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-NOTES-
THE SOLUTION OF NATURAL FREQUENCY EQUATIONS

BY RELAXATION METHODS*
By J. L. B. COOPER (Birkbeck College, London)

The application of Dr. R. V. Southwell's relaxation method1,2 to the solution of
natural frequency equations for systems with a finite number of degrees of freedom is
discussed in this article. The first object is to discuss the conditions under which the
procedure converges. It is shown that two criteria can be given, such that if the one is
satisfied, the procedure converges to the highest mode, and, if the other is satisfied, to
the lowest. This is of more than purely theoretical interest: for it is shown that the
possibility of finding the highest mode directly can be used to simplify considerably the
process of finding further modes.

1. The criteria of convergence. The equations to be solved will be written in the form
n n

ar.x, = P* £ br,x, , (r - 1, 2 • • • n) (1)
«=1 s=l

where a,, and br, are constants, | ar, | and | bT, \ are symmetrical and the values of p2
for which a solution is possible must be determined. We write

A = A(x) = Clr.XrX, , B = B(x) = 22 br.XrX, ,
rs rs

A = °A R = a
' dxr' ' dxr' B'

Both A and B are positive definite forms. In general, X denotes a variable function
of the variables x,, but the letter X with subscripts will be used to denote constant values
corresponding to specified selections of the variables x.

Suppose that xk is changed to xk + Axk . The change in X is then

_ A + &A _ A _ BAA — A AB
B + AB B ~ B(B + AB) [ }

Now,

BAA — AAB = B(AtAxt + akk(Axkf] — A{BkAxk + bkk(Axk)2} (3)

In the relaxation method, a first guess is made to select an initial set of values x,
and the corresponding value of X, say Xj , is calculated. Then, in the basic application
of the method, one of the xk is adjusted to make Ak — XxBk zero: the xk corresponding
to the largest Ak — XiBk is chosen. (In theory this is the best possible single adjustment
that may be made; in practice it is rarely used as more useful operations can always be
performed, according to the skill of the computer, who should always be thinking as

*Received Aug. 29, 1947.
'Southwell, Relaxation Methods, Oxford University Press, 1940.
2Pellew and Southwell, Proc. Roy. Soc. (A) 175, 262-290 (1940).
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far ahead as possible and therefore using his judgement to modify each adjustment he
performs so that it will ultimately have the best possible effect when taken in con-
junction with the adjustments which follow). The process is repeated a few times; then
the value of X, corresponding to the values x so obtained, is calculated and used as the
new value of Xi in the next stage of the process. If the initial values x are correctly chosen,
the values of X, found by these successive steps converge to the lowest value of p2 for
which the equations (1) have the solution. We shall now proceed to give a rigorous
proof of this last statement, and also to show how the process can, just as easily, be
made to converge to the highest mode.

The value of Axk , the change in xk , is determined by the condition that Ak — XtBk
vanishes when xk + Axk is substituted for xk . Hence

Ak XiBk -1- 2(akk — \ibkk)Axk = 0. (4)

On substituting this value of Axk in (3), we get

BAA — AAB = {Axky\(Bakk - Abkk) - 2{BA* " XAt)}

= -B{Axkf\{akk - XA*) + (X - X,)[&„ - 2Bk£k*_ x^6tt)
(5)

after a little algebra, using A/B = X.
It is plain from (2) that the sign of AX is the same as that of BAA — AAB. Now for

the first step in the process, X = Xi , and hence from (5) it is obvious that

AX < 0 if Xi < &kk/bkk ,
(6)

AX > 0 if Xi > akk/bkk .

This leads to the criteria for convergence of the relaxation method:
(i) in order that the process may converge to the lowest mode, the initial values x

should be chosen so that the initial value of X! is less than akk/bkk for all k;
(ii) in order that the process may converge to the highest mode, the initial values x

should be chosen so that the initial value of Xi is larger than akk/bkk for all k.
It will be explained shortly how these choices of the initial values x can be made.
If the choice (i) is made, the first step of the relaxation process, with Xi = X, leads

to a new value x with a smaller X. If \i is changed to this smaller X and the process
repeated, it is plain that the value of X will decrease further. In practice it is not con-
venient to change X, after each step in the process, and if this change is not made we
cannot use (5) to argue directly that a further step will decrease X still further, for the
X in (5) would be less than X, . The sign of the first term in the bracket in (5) will always
be positive, but the sign of the term involving (X — Xt) may be positive or negative.
However, if Xi is near to the lowest proper value the value of (X — Xi) will be small,
-since from Rayleigh's principle X must always be greater than the lowest proper value.
Even if X! is not near to the lowest proper value, (X — X,) will be small if the process
is not carried on for too many steps with a fixed \i . In any case, no matter how many
steps of changing an xk to reduce an {Ak — \ JJK) to zero are carried out with a fixed
Xi , X will not increase above this Xx ; for (5) shows that as soon as X approaches X, its
■value will begin to decrease. It is therefore plain that the process will lead to continually
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decreasing values of the X calculated after a series of steps. In practice the relaxation
process is continued with a fixed value Xx , so long as the residuals (Ak — \iBk) as a
whole can continue to be decreased. It should also be remarked that for any assumed
Xi , one solution is given by xk = 0 for all k; the computer must avoid approaching
this solution by multiplying each xk by a factor from time to time so that the greatest
of the xk is kept at some constant magnitude.

