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THE RADIATION AND TRANSMISSION PROPERTIES OF A
PAIR OF SEMI-INFINITE PARALLEL PLATES—I*

BY

ALBERT E. HEINS
Carnegie Institute of Technology

1. Introduction. We are concerned here with the following problem. A plane mono-
chromatic electromagnetic wave is incident upon a pair of semi-infinite parallel metallic
plates of zero thickness and perfect conductivity (see Fig. 1 for a side view). The edges
of the plates are infinite straight lines which are parallel to the y axis of an xyz rec-
tangular coordinate system. (The y axis is perpendicular to the plane of the paper in
Fig. 1). The plates extend indefinitely in the direction of the positive z axis and are
spaced a units apart. It is assumed, as in CHI1, that the electric field of the incident
wave has only one component, namely the one which is parallel to the y axis. Since
the incident electric field is independent of y, and the boundary conditions on the plates
are fulfilled independently of y, no other components of the electric field will be excited.
There will be two components of the magnetic field; these in turn may be derived from
the single component of the electric field through the Maxwell equations. The angle t>,
the direction of the propagation vector of the incident wave, is measured with respect
to the positive z axis.

We have just described the manner in which Fig. 1 is excited from free space. It
is now necessary to indicate the mode of excitation which the parallel plate region can
sustain. We assume that for z 0, 0 < x < a, the y component of the electric field is
asymptotic to (pie*"2 + p2e'"z) sin (irx/a). That is, the parallel plate region can sustain
a mode which is consistent with the polarization which we consider here. It is to be
understood that there are no other means of excitation in the finite part of the xyz
space, k is the propagation constant in the parallel plate region and is equal to
(k2 — (w/a)2)1/2, where k = 2x/X and X is the free space wave length.. In order that a
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Fig. 1.

*Received March 29, 1947. This paper was presented to the American Mathematical Society on
Dec. 27, 1946.

Carlson and Heins, The reflection of an electromagnetic plane wave by an infinite set of plates I, this
Quarterly, 4, 313-329 (1947). Hereafter we shall refer to this as CHI. We employ here the same form of
the Maxwell equations which were used in CHI. The time dependence is taken as exp (—ikct) where c
is the velocity of light.
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single mode propagate in the parallel plate region, it is necessary to assume further that
i < a/\ < 1. The constant px is the amplitude of the wave going to the right in the
parallel plate region, while the p2 is the amplitude of the wave going to the left in the
same region.

This structure may be viewed as a two dimensional antenna in the sense that it
can receive and transmit energy. The problem can be formulated mathematically as a
pair of simultaneous integral equations of the faltung type which are closely related to
those of the Wiener-Hopf type.2 The unknown functions in these integral equations
are the surface current densities on the plates. The solution of these equations will give
us the functional form of the current densities, their asymptotic form for z —* 0+, z —» °°,
as well as the relation between the amplitudes of the various waves. We shall divide
this problem into two parts. In the first part we shall assume excitation from free space.
Then the parallel plate region sustains the wave travelling to the right, since there are
no obstacles in the parallel plate region which would give rise to a wave travelling to
the left. In this case, we find the magnitude as well as the phase of the parallel plate
wave which is travelling to the right. In the second part, we shall assume that the
parallel plate region has been excited. Here we shall find the reflection coefficient, that
is, the ratio of pi/p2 ■ This second problem breaks down into a single integral equation
due to the presence of a symmetry in the field components. The first problem we treat
considers the parallel plate region as a receiving antenna, while the second one considers
it as a transmitting antenna. We shall see that their properties are not completely
independent.

