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THE EXTRUSION OF PLASTIC SHEET THROUGH
FRICTIONLESS ROLLERS*

By G. F. CARRIER (Brown University)

1. Introduction: The Saint Venant-Mises theory of slow plane plastic flow has
repeatedly been applied to problems concerning the deformation process which occurs
when sheets are formed by passing the material between two fixed cylindrical surfaces
with parallel axes. These problems include, of course, the problems of the rolling, ex-
trusion, and drawing of such sheets. The analyses given are of two kinds. In one [l],1
[6], a simple one-dimensional theory is given; in the other [2], a more laborious scheme
is used wherein the flow field is determined numerically by the method of characteristics
(now very familiar to engineers because of its use in supersonic aerodynamic theory).
It seems desirable to present information which either justifies the use of the simple
theory, or modifies the simple theory' so that its results become as accurate as those
obtained in the numerical process mentioned above. When the thickness t of the formed
sheet and the diameter R of the cylindrical forming surfaces are of the same order of
magnitude, it appears that the numerical scheme mentioned above is the most efficient
procedure. However, when the sheet is thin (t/R « 1) this procedure becomes very
tedious. In this paper, we develop, from the fundamental equation of the Saint Venant-
Mises theory, an approximation technique which leads directly to a justification of the
one-dimensional theory for the cases where the cylindrical surfaces are frictionless and
t/R <5C 1. The less idealized case will be treated in a subsequent paper.

2. Formulation of the problem: As is well known [3], the stress analysis in the case
of problems of plane plastic strain is based on the yield condition

(<rx — O2 + 4t*„ = 4 k2 (1)

and the equations of equilibrium

dx + dy ( \

dffy I dTxy    p.

dy + dx W

The following substitution of variables simplifies the procedure. We set

a-Jk = 2a> + sin 26 (4)

<Tv/k = 2co — sin 26 (5)

TXy/k = — cos 26. (6)

We note that this manner of expressing the stress components implies the satisfaction
of Eq. (1).

*Received Nov. 24, 1947. The results presented in this paper were obtained in the course of research
conducted under Contract N7onr-358 sponsored jointly by the Office of Naval Research and the Bureau
of Ships.

'Numbers in brackets refer to the bibliography at the end of this paper.



1948] G. F. CARRIER 187

Omitting details which can be found in Reference [4], we observe that under fairly-
general conditions Eqs. (2) and (3) are equivalent to the system

y( + xv cot 0 = 0, (7)

— x„ tan 0 = 0, (8)

where

£ = C0+0, 7] = CO — 0.

It is evident that this system of equations is linear in the functions X, y which are to
be determined as functions of £ and rj. It must be noted that this transformation can
be applied only when the region in the x, y plane does not correspond to a line or point
(degenerate region) in the £, rj plane. This will occur in a limited part of our flow region
[4].

The boundary conditions are related to the stress conditions at the cylindrical surface
and at the inlet and exit sections. In the absence of friction the shear stress r must vanish
at the roll surfaces. On each of these surfaces then

t{x, y0) = -cos [2(0 - y)] = 0,

tan 7 = dya/dx,

Fig. 1.
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where y = y0{x) is the equation of the roll surface. If we consider that the material
enters and leaves as a rigid body (i.e. if we assume the elastic deformations before en-
trance and after exit to be negligible), we must demand that the material leave the roll
(see Fig. 1) with uniform horizontal velocity. Since the velocities must be continuous,
a uniform state must then exist in the plastic region adjacent to exit. In fact, it is known
(see, for instance, Reference [2]) that region I (Fig. 1) is associated with single values
of £ and 17 or of w and Q, namely: u = uexi, — , 0 = x/4. The former number is asso-
ciated with the pull exerted externally on the exit section and the latter value follows
from the condition that t„ must vanish on y = 0. It is also known (see for instance
Reference [5]) that since region II contains a straight characteristic (its boundary with
region I) it is a region in which £ = const. = tt/4 + we , but where 77 varies.2 The map-
ping of the x, y plane onto the £, 77 plane is shown qualitatively in Fig. 2.

0-V4

Fig. 2.

