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A PRACTICAL METHOD FOR SOLVING HILL'S EQUATION*
BY

L. BRILLOUIN
Harvard i

1. Introduction. The differential equation known as Mathieu-Hill's equation can
be written

y" + J{x)y = 0, (1)
where J is a periodic function of x. The period is usually taken equal to x for historical
reasons. The first equation of this type was discovered by Mathieu in connection with
the problem of vibrations within an elliptic boundary, when

J{x) = r] + t cos 2x

has a period x.
Floquet proved that the general solution of Eq. (1) can be written

y = D^ix) + (2)

where $ is a periodic function, with the; same period x as J(x). This general solution
contains two terms with the exponents ±ju- Floquet's theorem can be expressed in a
slightly different way. Let us consider the term with +m:

/(*) = «"*(*). (3)
The condition on fix) is

f(x + nx) = e"nrfix) = f/(x)

with £ = e"T.

The general solution is

y = DJix) + DJi-x). (4)
We shall look for a solution in an interval of length x and use condition (3) to extend
the solution from — oo to + <». This means that we shall have to meet some boundary
conditions in order to match the solutions in two consecutive intervals. These matching
conditions will be essential in fixing the value of ju.

The method developed in this paper is based upon these general considerations and
shall be explained more completely in Sec. 2. It differs completely from the classical
method, as found in most textbooks.1 The standard procedure is to expand J in Fourier
series

J = £ enei2nx (5)
n

and to look for a similar expansion for the unknown periodic function $

$ = Z bnei2nl. (6)

*Received Feb. 4, 1948.
'Whittaker and Watson, Modern analysis, Cambridge University Press, 4th edition, 1927, p. 414.
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Equation (1) results in an infinite system of simultaneous linear homogeneous equations
for the unknown bn s. A non-trivial solution can only be obtained if the corresponding
infinite determinant is zero. This last condition is used to determine the value of the
exponent fi.

Whittaker was able to discuss this condition in the case when the series of the co-p
efficients 0„ in expansion (5) is absolutely convergent, and obtained a formula

sin2 i/i) =' —sinh2 = Ai(0) sin2 0j/2), (7)

where A, (0) is another infinite determinant with the following coefficients

Aj(0) = | Bmv |, Bmm = 1,

(m * P)
(8)

This result is not very encouraging. First, the condition of absolute convergence for
the series of the coefficients of dn is a very restrictive one. Second, we still have to com-
pute an infinite determinant, and the computation proves very difficult unless the dn
terms decrease very rapidly when n increases.

This infinite determinant takes on infinite value whenever

0O = 2n n integer (9)

These 60 values correspond to double poles of the determinant, since both rows m = ±n
obtain infinite terms. These double poles are canceled out in formula (7) by the double
zeros of sin2 (ird)/2/2) and do not correspond to any singular values of n.

Altogether, the method of Fourier expansion is not very practical, and leads to
complicated computations.

The method presented in this paper does not involve the restrictions of the classical
method, and leads to a practical solution of Hill's equation, even in such exceptional
cases as periodic functions J(x) containing discontinuities or 8 functions..

2. Principle of the method. Let us consider a differential equation

y" + F(x)y = 0 (10)

with a given function F(x). We may find two independent solutions u and v and obtain
the general solution

y = Au + Bv (11)

containing two constants A and B. We obviously have

uv" = vu" = Fuv,

hence
uv' — vu' = C,

and a suitable normalization of u and v is used to make the constant C unity:

uv' — vu' = 1 (12)
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J(x)

THE PERIODIC J (X) FUNCTION

Fig. 1

We now want to discuss Hill's equation

y" + J(x)y = 0 (13)

with a periodic function J of period x defined in the following way (see Fig. 1):

F(x) —x/2 < x < x/2,

F(x - x) t/2 <x < 3x/2, (14)
J = '

F(x — nir) nir — ir/2 < x < nir + x/2.