The formulation of the pair of simultaneous integral equations which we have just
mentioned can be carried out by the same method employed by Carlson and Heins
(CHI). An application of Green's integral theorem in two dimensions with a free space
Green's function as a kernel gives us the y component of the electric field in terms of
the surface current density on each plate. Thus if Ev(x, z) is the y component of the
electric field, and I0(z) and Ii(z) the surface current densities on the lower and upper
plates respectively, we have the following relation

Ev(x, z) = E'Sc(x, z)
(11)

+ \ [ {h{z')H£\k{x2 + (z- z')2)V2] + WW^Mx - aY + (z- z')Y2]} dz',

where //q1' is the Hankel function of the first kind and E'unc(x, z) = exp [ik(x sin d +
z cos 0)]. The boundary conditions on Ey(x, z) give us the simultaneous integral equa-
tions. Indeed, since Ev(x, z) is the component of the electric field which is tangent to
the planes x = 0, z > 0 and x = a, z > 0, We have

0 = Eln\0, z)+ j T {WWPik \ z-z'\]
0 (1.2a)

+ W)H^[fc(a2 + (z - z'f)u2]} dz',

2Paley and Wiener, The Fourier transform in the complex domain, Am. Math. Society Colloquium
Publication, 1934, ch. IV. Actually, the integral equations we are required to solve are singular cases of
the Wiener-Hopf theory but they are still susceptible to Fourier techniques.
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and

0 = ET\a, z) + \ f~ [W)H?W + (z - z')2)1/2]
(1.2b)

+ h(flHlv[k \ z-z' |]} dz!
for z > 0.

We can simplify these last equations by performing the arithmetical operations of
addition and subtraction. Upon adding, we get

(1.3a)

0 oo

0 = Er(0, z) + ,) + ! Jg Jo(z'){H<l)[k \ z-z' \]

+ H?\k(a2 + (2 - z'T)1'2}},

while subtraction gives us immediately

0 = Ei"\0, z) - E'vn°(a, z) + j f /,(?') {ff"'[4 \ z - t' |]
(1.3b)

- H(0"[k(a2 + (z- z')2)1/2]}.

Here J0{z) = I0(z) + Ii(z) and Ji(z) = I0(z) — 1^(z). In view of the z dependence of
the kernels and the particular limits of the integrals in Eqs. (1.3a) and (1.3b), we have
here two integral equations which may be solved rigorously with the Fourier transform
in the complex domain. This implies, of course, that we seek solutions of appropriate
growth, and the kernels possess the correct growth. We shall now show that such is
indeed the case.

2. The Fourier transform solution of equations (1.3a) and (1.3b). Let us now write
Eqs. (1.3a) and (1.3b) in a form which makes them amenable to Fourier transform
methods. We define E'ync(0, z) and E'„n°(a, z), J0(z) and Jl (2) to be identically zero for
z < 0. We further extend the Eqs. (1.3a) and (1.3b) for z < 0 to read

<t>o(z) = 2 f Jo(z'){H«\k | 2 - 2' |] + HoV[k(a2 + (2 - z')2)U2}} dz', (2.1a)

*1(2) = I [ J&'){H™[k \z~ z'\]~ H?W + (z- z')T2}} dz', (2.1b)

where <j>0{z) and 0, (2) are defined to be identically zero for z > 0. Upon noting our as-
sumptions on J0(z), Ji(z), ^""(O, 2), E'ync(a, z), <£0(z) and <f>x(z) we have for all 2

Mz) = Einc(p, z) + K\a, 2) + | J0(z'){H^[k | 2 - 2' |]

+ H^[k(a2 + (2 - z')2)U2}\ dz',

&(2) = i?r(0, 2) - ET(a, 2) + | | 2 - 2' |]

- HoV[k(a2 + (2 - z'f)1/2]} dz'.

We assume as in CHI that k has a small positive imaginary part.