In view of the degeneracy of the mapping of regions I and II and in view of the
previously stated remark on such mappings, it is evident that any approximate solution
of Eqs. (7) and (8) could not apply to regions I and II. We should also note at this
point that a boundary value problem of this type cannot have a single analytic solution
for the entire region. In fact, the derivatives & , £„ , tix , t]u will, in general, be discon-
tinuous at the boundaries separating the individual regions. Thus, it is not possible to
write with rigor either

CO CO

£ = H y), v = Z) biMx, y).
0 0

x = ctiipiiZ, 17), y = X) P&id, v),
0 0

or any other such development.
However, we can write

x = aiPiQj, v) = 22 lffi(w)](0 ~ t/4)' (9)
0 0

y= E MZ, v) = Z t/.(")](0 - W0 (io)
2This remark would be slightly modified for the case where non-vanishing wall friction exists, but it

applies rigorously to our present problem.
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where by proper choice of N, the , and the g{ we can make these functions approach as
closely as we wish3 the functions x(u, 6) and y(u, 6). We observe that the actually existing
discontinuous derivatives will not appear in these functions, but we also note that no
differentiation of these functions is required in order to give the complete state of stress.

The equation of the upper roll boundary can be written as

y0(x)/R = € + 1 — (1 — x2/R2)1/2 = e + 1 — cos 7.

On the roll surface (i.e. at y — y0)

r = —cos 2(0 — 7) = 0,

i.e.

e = tt/4 + 7, (11)
and on y = 0, txv vanishes; that is, on y — 0, 6 = tt/4. We now let the quantities x, y
in Eqs. (9) and (10) be the dimensionless coordinates4 x/R, y/R, so that on the roll
boundary we have [from Eq. (11)]

d = 7T' 4 + 7,

V = 11 + 1 — cos 7,

x = sin 7,

that is,

sin 7 = X) M">)(0 ~ t/4)' = H g.fah', (12)
0 0

+ n— cos 7 = 22 fifaW- (13)
• -1

We now note that Eqs. (7) and (8) can be written

(1 + tan 7)y( + (1 — tan y)x( = 0,

(1 - tan 7)yv - (1 + tan y)xv = 0,

or

(1 + 7 + 73/3 + • • •)?/£ + (1 — 7 + • • ')x( — 0; (14)

(1 - 7 - • • •)y, — (1 + 7 + • • Oz., = 0, (15)

and when we use Eqs. (9) and (10), we obtain [noting that y{ix>) is odd in 9 — 7r/4]

fi = ~g'o , (16)

02 = g'o + gl'/2, (17)

/a = | (2gi + g'o' - g'o"/2), (18)

3In the integral mean square sense.
4R is the radius of the cylinder.
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04 =K¥-¥+f+l)-
When these are substituted in Eqs. (14), (15) we obtain two differential equations in

the functions y(u), f/0 (oj) - These equations can be written in the form

72/2 + e + 1 (T2/2 + e) {(.3^' + 39'0 S9'0")7

+ (fgS - ^g'o' - 23g'o" + \f + ^Y3 (20)

+ 2^o + 2<7o')tV + {^g'o — gffo' + gg'o'' + ggfo (y*yr +

-ML" + 1 = O^/i-L- ^ { -(2^ + 0»)(^ + |^')lgl/e + 1 ' 2(gl/2 + e)

- (fgS + |g'o' + y-y - |(2gr„' + gn)(~g'n - §g'o' (21)

+ l///|livl4if5 . 1// 13 ///i 1 iv 2 v\
3?o + 30o j7 + ^18?o - 450o - 180firo + ^00 - l5g0)lIt + •

We note that these equations are of an order which depends on the value of N [see
Eq. (12)]. Thus, many boundary conditions are indicated. Recalling, however, the given
information concerning regions I, II, we see that at d = r/4 [i.e. y = 0], gn(o},) — e.
Also at y = 2e (the upper corner of region II), we have w + & = ue + x/4, 9 = ir/4 +
2e hence co = co„ — 2e. If we now define s = co, — w, the differential equations (20),
(21) become

= 1 - ,.2/oV + |g'o - |gi"}>yy' _ t _ i (4.,,
6 + t2/2 (t2/2 + «) \\3

+ (ftf - - 23f7o" + + ±g;)

+ 2^0 + 2?o')">'2T/ + (3^0 — gf7o' + gfi'o" + 0<7o

I75 (22)

IVV +

gogo _ 1 1 J /0„/ , „ x/ , , go'V 2
^/« + 1 1 2(<7o/2 + e) i (2fir" + ?0V + 2 /7

- (|^ + \g'o' + \g'o')y3 - \(2g'r> + g0){^g'a - \g'a' (23)

1 1 /// 1 1 ivl 4 1 | 5 , 1 13 ///, 1 iv ^ v\ 5 ,
+ 30o + 3go )y + (jggo 45go - 18Qg0 + l29o i5g°)y +

where the primes now indicate differentiation with respect to s.