Floquet's theorem assures us of the existence of two independent solutions yx , y2 char-
acterized by the following properties (Eq. 5):

Vi(x + x) = e"r yx(x) = ?2/,(x),

y2(x + x) = e~"*y2(x) = %~ly2(x), (15)

£ = e*\

Let us consider yy and discuss a practical method for obtaining /n (or £). In the first
interval ( — x/2 < x < x/2) the function yx may be represented by a formula (11),
with a set of A and B coefficients. In the second interval (x/2 < x < 3x/2) the co-
efficients will be £/l and £5, according to (15). We must now write the continuity con-
ditions for z/i and y[ across the border x/2:

Aui + Bvx — £Au2 + £Bv2 ,

Au[ + Bv[ = %Au2 + £Bv'2 , (16)

ih = w(x/2), u2 = w(—x/2), vi = v(x/2), v2 = v{—x/2).
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We have obtained a set of simultaneous equations for the two unknowns A and B.
This can be solved only when the determinant is zero:

D =
Ml — £m2 Vi — %v2

u[ — %u2 v[ — £t>2 (17)

= £2 + £(u[v 2 + U2V! — — M2l>0 + 1 = 0,

where we have used Eq. (12) at both points ±7t/2. Equation (17) in £ fixes the Floquet
coefficients £ and I""1. The product of the two roots is unity and their sum is given by

2 cosh /xir = £ + £_1 = — u[v2 — + u2v[; (18)

hence ,

4 sinh2 yn = 2 cosh ij.it — 2 = — (wj — w2)(^ — + (wf — wO(t>i — w2) (19)

with the help of Eq. (12). Once the n exponent is obtained, the coefficients A and B
result from (16) and the solution of Hill's equation (13) is achieved.

A very important case is obtained when

Fix), J(x) = even. (20)

One may choose correspondingly for u, v an even and an odd function:

u(x) = u{ — x), U2 = Ml , M2 = —Ml' ,

(21)
v{x) =■ — v( — x), V2 = — t>i , v'2 = v{ .

Eq. (18) then reads

cosh yU7r = uM -jr u[vi (22)

from which we obtain

sinh2 (ij.tt/2) = u[vi , (23)

a formula that will be found useful for a comparison with Whittaker's theory of Hill's
equation.

The whole method is a generalization of the discussion that was previously given
for the special example of a rectangular J(x) function.2 One advantage of the method
is that it works with periodic J(x) functions exhibiting a finite number of discontinuities.

3. Some special examples. The case of a rectangular J(x) function can be easily
investigated along these lines, and the results agree completely with those of a previous
discussion2 where a slightly different method was followed.

Let us consider the case of a parabolic function

F — a — b\\ (24)

2L. Brillouin, Wave propagation in periodic structures, McGraw-Hill, New York, 1946, Ch. VIII,
pp. 180-186, and Ch. IX, pp. 218-226.
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We may find the solutions as power series expansions

U — 1 + u2x2 + • • • • u2nx2n • ■ ■ ,

(25)
V = X + V3xs +  v2n+1x2n+l ■ • ■ .

Substituting in Eq. (10) we obtain the recurrence formulas

2u2 + a = 0, (2 n + 2) (2 n + 1)m2„+2 + au2n — b2u2n-2 = 0,
(26)

6v3 + a = 0, (2 n + 3) (2 n + 2)v2n+3 + av2n+l — b2v2n-i = 0,

and the u, v functions satisfy the normalizing condition (12). The following special
cases may be of interest

a = -b, u = ehI°/2,
/

v = e"'/2I(x) with I(x) = f e~bz' dx,
Jo

a = -3b, u = e-ix'/2 + 2bx ebx°/2I(x),

bx2/2v = xe ,

(27)

(28)

as may be checked by direct computation.
In all these cases, there is no discontinuity of the function F on the limits ±7r/2 of

the interval, and the curve on Fig. 1 is a continuous curve with a discontinuous de-
rivative at ±7r/2.

