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ON AXIALLY SYMMETRIC FLOWS*

BY

ALEXANDER WEINSTEIN
Carnegie Institute of Technology

1. Introduction. The determination of the irrotational flow of a perfect incom-
pressible fluid around a given body constitutes a boundary value problem which can
be solved by methods of Potential Theory. However, this theoretical solution has
found little practical application.

In the case of a solid of revolution, an indirect but more efficient approach is given
by the method of sources and sinks, which may be called an inverse method in the
same sense in which this term is used in Elasticity and elsewhere in Hydrodynamics.
The bady of revolution cannot be prescribed but only approximated to a certain
extent by the flow due to a suitable distribution of sources and sinks in joint action
with a parallel uniform flow coming from infinity. As a compensation for this draw-
back, the approximating flows are given by explicit formulae which are often suitable
for numerical computations.

The method of sources and sinks was originally confined to the case of plane
motion until Stokes’ generalization of the concept of stream function enabled Rankine
in 1871 to adapt the method to axially symmetric flows. In the succeeding decades
various examples were given and applied to the pressure distribution around airships.
However, the possibilities implied by the method were far from being exhausted. In
fact, up to the present day no other flows have been considered but such as are due
to a distribution of sources, sinks, and doublets exclusively on the axis of symmetry.
Let us consider, for instance, the case in which the direction of the parallel flow coin-
cides with the axis of symmetry. In this case—the only one which will be discussed
in the present paper—it has been already noticed by Munk! that blunt nosed bodies
cannot be obtained by taking any distribution of sources and sinks on the axis.

The present paper deals with an extension of the method of sources and sinks. The
sources and sinks are no longer confined to the axis but are distributed on circum-
ferences, rings, discs and cylinders. The distribution must of course be symmetric
with respect to the axis of revolution, but for practical purposes the choice is re-
stricted to such cases in which the stream function can be explicitly computed in
terms of known functions. We shall use here Beltrami’s fundamental results obtained
in a series of papers published in 1878-80. The impartance of Beltrami’s results for
the theory of hydrodynamical flows has been completely overlooked. A serious error
in his paper requiring a modification of nearly all his formulae does not seem to have
been noticed. In fact, Beltrami, who applies his formulae chiefly to problems of Po-
tential Theory and Electrostatics, fails to recognize that Stokes’ stream function is,
in many of his formulae, a many valued function. It is interesting to note that this

* Received Dec. 12, 1946. This paper was written in connection with work done at Harvard Univer-
sity at the request of the Bureau of Ordnance, U. S. Navy. The author wishes to express his gratitude to
Professor Garrett Birkhoff for his kind interest and cooperation.

1 M. M. Munk in Aerodynamic theory (edited by W. F. Durand) vol. 1, J. Springer, Berlin, 1934, p.
266.
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property of Stokes’ function, which should be expected to hold rather as a rule than
as an exception, is never mentioned in the literature on Hydrodynamics while the
corresponding property of the stream function for plane motion is one of the basic
concepts of the theory.

A superposition of the flow due to our sources and of a uniform flow in the direc-
tion of the axis of symmetry will give us some essentially new types of flows, in par-
ticular, flows around blunt nosed profiles. Up to the present date, only isolated limit-
ing cases of these flows have been discussed. Incidentally, the use of sources and sinks
outside the axis will enable us to obtain profiles consisting of piecewise analytic curves.
As is well known, the profiles corresponding to a source distribution along the axis
consist necessarily of a single analytic curve, the nose and the tail being the only
possible singular points.

2. Stokes’ stream function. In this papsr we consider only steady irrotational
axially symmetric flows of a perfect incompressible fluid. The axis of symmetry will
be taken as the x-axis. Let x, p be the coordinates in a meridian plane. The flow is
completely determined if the velocity distribution is known in the half plane — « <x
<+, p=0. The motion being irrotational, there exists a velocity potential ¢
which is an harmonic function satisfying the Laplace equation in three-space. For
axially symmetric flows, ¢ is a function only of x and p, so that the Laplace equation
in cylindrical coordinates for ¢(x, p) reduces to

d/ ¢\ 9/ 06
—(p — —(p —)=0. (2.1
6x(p ax) + dp <p ap) . 20

This equation can be interpreted as an integrability condition showing the existence of
a function y¥(x, p) which is called the Stokes stream function and which is defined by
the equations

' ¢ Y ¢
= —; —=p—" 2.2
dx g dp dp ? dx 2.2
It is obvious, by (2.1), that dy = (0¢/dx)dx+ (dy/dp)dp is a total differential and
that the elimination of ¢ in (2.2) gives for Y(x, p) the differential equation

9 /1 oy /1
5(7 a)* 5;(7 s;) =0 2.3)

Unlike ¢, which is defined in three-space, the stream function ¥(x, p) is defined only

in the upper half plane p =0 by its total differential, i.e., by the differential equations

(2.2). It is therefore to be expected that y will as a rule be a many-valued function.