(2.2a)

(2.2b)
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Some remarks on the growth of J0(z), Ji(z), <t>0{z) and <£i(z) as z becomes either
positively or negatively infinite are now in order. With this information we can find
the half planes of regularity of the Fourier transforms of the functions with which we
have to work. It is to be noted, in light of the definitions we have imposed upon <t>0{z)
and 4>i(z), that they are asymptotic to e~tk'/z1/2 for z large and negative. This asymptotic
form may be seen directly from the Hankel function. Thus the Fourier transforms of
$0(2) and</>i(z) are

/0 /»0e~xw'<t>0(2) dz and $i(w) = / e~"°'<t>i(z) dz
- CO J — CO

and $0(w) and are regular in an upper half plane
The transforms of the Hankel functions if4 HoU[k | z [] and i/4 Hlu[k{a2 + z2])t/2

are well known. For example3
coi LHoV[k(a2 + z2y/2]e~'"" dz = - (k2 - w2yl/2 exp [i | a \ (k2 - w2)l/2]

and is regular in the strip — 3mfc < 3mw < 3m/c. Furthermore the transforms of
E'ync(0, z) and El™ {a, z) are readily calculated since they have been annihilated for z < 0.
Hence we have

i(w — k cos 6)

and

*'0

iak sin 0

e~iv"Er{a, z) dz = i(w — k cos 6)

and these last two transforms are regular in the lower half plane 3tmu < 3 nx/c cos 6.
We observe, that thus far the transforms of <t>0{z), <f>,(z), the Hankel functions, E'ync(0, z)
and Elnc(a, z) are regular in a common strip — 3mfc < 3 mw < 3mk cos 6.

We still have to discuss the growth properties of the surface current densities I0(z)
and Ii(z) for z » 0. Their dominant parts for z » 0 are terms of the type e". All other
terms in the asymptotic forms of /0(z) and Zi(z) approach zero more rapidly than these
imaginary exponentials. Now a term of the type e" has the Fourier transform

fJq
dz

which is regular in some lower half plane bounded by a small but positive ordinate.
It now follows that the Fourier transforms of <t>0(z), <f>i{z) J 0(z), J1(z)E'ync(a, z), Eln°{0, z)
and the Hankel functions are regular in the strip — $mk < < 3ms (or 3m/c cos 6).
We are thus permitted to apply the Fourier transform to Eqs. (2.2a) and (2.2b) to get

., > (1 + <""•"*) , i (1 + ,<•»■-■>"■) „,, ,.
-t me) + 2 (i. _ <2te>

= £-fccosfl + I ( (fc> - ^ } (2.4b)
3The branch of (A;2 — w2)111 is equal to k for w = 0.
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where

H0(w) = [ e~'""J0(z) dz, H,(w) = [ dz.
J 0 *>0

Equations (2.4a) and (2.4b) are now to be decomposed into two sets of equations,
one of which will be analytic in the upper half plane while the other of
them will be regular in the lower half plane < 3trtA: or (3mfc cos 0). Let us first
turn to Eq. (2.4a). The factor

(k2 - w2)~U2{ 1 + exp \ia(k2 - w2Y/2}\

may be written as

2(k2 - w2r/2 exp [i I {k2 - wT2~\ cos [§ (k2 - U,2)"2] = = K(w).

Without indicating the precise form of K-(w) and K+(w) which we assume to be regular
in the appropriate lower and upper half planes, we may proceed to the required de-
composition of Eq. (2.4a). We have

(2.5a)
= (l+e—y+(fccosg) 1

i(w — k cos 0) 2

The left side of Eq. (2.5a) is regular in the upper half plane > — 3mfc, while the
right side is regular in the lower half plane 3mw < (or 3rrtfc cos 0) and both sides
are regular in a common strip. It follows then that each side is equal to an integral
function t0(w), i.e.