The corresponding Hill's problem is immediately solved with the help of Equation
(22) or (23). For instance, the cases indicated above under (27) and (28) yield:

a = -b, sinh2 (M |) = u[vx = b | e6'V4/(|) (29)

a = -3b, sinh2 (M |) = b \ + b*eh*"ll[|) + b2 \ ebr'Hl(^ (30)

These results could not have been obtained by any other method of solution.
Another example can be solved with the help of Bessel functions, which satisfy the

equation

°i{ziy) + v (31)

y = AJn{z) -\- BJ-n(z), n non integer (32)

Taking a new variable
x = log z, z = ex,

we obtain an equation of type (10):

~y + (e2x - n2)y = 0. - (33)
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Thus,

y = AJn(ex) + BJ.n(ex) (34)

and we have a solution corresponding to an unsymmetrical

F = e2x — n2 ■ (35)

for which our general formulas (18), (19) should be used in connection with the corre-
sponding Hill's equation.

4. Solution with the B. W. K. method. The point of departure of our method is a
solution of an equation of type (10). An approximate solution can be found with the
B. W. K. procedure,3 if F(x) is exhibiting only small variations about a large average
value. A more precise statement of the conditions involved will result from the fol-
lowing discussion. We rewrite Eq. (10) as follows:

y" + G\x)y = 0, F(x) = G\x). (36)
We now consider a function

y = G~1/2 eiS, S = f G dx, (37)
^0

which yields

1
y

The function y represents an approximate solution of Eq. (36) if the first two terms in
(38) are negligible in comparison to the last one. This is the case if

g~£, |^~e2, «2 « 1) . (39)

and terms in e2 are neglected, while e terms are retained. The second condition (39) is
very restrictive, however, since it allows only for variations of G' of the order of e2.
The function (37) becomes a rigorous solution of Eq. (36) when

3(W_1^ (4Q)
4\G/ 2 G V ;

G (41)

Solutions u, v normalized in accordance with (12) are easily found:

u = (2iG)~1/2e~iS, v = (2iG)~1/2e+iS (42)

An interesting example is shown in Fig. 2; it corresponds to the even function

G-or+W (43)
3The initials B. W. K. refer to the three authors L. Brillouin, Journ. de Phys. 7, 353 (1926); G.

Wentzel, Zts. f. Phys. 38, 518 (1926); H. A. Kramers, Zts. f. Phys. 39, 828 (1926).
Eor a complete discussion and more references, see E. C. Kemble, The fundamental principles of

quantum mechanics, McGraw-Hill, 1937, Ch. Ill, p. 91-112.
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with a discontinuity of the derivative at x = 0. Here,

-S(-x) = S(x) = r°Gdx = ~a(—^ -) =
J o \a + x a/

Ax
a(a + x)'

For the odd solution v we simply take

v - G~1/2 sin S = a J f ^ sin S,
A

(44)
v' = G'3/2G' sin 8 + G1/2 cos S.

£

Both v and v' are continuous at x = 0 since G'(+0) = — (?'(—0). The even solution u
can be written as follows:

u = (?-1/2[cos S ± K sin <S],
(45)

u' = G~3/2GL [cos S ± K sin S] + G1/2[-sin S ± K cos S],

where the + sign must be taken for 0 < x < x/2 and the minus sign for — t/2 < x < 0.
The function u is continuous at the origin, and u' becomes continuous when it is made
to vanish at the origin. Hence,

G'+ (0) =
2G2(0) A'

Finally, after some reductions, one finds

a •+ I x I T a —r~u =  r-—1 cos S T J sin sj,

1 T | a; | „ A2 + a(a + | x |) .= —— ——H—| cos S 77—t—:—"p—^ sin S .A1/2 La + \ x\ A(a + \ x ) J

(46)

It is easily verified that the coefficients have been chosen correctly so as to satisfy the
normalizing conditions (12).

With these solutions u, v we may now compute the Floquet coefficient n, with the
help of Eq. (23). We find

. , 2 / tiA . I x I . „ „ . 2 & A2 + a{a + I x |)smh I/i -J .= u(v, = J-^-L sm Sx cos *Si — sm Si —  —1 ,

where we must take

„ _ /o o   Air/2
/ ) ^1 / I /0\a{a + tt/2)

sinh2 = ~ sin Si cos Si — ^ a^~ sin2 Si . (47)
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A simple check can be made on this formula. Keeping the same A value, we may replace
a by

, Ta = -a - -,

thus interchanging the position of the angular maxima and minima of the curve (see
Fig. 2). Our formula is not affected by this change.