The hydrodynamical significance of the stream function ¢ is well known: ¢ remains

constant along each streamline in the meridian plane, while 2m) represents the flow

of a fluid of unit density between the given streamline and the streamline ¢ =0.
The velocity components # and v in the x and p direction are given by

96 1 oy
U=—=——
P P
ropor (2.4)
96 1 oy
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By the convention adopted in this paper, the velocity vector is the gradient of the
potential.
For a uniform flow parallel to the x-axis we have

¢=Ux, ¢¥=3Up (2.5)

The flow 2my is given by mp2U.

Beltrami calls ¥ the associated function of ¢. He shows, by a process of repeated
differentiation and integration, that every potential or associated function generates
a descending and an ascending sequence of pa'rs of functions of the same kind. This
discovery is an important extension of the ordinary theory of analytic functions, and
can be applied in a similar way to other cases.? However, our main interest will be
focused on another part of Beltrami’s work, in which he investigates fundamental
solutions of (2.1) possessing basic singularities. The role played by such solutions in
the theory of partial differential equations is too well known to be emphasized here,
and was clearly recognized by Beltrami.

3. Sources and sinks on the axis. By our definition of the potential, the ele-
mentary potential in three-space is —1/7. In cylindrical coordinates x, p the potential
¢ of a source of strength m at the origin is given by

—m

b0 = —_\/m . 3.1)
The corresponding stream function ¢ is given by
x
w1+ ) ©-2

The additive constant is chosen in such a way that Y, vanishes on the streamline
x <0, p=0. We note that the stream function is single-valued in the upper half plane
x, p.

4. The principle of superposition. The potential and the stream function of two
or several combined flows is the sum of the respective functions corresponding to the
separate flows. The method of sources and sinks uses combinations of flows due to
sources and sinks and of a uniform parallel flow. A suitable choice leads to a flow
with a streamline y =0 separating the domain of regular flow from the sources. This
dividing line plays the part of a rigid profile, the interior of which can be replaced by
a solid body. The principle of superposition for potentials is less important: the
method of sources and sinks being based on the existence of the stream function.
Closed dividing lines can be obtained only by taking a distribution of sources and
sinks of total strength zero. For a positive total strength, the corresponding profile is
open downstream and extends to infinity. Nevertheless, the corresponding surfaces
of revolution, called kalf-bodies, are of great importance because in reality the po-
tential flow is disturbed by viscosity everywhere except in a certain vicinity of the
nose, which is at the same time the region in which big velocities and a danger of
cavitation may be expected. The simplest case of a half-body will be discussed in the
next paragraph.

5. Blasius-Fuhrmann’s half-body. By superposition of a source m at the origin

2 L.. Bers and A. Gelbart, Trans. Amer. Math. Soc., 56, 67-93 (1944).
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and of a uniform stream U in the x direction, we obtain a flow with the potential
and stream functions:

6= Ux—\/—x:nq—_—p—z= Uz — (m/7), (5.1)
X
|//=%Upz—m(l+m)=%Up2—m(l+C050), (5.2)

where 7 and 6 denote polar coordinates in the meridian plane. There will be a stagna-

tion point
1/ " (5.3)
AN = — — .
v U

on the negative x-axis, which is obtained by putting #(x, 0) equal to zero. We see
from (5.2) that the streamline Y =0 consists of the negative x-axis and of the dividing
line

m 2

2m
p2 = —Z']— (1 + cos 0), (7 = xN), (54)

which contains the stagnation point xy. For x=4 « we have §=0 and p=p.,
=2+/m/U. The radius p, of the main parallel, as we shall call it, is obtained by putting
x=0and § =m/2. We find

2m _ 1
po = '_U_=\/zlle=75Poo' (5.5)

A somewhat laborious computation shows that the curvature K of the profile is
steadily decreasing from the value (9U/16m)Y/? at the stagnation point to zero at
infinity.

6. Distributed sources along the axis. Various shapes of bodies and half-bodies
have been obtained by Fuhrmann,® Kirm4n* and their followers by using continuous
distributions of sources and sinks along the x axis.

Denoting by g(x) the density of the source distribution of an interval 0 =x =/ and
by U the velocity of the parallel low and using (3.2), we obtain the following expres-
sion for the stream function ¥ of the resulting flow:

l x — 5

= LUp? — 14—, d¢t. 1

¥(x,p0) = 3Up fo Q(E){ +\/(x_£)2+p2} 3 (6.1)

The integral [4g(£)df represents the total strength m of all sources and sinks and is

zero in the case of a closed profile. Point sources and sinks may be included in the

formula without difficulty. The profile is given by the equation ¢ =0. By taking a

constant positive density g(x)=m/l, we obtain a half-body corresponding to the
stream function

Vi = %Upz—m(1+’°j"), 6.2)

where 7y and 7; denote the distances of (x, p) from x=0and x=1.