/ \ts" / \ (1 + eiaMn0)[K+(w) - K+(k cos 0)] , , ,
*„<»)K.(«) j(„ _ t cos ») " '°W' (2'6a)

(1 + e",*'m9)-K + (fc COS 0) , i rr , \TT , \
 _taxt)  + j K-WH.W - <„«. (2.6b)

In a similar fashion, we may decompose Eq. (2.4b). Let

(k2 - wT1/2{ 1 - exp [ia(k2 - w2y/2]} = = L(w),

where L_(w>) and L+(w) are regular in the appropriate lower and upper half planes.
We have upon repeating the argument for separation

. > ^ , x (1 - eiakBiD>)[ L+{w) - L+(k cos 0)1 , ,
$ML+(w) .(w _ k cog Q)  = eM, (2.7a)

1 r , (1 - eiakBia')L+(k cos 0) , ,
2 L.{w)HM + ,{w _ >k cQg e) = (2.7b)

where e,(u>) is an integral function.



162 ALBERT E. HEINS [Vol. VI, No. 2

We are now compelled to indicate the precise forms of K-(w), K+(w), L_{w) and
L+(w) if we are to evaluate the integral functions e„(w) and et(w) and thereby find
H0(w) and Hx(w). In much the same manner which was indicated in CHI one finds that

-rr , s a2 (w — k) ria ,, 2 2.V2 (k + wYKJw) — ~2 7- exp — (k —w) arc tan -7 1w x (1c — wyn Lit \k - w)

+ *"W] 5 [(' - S0TT) /t (2n+l)

is regular in the appropriate lower half plane.4 x<>(w) is an integral function which has
been introduced into the product decomposition of K(w') and is to be chosen such that
K-(w) is of algebraic growth for | w | —><» and 3*1^ in the correct lower half plane.
Similarly

K+(w) (k + w)
^+A exp Of- »")"• aro tan fc"2)'"[k + w)1/2 U \k + w)

aw/t (2n + l)

In order to determine xo(w), we simply calculate the asymptotic form of K-(w)
and K+(w) as | w \ —* <*>, in the appropriate half plane and choose xo(w) so that
K-(w) and K+(w) will be of algebraic growth.5 Let us first study K-(w). If we observe
that the parameter ak may be neglected in the infinite product as | w | —> <», <
3mfc, we have that K-(w) is asymptotic to

(2.8)

1/2 PZdW ( 2w\ , / | l [" , XCLW I „ iaw/it (2n + l)w exp L 2^log\~ t) + xo(w)J H L1 + +

-i/2 T(iaw/2ir) f iaw /, 7,1, 2w\ , .*1= ™ exp Lv I1 - 2 + 2 '<* - T.I + ""Wj
where c is a constant whose precise form does not interest us and y is the Euler-Masche-
roni constant. We may now apply the Stirling formula to (2.8) to obtain that K-{w)
and K+(w) are of algebraic growth for j w | —> oo ( gmic in the appropriate half planes, if

, . iaw f , x iir
27L"3+T"IOg«t_:r

With xo(w) so chosen, K-(w) is asymptotic to w~1/2 for | w \ —* and in the
appropriate lower half plane, while K+(w) is asymptotic to w1/2 for [ w | —» °° and
in the upper half plane Qmw > —

We are now in a position to determine the integral function e0(w). Let us note in
Eq. (2.6b) that H0(w) is the unilateral Fourier transform of I0(z) + Ii(z) = J0(z). As
such, since J 0(z) has appropriate growth for z large and positive, and since it is integrable
over any finite interval of z including the origin, H0(w) possesses the property that

4Henceforth principal determinations of inverse trigonometric functions and logarithms are under-
stood.

6 J. S. Schwinger, Theory of guided waves, Radiation Laboratory publication, forthcoming.
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it approaches zero for | w | —» oo} 3tttw < 3 m* or cos 9. If we let | ^ | —> , w
in the correct lower half plane we see from Eq. (2.6b) that e0(w) = 0(w~a~1/2), a > 0.
On the other hand $0(w) approaches zero for | w | —» °o vcvw > — because <£0(w>)
is the unilateral Fourier transform of a function defined for negative z, is integrable
over any finite negative range of z including the origin and possesses appropriate growth
for z large and negative. Hence for | w | —> m , Qmw > — we see from Eq. (2.6a)
that e0(w) = 0(w1/2~fi), /3 > 0. It follows, therefore, by a theorem of Liouville, that
e0(w) is a polynomial of degree less than minus one half, and hence identically zero.
We have finally