1948] G. F. CARRIER 191

Rigorously, we have more boundary conditions along the line £ = const, which
represents region II of the physical plane. If these were applied, the problem would be
over-determined and, in fact, we could at best obtain a solution valid for region III
only. If we relax these conditions and define <p = ln(l + y2/2e), \p = ln(l + gl/2e),
Eqs. (22) and (23) can be put into the form

{(!»"+1*' -yy
+ (fs-o - ~g'«' - 2Agi" + la" + ±4° - (24)

+ 2(ffo + + (|g'o - |g'o' + |gi" + ^7)h' + •••}&,

*+1 + i}'
+ (Ig'o + + |(2g'o + flro)(|fl'o - |g'o' (25)

+in-+y?},' - (y - & - ^»!"++■■•}&
The equations are of the conventional non-linear Voltera type and may be treated

by successive approximations. Without going into details, it may be stated that the
first approximation and the subsequent ones are in excellent agreement for s > 2e,
whereas in the neighborhood of s = 0, the behavior is fairly erratic. However, y(s) is
of interest only for s > 2e and g0(s) only for s > e. Hence, the solution

<p(s) ~ s, 4s(s) ~ s (26)

provides an excellent estimate of the state of stress existing in the flow field. We can
write in fact, [this is equivalent to Eq. (26)]

coe - co = ln(l + 72/2e) (27)

along the boundary, and

coe - CO = ln(l + gl/2e) = ln(l + x2/2e) (28)

along y = 0. These formulae are good for s > 2e and are essentially Sachs' formulae [1].
The corresponding results for the case where the wall friction does not vanish require

certain numerical work and will be presented in a later paper. Detailed interpretative
remarks concerning the foregoing result do not seem to be in order here since they would
necessarily coincide with the findings in [1] regarding this specific problem.
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ADDITIONAL CORRECTIONS TO OUR PAPER

THE CYLINDRICAL ANTENNA: CURRENT AND IMPEDANCE/
Quarterly of Applied Mathematics 3, 302-335 (1946) and 4, 199-200 (1946)

By RONOLD KING and DAVID MIDDLETON (Harvard University)

page 305, Change the number of Eq. (13a) to (13); delete "so that" following Eq. (13a);
delete Eq. (13b).

page 306, Change the number of Eq. (14a) to (14); delete "where" following Eq. (14a);
delete Eq. (14b).
Eq. (16)—add superscript — 1 on Rlh in the integrand.

page 317, Fig. 10—The value | \p2(h — X/4) | should be at 16.6 instead of 17.4 with
appropriate changes in the several curves.

page 321, Figs. 12 and 13—All the curves are somewhat in error for fih < ir/2. The
correct values are obtained from (74), using the corrected values for \p obtained
from Fig. 11a on page 200 of volume 4.

page 327, Table II—First line: Insert — between x/2 and /3htes
Second line: Replace 800 by 820.
Fourth line: Replace 67 by 73.

page 328, Eqs. (14a), (14b)—Insert — after =.

page «)ou, ^4. (23)—Change sign of lower limits on all three uegrals by inserting —
sign. This change is in addition to corrections on page 200 of volume
4.

Eq. (27)—Change first — sign to +; change last + sign to —.

page 335, Eq. (45)—Change all upper limits in four integrals to u2 .
Change all lower limits in four integrals to —ux .

Eq. (46)—Last integral only: Change upper limit to u2 , lower limit to — rti .
Eq. (47)—Delete superscript bars in second integral of the first member of the

equation. Change — to + before this second integral.

"These articles have been translated for the David W. Taylor Model Basin, United States Navy,
by the Applied Mathematics Division, Brown University, Providence, R. I.