Similar remarks, with obvious modifications, apply if the choice (ii) is made. Xi
then increases continually.

Since the X are bounded above by the highest and below by the lowest characteristic
values of the equations, the Xi must tend to a limit. This limit must be a proper value
of the system, for all the equations (1) are then satisfied. The proper value in question
could conceivably be one other than the highest or the lowest, but if this were to occur
in actual computation it could do so only as a result of rare good fortune, and by choosing
a higher (or lower) value of than the proper value thus found we could proceed to
find the actual highest or lowest proper values.

2. Practical applications. We shall now show how a suitable set of values x to serve
as the first approximation in calculating the highest mode can be found. The method
applies equally well, with an obvious change, to the lowest mode, but in most physical
problems a good approximation to the lowest mode can be guessed intuitively. Let r
and s be the values of m for which amm/bmm takes on its highest values. The highest value
of X possible with all xm zero except x, and x, is given by the larger root of

= 0,
GLrr — \brr dr8 — \br

cira \bra dgi X5j

a quadratic which is easily solved. The corresponding values of xr and x, are given by

((Zrr \-ibTr)XT (drs Xa^rs)*^ 0,

where X2 denotes the larger root of the quadratic. These values of xr and x, , with the
other z's zero, should be used as the starting point for the relaxation process.

3. Estimation of frequencies intermediate between the highest and lowest. In the
relaxation process described in the references below, it is necessary to find the lowest
mode first, and then in finding the other modes to correct the values of the x's found
in the successive steps so that they continually satisfy

£ Clr.Xr^X, = 0, (7)
r 8

where denotes the value of x, in the lowest mode. The fact that the highest mode
can be found directly saves some time in this process. We shall now show that after finding
the highest mode we can alter the problem to a new one so as to make the next highest
mode of the old problem the highest mode of the new problem. When this is done, the
steps for finding the other modes can be carried out without corrections to satisfy (7).

Let X<° denote the i-th proper value, xi'1 the corresponding mode values of xt ,
then we have

E = x(i) £ bry;\ (8)
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From this it follows by a well-known argument that if X!,) 5^ Xc''

^ br,x(r,)x[') = 0, (9)
rs T8

and even if two proper values are equal we can choose the modes corresponding to them
so as t'o make (9) true. We shall also suppose the modes normalised so that

Yj Or.Xr^X^ = 1. (10)
rs

Now consider the matrix A!,) = | a'*' |, where

a™' = arkxi') '£/a,txie'). (11)

We have

X) alfx^ = drkxl'* a^x^x^
8 k 6 8

0 if i ^ j, (12)

arkXk ] if i - j.
k

Hence, from (8),

0 if jV i,
X) (ar. ~ =

X0) X) br.x'," if j = i.

After finding the highest mode and proper value, say Xln), we can form the matrix

dra Ora •

The highest mode of the original system of equations is annihilated by this matrix, but
in the system of equations

X) al.x, = X X) br,x, , (13)
a 8

all modes save the highest remain proper modes with their former proper values: while
the former highest mode now corresponds to the proper value zero. On finding the highest
mode of the system (13) by the method described above, we get the second highest
mode of the old system. This new mode can then be eliminated in its turn and the mode
below it found.

The procedure recommended, therefore, is to find the lowest and highest modes in
the normal manner, and then to find the second highest, third highest modes, etc., in
order, in the manner described.

It is clear from (12) that the matrix | ar, — X"-i ®™) I annihilates all th§ modes;
and since these modes are independent vectors and every vector can be expressed as a
linear sum in terms of them, it must annihilate every vector and therefore must be the
zero matrix. We have therefore

= X
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After (n — 1) modes have been found, and the reduction of the matrix ar, carried
out for each of them in the manner described, we must be left with the matrix

ar, — al? = al?,
jVi

where i is the number of the mode left to be found. In this matrix the terms of any row
are proportional to ®»e£«0 so the remaining z-th mode can be found by solving the
set of linear equations

X) a-r.x, = a<;\
s

The reductions can often be carried out with advantage in terms of the matrix br, ;
this is done by normalizing the modes so that instead of satisfying (10) they satisfy

E br.y^y? = l,
rs

and calculating al'J from the formula

al? = X(<) D ferjb2/fc*) Z ,
• k e

which is easily deduced from (8). This is particularly convenient in the most usual type
of problem in which brs is a diagonal matrix—in mechanical problems, those in which
the kinetic energy can be expressed as a sum of squares. If | brs | = | mr8r, \ the modes
must be normalized by

Z) m-W = 1
r

and then

mrm,xl,) x\%).

After reductions corresponding to all but the i-th mode have been made on the matrix
ar, , the remaining matrix is. a''s' from whose rows the i-th mode can be found imme-
diately.

A NORM CRITERION FOR NON-OSCILLATORY DIFFERENTIAL EQUATIONS*
By AUREL WINTNER (The Johns Hopkins University)

Let f{t), x(t), X(t), • ■ • denote real-valued, continuous functions on an unspecified
half-line, t0 ^ t < °°. If \(t) is positive on this half-line, put

X* = \*(t) = \(t) (du)/\\u), (1)

provided that the second factor on the right of (1) is a convergent integral. Under this
proviso, a direct substitution of (1) shows that, if X (t) is a solution of the differential
equation D,(\) = 0, where

*Received Nov. 17, 1947.