_ 2(1 + e^e)K+(k cos 6)
' ~ (w - k cos e)K_(w) ' { )

the Fourier transform of J0(z).
We can obtain some information regarding J0(z) for z —> 0+ from H0(w) as | w | —>

oo, or 3nxfc cos 6. For now we have that

H0(w) = 0(w~1/2)

and this tells us immediately that

J0(w) = 0(2"1/2)

for z —* 0+. This verifies the integrability of J0(z) for finite and positive z.
We now turn to the determination of H^w) and for this we consider Eq. (2.4b).

We note that

= -2i(k> - wT1/2 exp [f (fc2 - «,y2] sin [| (k2 - w2)1"]

where now

T / \ • Pn 2 2\l/2 j. (k w\L_(w) = —la exp I — [k —w) arc tan ^ _ )

. .au>/2rn

and

1
L+(w) = exp[ia n 2 2"\ 1/2 j_ (k w\— (k —w) arc tan I ■;—-— IT \k + wJ

- »«] n [(> - {£)')"' - taw
2ttnj1-aw/2tn

Here we have the L_{w) which is regular in the lower half plane < Strife and the
L+(w) which is regular*in the upper half plane Again we choose Xi(w)>
an integral function, such that L_(w) and L+(w) will behave algebraically as | w \ —» °o
and 3:nra> in either of the appropriate half planes just described. We proceed as we
did above to determine Xi(w). For | w | —> oo, Qmw < L_(w) is asymptotic to
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U1de[, , . iaw . 2w\ rV T, , iaw*,M+kg - Tj n L1 + s; I -tow/2 T»

27t exp [xi (w) — iawy/2ir + {iaw/2ir\ log (—2w/k)]
iawT (iaw/2tt)

Upon applying Stirling's expansion theorem we obtain immediately
O-r /inm\1/2-iaw/2r
^ exp [x,(w) + {mw/27t} {1 - t + log (-2wA)}](-^rj

Hence, if we choose

, . iaw f , 4x Z7r~l*.(»)- - arL1_'v + l08s + d
L_(iy) will have algebraic growth in the lower half plane for | ty | —> »
and will be asymptotic to w~1/2. If we repeat the argument in the upper half plane,
$mw > — 3m/c for the term L+(w) we find that the same xi(w) will render L+(w)
algebraic in growth for | w \ —> a> and now L+(w) will be asymptotic to wl/2 for w —» oo.
Finally, reasoning as we did for Eqs. (2.6a) and (2.6b) we find that e^w) is 0(wai),

| for | w | —» ro, 3mw < and is 0(wfil), ft < \ for | w \ —> oo, >
—Applying Liouville's theorem once again, we find that e^w) is identically zero.
Thus we now have

TT f \ 2(1 - eiahs™)L+{k cos 9)
H'W - („ - t cos «)L_M

the Fourier transform of 70(z) — Ii{z) = <7\(z).
From H0(w) and H^w) we can obtain the Fourier transforms of 70(z) and /i(z) by

a simple addition and subtraction. We can also see how Ji(z) behaves for z —* 0+. Since
Hi{w) is now 0(w~1/2) for | w \ —> oo, 3ntw < -3m£, J^z) = 0(z~1/2) for z —> 0+ and
this verifies the integrability of J1(z) for finite and positive z. In closing, we note that
the precise forms of 70(z) and I^{z) are of no interest to us since we are only interested
in the far fields.

