves of Figs. 7-9 may
be used in conjunction with the curves of Figs. 10-13 for R0 and X0. It is interesting
to note that for fioh near 7t/2 the impedance Zs corrected for the gap differs negligibly
from the uncorrected value Z0 if the actual conductor half-length h — 5 is used instead
of h. This is not true for near ir.