3 G. Fuhrmann, Dissertation, Goettingen, 1912,
4 Th. von Kérmén, Abhandlungen aus dem aerodynamischen Institut, Aachen, 1927.
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Fuhrmann computed several profiles by taking for g(x) a step function or a
piecewise linear function of x. He used also some additional point sources. It is obvi-
ous that the influence of sources on the axis is predominantly felt only on nearby
portions of the profile.

For a given profile an approximation can be obtained, according to Kirmén, by
subdividing an interval 0 £x <! in the interior of the profile into a finite number 7 of
not necessarily adjacent subintervals. Let /; denote the length of the kth subinterval
and let gx=m/l; be the constant density of sources assigned to this segment. Let us
choose 7 points i, p1, * * + , %a, p» on the given profile. In order that the profile ¢ =0
given by our sources and the parallel flow shall pass through the » prescribed points,
we must have [see (6.2) ]

i ri;c -7 i,kl 2 .
Sm 1+ ———)=13Up;; i=1,2,+-+,n, (6.3)
k=1 N
where 7’ and 7'’ denote the distance from the endpoints of the kth subinterval to the
point x;, p; on the profile. In this way, # linear non-homogeneous equations for
my, - - -, m, are obtained, which can be solved provided that the determinant of the
coefficients

’ r
Tik — Tik

L

G.'k=1

is different from zero. In practical cases all I, are taken equal in order to reduce the
already very considerable computational work.

For a given profile, the ordinate p=p(x) is a given function of x. Substituting this
function in (6.1) and putting ¥ [x, p(x)] =0, we obtain an integral equation for the
determination of the unknown density ¢(x). Unfortunately, the resulting integral
equation is a Fredholm equation of the first kind and, up to now, has proved to be
useless. In fact, it is nearly obvious that a distribution along the axis can give only a
limited number of different types of profiles.

The restriction imposed by the exclusive use of sources and sinks distributed on
the axis has prevented so far any further development of the method. In the next
paragraphs we shall remove this restriction by considering symmetrical distributions
located outside of the x-axis.

7. The potential of a homogeneous circumference. As already mentioned in the
Introduction our investigations will be based to a certain extent on Beltrami’s results
which we shall present here with the revisions, corrections and extensions required for
our purposes. :

Let us consider an axially symmetric distribution of sources and sinks, not neces-
sarily located on the x-axis. It is clear that in the present case the potential ¢, of a
homogeneous circumference with its axis on the x-axis will play the same role as the
potential of a point source plays in the general case of an arbitrary three dimen-
sional flow. Beltrami® gives two expressions for this elementary potential with axial
symmetry about the axis. For our purposes we shall use the expression involving
Bessel functions as more suitable for computation of the associated stream function.,

8 E. Beltrami, Opere matematiche, vol. 3, U. Hoepli, Milano, 1911 (especially pp. 349-382).
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The alternative formula for ¢. and its relation to Laplace’s expression for a potential
has been recently investigated by Bateman and Rice.®

Beltrami’s original proof of his formula for ¢. is complicated and will be replaced
here by a more elementary proof covering several similar cases. This proof, which in
its original form, was criticized by Watson” will be presented here with a slight addi-
tion which makes the reasoning convincing. (See also H. Bateman?® who apparently
accepts Watson's criticism.)

Bessel's Functions and Potential Theory. It is well known that the elementary
method of separation of variables shows immediately that e*® Jy(ps) is, for every
value of the real parameter s, a solution of the equation (2.1) for a symmetric poten-
tial. (Jo(2) denotes the Bessel function of index 0.) Throughout this paper we shall
use Watson’s notations. The function Jy(z) is regular for every value of z and takes the
value 1 for z=0.

Consider the potential function represented by the definite integral

f me“ izl Jo(ps)F (s)ds, (x = 0) (7.1)

in which the function F(s) is supposed to be one which ensures uniform convergence
and makes the limit of (7.1), as p tends to zero, equal to the result of making p=0
under the integral sign. When x£0, this function takes the value

x) = e 121sF (s)ds
on the x axis and may often be identified from the form of f(x). In fact, we know from
the elements of the theory of developments of potential functions in series, that an
axially symmetric harmonic function is uniquely determined by the values it takes
on a segment of -the axis of symmetry.