3. The calculation of the far fields. In order to calculate the far fields we first
■express Eq. (1.3) by a Fourier integral representation. We have

E„(x, z) = exp [ik(x sin 0 + z cos 0)]

+ £ J e"°'(k2 - wT1/2[{H0(w) + H1(w)}e• III

+ {H0(w) - Hl(w)}ei>x~aUk'-'"),/'] dw

where C is a path of integration drawn within the strip of regularity of all the Fourier
transforms which appear in the above integral. The path is closed either above or below
•depending upon whether z > 0 or z < 0. Care must be taken in closing the path so that
it does not intersect the branch cuts which are introduced due to the presence of the
branch points k and —k. The dominant terms arise from the residues due to the two
poles k cos 6 and k. Furthermore, since contributions from other poles or branch points
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give rise to terms which are small compared to the terms arising from the poles k cos 6
and k for | z \ —» <», we need only calculate these dominant effects, at least insofar as
we are concerned with the far field.6

There are four separate regions of interest (a) z < 0, — °° < x < <» (b) z > 0,
x > a (c) z > 0, x < 0 and (d) z > 0, 0 < x < a. Let us consider region (a). For z <
0, Ey(x, y) is asymptotic to exp [ik(z cos 6 + x sin 0)], as it should. For region (b),
z » 0, x > a, Ev(x, z) has no term comparable in magnitude with the plane wave term.
Thus region (b) is the region of the geometrical shadow. For region (c) z ».0, x < 0,
Ev(x, z) is asymptotic to

2i exp [ilcz cos 0] sin [kx sin 0].

Thus for x < 0, z 0, the lower plate acts as a perfect reflector.
Region (d) is the interesting one. We now have a means of finding the amplitude of

the transmitted wave guide mode. We know that in this region Ev(x, z) is asymptotic
to e*" sin vx/a for z ~2> 0, 0 < x < a. On the other hand when we evaluate the integral
and take out its dominant terms, we find that we are left with

/1 . _tafcsin0\ K+(k COS 0) l ■ W K iim . /— — (1+6 ) ; ~ lim Tr , r c sm 7xx a.v k — k cos 0 K-(w)

The amplitude of the transmitted wave is the coefficient of the factor e'" sin irx/a. It
may be simplified if we now take k to be real. In the first place

lim ^ = 2[ir3(k — k)cT2]1/2 exp — Xo(«) — i arc tan ^ K^j

where

Ka KCL

Ji- - ±\*n-1 Le,-- 2. I „ + 1),_ir ,(2rl+I)j

while

K+(k cos 0)

q[fc( 1 + cos 0)(fc2 cos2 0 — K2)]1/2 exp [t'Q2 -f Xo(fc Cos 0) — (iakd sin 6)/2ir]
2ir(k cos 0 + k)[cos {(ak sin 0)/2}] 1/2

and

0: f .  ak cos 0 ak cos 0 ~|
- Z. [_arc sin + i)2 _ ^ ^ ^)2]1/2 ^ + j.

Thus, the transmission coefiicient is

J Ml + cos 0) cos (afc/2 sin 0)~|1/2 <*+o(tCo.»-«)/* « ^ ^
2L a(k2 cos2 6 - k2)Qc + k) J 6 ' ° - 6 ~ T

•E. T. Copson, Oxford Quart. Math. 17, 19-34 (1946). There is a detailed discussion in this paper on
the choice of a path similar to C.
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where

* = 0, + e2 + arc tan (|^) + f (l - |) sin 6

+ a(k C°^ ~ K) [7 " 3 - log (tr/afe)].

The square of the absolute magnitude of the amplitude of the transmission coefficient
is proportional to the power gain, as a direct consequence of the Lorentz reciprocity
theorem. Thus insofar as the angular variation is concerned, the radiation pattern is

(akcos0)/2(1 + cos 9) cos (ak/2 sin 6)e
(k2 cos2 8 - k2)

We have thus found how the parallel plates act as a receiving antenna. It is to be noted
that the radiation pattern arises from the excitation of the parallel plates for z 0,
0 < x < a. The reciprocity theorem has enabled us to give a partial solution of the
second part of the problem. The reflection coefficient which we have described earlier
has yet to be calculated.