Taking F(s) =1, we have f(x) = le =1 by (7.2). The corresponding harmonic func-
tion is r~1. By (7.1) we have, therefore, following formula

1
e (7.3)
which will be used immediately. This formula is due to Lipschitz (Watson,” p. 384).

Let us now consider a homogeneous circumference C of radius b and of unit density
with its center at the origin and its axis coinciding with the x-axis. The total mass (or
total strength of sources) of Cis M =2xb. By adding the elementary potentials due to
the elements of C, we see at once that the potential of C at a point x of the axis is
equal to

f e 171¢Jy(ps)ds =
(1]

27h
e

where \/x2+ b2 is the distance of x from any point of C. By using (7.2), (7.3), and
(7.1) we immediately obtain the following expression for the potential ¢, of C:

fl2) = = (7.4)

¢ H. Bateman and S. O. Rice, American Journal of Mathematics, 60, 297-308 (1938).
7 G. N. Watson, Theory of Bessel functions, Cambridge University Press, 1922, p. 388.
8 H. Bateman, Partial differential equations, Cambridge University Press, 1932, §7.32.
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dc(x,p) = — 21rbfme"“"]o(ps)]o(bs)ds. ) (7.5)

8. The stream function for a homogeneous circumference. In order to obtain the
stream function ¥, for our circumference C, let us consider the function

Ve = — 21rbpfwe"""fl(PS)Jo(bS)dS (8.1)
[

for x<0. The Bessel function J;(z) vanishes for z=0 and satisfies the equation
Ji(z) = — J{ (2). It is easily checked by (8.1) and (2.2) that ¢ is the associated func-
tion to the potential ¢, as defined by (7.5), and it is obvious that ¥ (x, 0) vanishes for
x <0. Similarly,

¥ (e o) = 2o [ e 19144 (o) Tobs)ds 8.2)

0

is for x=0, an associated function of (7.5). However, ¢, and ¥} do not coincide on the
positive p axis. In fact, we have as a special case of the discontinuous integral of
Weber and Schafheitlin (Watson,” p. 406)

1
b — for >b=0,
f T1(ps)To(bs)ds = {p P (8.3)
° 0 for b>p20.

It follows that

_ —2mb for p> b2 0,
{ ™o e (8.4)

c_Oy =
ve(=0.0) 0 for b>p =0,

and

2xb for p>b 20,

+
(40, p) = 8.
Ve (+0.) {0 for b>p2 0. ®.5)

Let us consider a simple closed curve L in the half plane p =0 containing the critical
point x=0, p=> (i.e., the trace of the circumference C) in its interior. The function
Y7 is obviously the analytic continuation of Y, across the segment 0 =<p <b. However,
if we describe L counterclockwise and come back to a point +0, p, with p>b, we ob-
tain a final value which is by 4wb greater than the initial value of {; . It follows that
the stream function for a homogeneous circumference C is a many-valued function in the
half-plane p=0 with the period 4wb. Since 2wb is the total strength M of the dis-
tributed sources, we can say that the period is equal to 2M.

By rotation about the x axis the closed line L generates an axially symmetric
torus, enclosing the sources on C. By the definition of the stream function, the outward
flow across this torus is equal to 2w times the period of the stream function, i.e., this
flow is equal to 4w M, in perfect agreement with Gauss’ theorem.

A single valued branch of the stream function ¥, can be obtained in the domain
D, bounded by the x-axis and by the segment x =0, 0 <p <b by putting
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Ve =¥, for 0,

8.6
Yo =i —4xb for x=0. (8.6)

This function is continuous in Ds, vanishes on the negative x-axis and, by (8.4),
takes the constant value —2wb on the streamline x =0, p>b. For a circumference of
total strength m and of uniform density m/2wb, we would have

¥e(0, p) = —m, for p>0b. (8.7

For p>b the constant value of Y.(0, p) is equal to —m, independently of the radius b of
C.

Comparing our result with Beltrami’s formulae for the same stream function, we
see that on p. 355 of the paper quoted in Footnote 5 Beltrami, failing to notice that
Y. is a many-valued function, puts the wrong branches together and obtains a discon-
tinuity along the p-axis. The same error occurs in A. G. Webster.? The formula given
by Bateman? (p. 417; example 1) is also inaccurate.

The velocity % on the x axis due to the sources on C can be easily obtained by
differentiating the potential (7.4) with respect to x. Denoting by m the total strength
of C, we find

_ mx
- (x2 + b2)3/2 !

u(x, 0) (8.8)
so that u is zero for x=0. The maximum of |u| is attained for x2=3%b?, where
|| =22,

9. The discontinuous integral of Weber-Schafheitlin. We give in this paragraph
a new and simple proof for the evaluation of the integral of Weber-Schafheitlin [see
(8.3)]. This proof is based on the general principles of Potential Theory and does not
require any extensive technical knowledge of Bessel function.

As in Sec. 8 let us consider a homogeneous circumference C of radius b and unit
total strength, so that 2rb=1. Let S be a sphere with center at the origin and with
radius R>b. By Gauss’ fundamental theorem, the outward flow across S is 4.
The surface of S cuts the half-plane p >0 in a half-circle H. For x 0, the stream func-
tion ¥.(x, p) is given by (8.1). It takes the value zero along the negative x axis and
up to the factor 2w, its value for a point P of H is given by the inward flow passing
through the spherical cap generated by the rotation of the arc P, —R. The flow
across a hemisphere being —2w, we have ¥.(0, R) = —1. We see by (8.1) that

0

lim | e1=1eJ,(Rs)Jo(bs)ds = R-!, for R > b. 9.1)

z=0 0

On the other hand, it is known [and used in the proofs of (8.3) ] that the left hand side
of (8.3) can be obtained by putting x =0 in the integral (9.1). In this way we obtain

f Ji(Rs)To(bs)ds = R-!, for R > b.
0

In order to obtain the second part of (8.3) we have only to take a sphere with radius
R<b.

% A. G. Webster, Partial differential equations, New York, Hafner Publishing Co., 1947 p. 368 ff.
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10. The potential and the stream function for a disc. Let us consider a disc of
sources of radius b with its center at the origin and its axis coinciding with the x-axis.
Let g(p) denote the areal density of the sources; the total strength m being given by

b
m = 21rf pq(p)dp. (10.1)
0
By the principle of superposition, the potential ¢4 of the disc is obtained by integra-

tion of (7.5). Replacing b in this formula by a variable of integration 5, we find, after
multiplication of ¢(n)dn and integration from 0 to b,

a9 = = 25 [ “atadin [ "o s (10.2
Putting
x6) = [ o) sasyin (10.3)
and interchanging the order of integration in (10.2), we obtain
oa(x, p) = — ZWLwe""’x(s)Jo(ps)ds. » (10.4)
Putting p =0 and using Lipschitz’ integral (7.3), we have
© b
¢a(x, 0) = — 21rf0 e~lzley(s)ds = — 21rf0 %i(}_)f% (10.5)

on the x axis, a result easily verified by direct integration of (7.4). By differentiation
of ¢a(x, 0) we obtain the velocity ua4(x, 0) due to the sources on the disc:

b d
ua(x, 0) = 21rxfo (:% ©(10.6)

An alternative formula for #4 can be obtained in the following way. Assuming that
the density ¢(p) is differentiable, we have, by integration by parts,

$a(x, 0) = — 2x[gO)V2* + b2 — q(0) | x| ] + 2« f ¢ (N %EF 72 dn. (10.7)
0

Differentiating, we obtain

— q(b)x q'(n)dn ]
,0) =2 0 e——r 10.8
wale 0) = 26 ¥ 90 - 2 s [T TP (10.8)
The upper sign holds for x <0, the lower for x>0. Furthermore,
d b)b? b "(n)d
dua _ 2,[_L +f ﬂ_"_] (10.9)
dx (22 + b2)¥2 o (22 4 p2)3r2

Assuming that the density q is a positive and non-increasing function of p, we see that
|ud(x, 0)| is a decreasing function of |x|
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We now turn to the stream function. Replacing b in (8.1), and (8.2) and (8.6) by
a variable of integration %, multiplying by ¢(7)dn and integrating from 0 to b, we
obtain

L

for x <0,

+0
e~ 1=y (5)J1(ps)ds 10.10
X($)71(ps) {— 2m for x =0, ( )

va(x, p) = F 21rpf

0
where x(s) denotes the function defined by (10.3), while m is the total strength of the
disc, given by (10.1). The stream function (10.10) is single-valued and continuous in
the domain D,, defined in Sec. 8. The value of ¥4 on the streamline x=0, p >b is ob-
tained by multiplying the corresponding value — 2wy for a circumference of radius g
by q(n)dn and integrating the product from 0 to b. Since the integral in question is
by (10.10) equal to the total strength of the disc, we have

va(0,p) = —m for p>b. (10.11)

The value of the stream function for a disc on the streamline x =0, p > b, is equal to —m,
independently of its radius b and of the density function q(p).

This value being given by the right hand side of (10.10) for x— —0, we have the
identity '

© b
o f X(&)T1(ps)ds = f ng(n)dn for p>b 20 (10.12)
0 0

which could have been obtained directly by integrating the formula of Weber-
Schafheitlin.

The results of this paragraph could be easily generalized by taking discontinuous
density functions g(p), possessing a finite or even an infinite number of jumps. As a
particular case, we would obtain the potential and the stream function for one or
several concentric rings of finite width.

11. Single-valued and many-valued Stokes’ stream functions. As we have already
mentioned, the domain D of definition of any Stokes’ stream function is a subdomain
of the upper half-plane — © <x <+ «, p=0. It consists of all points in which the flow
under consideration is regular. Sources, sinks and other singularities, as well as the x
axis, are on the boundary of D. The Stokes’ function has been defined by its total dif-
ferential. It is therefore to be expected that this function will be many-valued when D
is not simply connected. This is, for instance, the case for a circumference of sources,
the corresponding domain D being bounded by the x-axis and by the point x=0,
p =b, representing the trace of the circumference in the upper half-plane. On the other
hand, the domain D =D, (see Sec. 8) corresponding to a disc of sources is simply con-
nected. In fact, its boundary is a single continuum consisting of the x axis and of the
vertical segment 0 <p =b. For this reason the stream function for a disc is necessarily
single-valued, which is in agreement with the results of Sec. 10. For the same reason,
any distribution of sources on the x axis will generate a single-valued stream function.
The exclusive use of such sources has up to now prevented the recognition of an essen-
tial property of the Stokes’ function.

In diagrams as usually given, the streamlines of an axially symmetric flow are
drawn in the entire meridian plane, the lower half being the reflection of the upper one.
In this representation, the domain corresponding to the simplest case of a point
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source at the origin appears to be doubly connected, as is the case for a point source in
plane flow. However, the corresponding stream function (3.2) is single-valued, while
the stream function of the plane flow is many-valued, as is to be expected. Our ex-
planation concerning the domain of definition, removes the paradox and our remarks
apply to all cases when associated functions are defined by their total differential.

12. Blunt-nosed profiles. We turn now to the investigation of flows obtained by
superposition of a parallel flow of constant velocity U in the direction of the positive
x-axis and of a flow produced by an axially symmetric distribution of sources and
sinks, around the axis.

As a first significant case, let us consider a single disc of (positive) sources in a
parallel flow. The potential ¢ and the stream function ¥ of the combined flow is given
by the principle of superposition. Using (2.5), (10.2) and (10.10) we have

¢= Ux+¢dv
¥ =30+ ¥a

Let us now consider a family of discs of variable radius b with their centers at the
origin and their axes coinciding with the x axis, all these discs having the same total
strength m, independently of b. For 5=0, when the total strength m is concentrated in
a point-source at the origin, the dividing profile ¥ =0 will be the classical Blasius-
Fuhrmann half-body. As b increases from zero, we will have for sufficiently small
values of this parameter a new family of profiles of half-bodies intersecting the p-axis
above the edge of the corresponding disc.

In order to obtain this point of intersection which will give us the radius of the
main parallel, x =0, of the half-body, we have to solve the equation

¥(0, p) = 0. (12.2)

Since its solution p is, by assumption, greater than b, we obtain, from (12.1) and
(10.11),

(12.1)

1Up2—m=0.
This equation yields the following result: The radius p=po of the main parallel is
given by

m o (12.3)
po = U .

We see that po is independent of the radius b of the disc, which cannot exceed po.
The velocity components % and v are obtained from (2.1) by (2.4). On the negative
x axis we have v=0 and ‘

u(x, 0) = U + ua4(z, 0), (12.4)

the term u4=0¢4/dx being negative. A general theorem on the normal derivative of
a surface distribution (Kellogg)!? yields for x = —0 the result

u(—0,0) = U — 2rq(0). (12.5)

10 0. Kellogg, Potential theory, ]. Springer, Berlin, 1929, p. 164, theorem VI.
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(More generally, we have u(—0, p)=U—2ng(p) for 0=p<b. Observe that the
integral in Kellogg’'s theorem VI vanishes identically for a disc.) Let us now assume
that the (positive) density g(p) is a non-increasing function of p. According to Sec. 10,
the velocity » is then negative on the x axis and increases steadily in absolute value
as x increases from — « to 0. At the same time the total velocity u = U+ %4 decreases
steadily from the value U to U—2mq(0) and remains therefore different from zero if
U—2mq(0) >0. We have the following result: the necessary and sufficient condition
for the existence of a single stagnation point on the negative x axis is given by the inequality

U < 2xq(0). (12.6)

Since g(p) is non-increasing, the value ¢(0) is not less than m/xb? which represents
the constant density of a homogeneous disc with the same radius b and the same total
strength m. Therefore, there will certainly be a single stagnation point for

U < 2xm/xb? = 2m/b (12.7)

Considering U and m as given, we find that a stagnation point xx exists for
b<(2m/U)V2 On the other hand, we have seen that a dividing line, ¥ =0, cannot exist
for b> (2m/ U)V2, To every disc of radius b= (2m/U)V? corresponds a profile of a half-
body, the radius of the main parallel being po = (2m/U)"? independently of b.

Let ¢:(p) denote the density for a disc of radius one. Let us define the density for
a disc of radius b by the formula

1 P
——a(L), o=os=s 12.8
W) = :0(%) b (12.9)

The total strength is obviously independent of b. According to (12.4) and (10.6), the
velocity on the x axis is given by

_ *  ng(m)dn b in(®)dk

This formula shows that for any fixed negative value of x, the velocity « is steadily
increasing with b. We see that the distance | xul of the stagnation point from the origin is
steadily decreasing with increasing b. As b—p, its abscissa xy tends to a limit value,
which will be negative for U—2wg(0) >0, and zero for U ——27rq(0) 0. (g denotes here
the density for the disc of radius py). For a non-increasing density, the second case
occurs only for a disc of uniform density m/1rpo

A distribution of sources over a finite region acts at infinity as the so-called equiva-
lent point source at the origin with the same total strength m. For this reason, all our
profiles are half-bodies with the same asymptotic radius

=200 (12.10)

which has been computed in (5.5), for the limiting case of the Blasius-Fuhrmann
half-body.

We summarize now our results, which, in their entirety, hold for a non-increasing
positive density given by the distribution law (12.8). We have obtained a family of
half-bodies depending on a parameter b. The only member of this family mentioned in
the existing literature, is the Blasius-Fuhrmann half-body corresponding to the limiting
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case b=0. As b increases from 0 to po=(2m/U)'2, we obtain the other members of the
family which are (increasingly) blunt-nosed and tend, for b—(2m/U)'?, to a limiting
profile. All these profiles have the same main parallel of radius po and the same asymptotic
radius at infinity. Similar results will be given later for other symmetric flows in three
as well as in two dimensions.

In the following section, we shall turn to the investigation of some particular
cases which we shall call the integrable cases. A computer would doubtless like to be
given some examples, at least, in which the formula (10.10) for the stream function
could be simplified by a convenient choice of the function x(s). Unfortunately, x(s)
is connected with the density ¢ by the integral equation of the first kind (10.3), and
cannot be taken arbitrarily. So we have to take the density as the arbitrary function
and discuss the integrable cases, in which the formula (10.3) can be simplified. Let us
also point out that the distribution of sources is actually more important than the -
function x(s), since it gives us at least a qualitative idea of the shape of the profile.

13. Discs of uniform density. In this case we have to take ¢=m/7b2. By (10.3)
we have

m b
x(s) = — f nJo(ns)dn.
7wb2J

Setting sy =£ and using the classical formula
d
£1o(%) = i {en®}, (13.1)
we obtain
m
x(s) = — Ji(bs). : (13.2)
wbs
By (12.1), (10.2) and (10.10), the explicit formulae for ¢ and y are therefore given by

2m (* ds
o(x,p) = Ux — Tf e 1215 ] o(ps)J 1(bs) —, (13.3)
0 s

2mp ®
W p) = Ut T f e 11574 (p$) T 1(b5) (13.4)

0 N

ds{+0 for x=20

— 2m for x = 0.

The profile is given by the equation ¥ =0. The terms containing the integrals have
been denoted in Sec. 10 by ¢4 and ¥4, respectively. It is obvious that these functions
could have been obtained directly by integration of the potential and stream functions
for a circumference. Using the general equation (10.11) ,we obtain the formula

® ds 1 b
f J1(ps)J1(bs) — = — — for p> b (13.5)
0 s 2 »p

which is a special case of the Weber-Schafheitlin discontinuous integral [Watson,’
p. 405 (1)] but which has been proved here directly from the basic principles of
Potential Theory.
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The velocity components are given by

2 0
Wiz, p) = U F T’" f 12147 o(ps) T 1(bs) ds, (13.6)
0

o(x, p) = %Lwe‘lf"fz(Ps)Jl(bs)ds. 13.7

The upper sign holds for x <0, the lower, for x =0. The stagnation point is obtained
by putting #(x, 0) =0 in the first Eq. (13.6). According to (12.9), this gives

2mx 1 ndn
U+ f =0; (x=0).
b2 0 (1]2 _|_ x2)3/2

The integral is this formula can be easily computed. In this way we obtain, for
X=XN,

g (1 I ) 0
B\ TV +8
Observing, that 2m/ U =p?, by (12.3), we see that

5*(ps — b%)

‘ po — (po — b?)?
According to the general results of Sec. 12, the distance |xN| of the stagnation point
from the disc takes, for =0, the value IxN| =po/+/2, corresponding to the Blasius-
Fuhrmann half-body [¢f. (15.5)], and decreases steadily to zero, as b—p,. This fact
can be verified in an elementary way by using (13.8). The radius of the main parallel
is po=+/2m/U; the asymptotic radius is p, =pov/2. The nose of the profile becomes
blunter with increasing b. The value b=p, corresponds to a limiting singular case of
an wultra-flat profile* with a nose coinciding with the disc. The velocity in this case
becomes infinite at the edge of the disc.

14. Curvature of the profiles. We have seen in Sec. 5 that the curvature K of
the Blasius-Fuhrmann half-body (corresponding to b=0) is steadily decreasing along
the profile. For the other limiting case (b=po) the curvature of the nose of the ultra-
flat profile is identically zero along the disc, but jumps suddenly to infinity at its
edge. Since changes take place gradually, we may venture the following conjectures
about the curvature K of the intermediate profiles.

As b increases from zero, the curvature of the profile will decrease in the vicinity
of its stagnation point and will increase in the vicinity of the edge b. There will be a
moment in which we will have an equalization of curvatures on a certain arc adjacent
to the stagnation point. At this moment the profile will have a nearly-spherical cap,
while the adjacent infinite branch of the dividing line will have a curvature steadily
decreasing to zero. This stage can last for awhile, but, as b continues to increase, the
edge of the disc, loaded with sources, will act like a spearhead repulsing the parts of

2
XN =

(13.8)

* Professor G. Birkhoff has kindly drawn my attention to the fact that the potential of the flow

around the ultra-flat profile has been computed (in the neighborhood of the nose) by T. L. Smith in
1943.
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the profile in its immediate neighbarhood. There will appear a maximum of K in the
vicinity of this edge, while the nose continues to become blunter. As b increases still
further, this maximum will become greater and its ordinate will tend to po. The final
stage will be reached when b takes the value po, at which moment this maximum
becomes infinite. .

15. Discs with Bessel’s distribution of sources. Let us first consider a disc of
unit radius. In order to obtain another integrable case, we take as surface density
the function

q1(p) = CiJo(jp), (15.1)

where j =2.40483 denotes the smallest positive root of Jo(2), so that g(1) =0. (This is
the most interesting case. However, the following consideration would hold with
slight modifications for other positive values of the constant j.) The total strength m
is connected with the constant C; by the equation

1
21rle 2Jo(jn)dn = m.
0

Using the classical formula (13.1), we obtain
mi
Cl = ] - .
27 1( ])

It is well known that J1(j) is different from zero. For m >0, the density ¢:(p) is
positive and decreasing in the interval 0 <p=1.
Let us now consider a disc of radius b and of the same strength m. According to

(12.8), we put _
"™ (i
qlp) = T Jo ( b) (15.3)

(15.2)

and call this formula Bessel's distribution law.
Let us introduce the abbreviations

mj J
C=—2 ., a=-=—. (15.4)
20027 1(5) b ,
By (15.3), we have then
q(p) = CJo(ap). (15.5)

The integral in (10.3) can be computed by using the following fundamental formula
of the theory of Bessel functions

b
(a* = 59 f waan)o(sndn = [n{sJo(em)T§ (sn) = aTo(smTs @)} ], (15.6)

which gives for (10.3)

_ Cab mj? |
x(S) = aT——s; Jo(bé‘)fl(ab) = m Jo(bs). (15 . 7)
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We remark that the function x(s) remains finite and continuous for s=j/b, since
Jo(j) =0.

Inserting the expression (15.7) in the general formulae of Sec. 10 for a disc and
adding a uniform flow, we obtain the formulae for the resulting flow. From Sec. 12
we know that there is exactly one stagnation point xy on the negative x axis for
every value of b<p, and that xy steadily tends to a negative limiting value with
b—p,. All profiles pass through the point x =0, p =p, and all possess the same asymp-
totic radius po =poV/2.

Let us consider the limiting profile (corresponding to b=p,) which passes through
the edge of the disc at the point p =p, of the p-axis. The density of the sources being
zero at that point, we can extend the definition of ¢g(p) to a greater disc by putting
g(p) =0 for p >po. The point p =p, is now an interior point of the greater disc in which
the density is continuous and satisfies a Hoelder condition. It follows from well
known theorems on tangential and normal derivatives of a surface distribution
(Kellogg,'® p. 162, theorem V and p. 164, theorem VI) that the velocity components
% and v remain continuous for x =0, p=p,, and that the limiting profile has, at the
point in question, a continuous tangent. However, the curvature of the profile be-
comes infinite at the same point. (All these results can be easily checked by the
formulae given in this paragraph, provided that certain precautions are taken in the
use of discontinuous integrals.) Our limiting profile is non-analytic at the point po.
We note that a singularity on the profile can be obtained only when the profile passes
through the boundary of the region occupied by the sources.