5. Successive approximations. Starting from the solutions obtained in the preceding
sections, we may develop a method of successive approximations. Let us consider Eq.
(10) with a function F and assume that it can be approximately represented by a G2
function of the type (41).

G = (a + xf> F = G2 - eH(x), e small. (48)

If a single function G does not yield a good enough approximation over the whole
interval — ir/2, +7t/2, it may be convenient to divide this interval into two or more
partial intervals using different G functions, and to join solutions at the boundaries, as
shown on Figs. 2 or 3.

Next we use an expansion

y = Vo + tyi + + • • • •

with a'=-a-^

Fig. 2

Fig. 3
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Grouping terms with the same power of e, we obtain

y'o' + G2y0 = 0, (49a)

yl' + G2Vl = Hy0 , (49b)

y" + G2y2 = Hyx . (49c)

The solutions of (49a) are the u0 and v0 obtained in (42). Thus, the solution of (49b) reads

2/i
Jt*X /*x t»x

Yqv'0 dx — v0 / Y0u'0 dx with Y0 = / Hy0 dx (50)
0 *M) ^0

and the further approximations can be obtained in a similar way.
As an example, let us assume an even function F which can be approximated with

the even G function (43). The zero order approximation is represented by u0 and v0 of
equations (44), (45). We thus have,

U0 = [ Hu0 dx, V0 = f Hvo dx. (51)
Jq Jo

H being even, U0 is odd and F0 is even. Next, we obtain
t*x f»X

Ui = u0 / Uqv'o dx — t'o / UqUo dx (even),
Jo Jo

Vi

and the first order solutions are

= u0 / V0v'o dx — v0 1 V0u'0 dx (odd),
J 0 • J 0

(52)

u = u0 + tux + • • • • (even),

v = v0 + eVi +  (odd).
(53)

These functions being automatically normalized according to (12), as a direct check
easily shows.

A solution of Eq. (10) can thus be obtained step by step to any desired degree of
approximation, and may be used to the solution of Hill's equation as shown in Sec. 2.

The same method could be applied to any other known solution of Eq. (10). We
used the G2 functions in the zero order approximation, but any other known solution
would do just as well.

6. Hill's equation containing delta function. Let us consider our fundamental Eq. (10)
and assume the function F to be a delta function:

fo x 9^ 0 .+„
F = Bd(x), 8 = -j , S(x) dx — 1 (54)

[c° X = 0

Equation (10) can be readily integrated:

fo, (x 5^ 0),
y" =

B8(x)y(x) (x = 0),
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Thus,

fa, (x < 0)
V' = ] (55)

[a + By(0), (x > 0)

and we obtain our even u or odd v solutions:

u = 1 + ^ B | x | (even),
. (56)

v = x (odd).

These u, v functions are normalized according to (12). The solution'of the corresponding
Hill's equation is obtained from Eq. (23):

sinh2 = (u'v)x.r/2 = Q Bx^jx = \B (57)

This result can be checked by different methods. The case of a rectangular J function
was discussed in the author's book,2 p. 181, assuming

f— Xi (~h < x < 0)
J = * (J, + h = r) (58)

{-xl (0 < x < l2)

The solution was given by equation (44.12), loc. cit. p. 181:

cosh jU7t = cosh xiU cosh x-zk + H (~ + ~) sinh Xih sinh ■ (59)
2 \X2 Xi/

We now take

Xi = 0, X2 —>0°, k —> 0, l2xl = B,

and obtain

cosh iur = 1+| X2I1X2I2 = l+^/i (60)

where = ir when l2 = 0. This checks with our previous result (57). Other types of
J functions can be used and lead to similar results. Such a problem is completely outside
the reach of the Fourier series expansion method.

7. Comparison between the present method and the classical one. We discussed
in Sec. 1 the classical method of solution, and underlined its limitations. The Fourier
expansion of the periodic function J must be such that the series of the Fourier co-
efficients be absolutely convergent. This rules out functions with discontinuities, whose
Fourier coefficients decrease as slowly as 1 /n, but the classical method should apply
to a continuous function J with discontinuous derivative. This is the case for the
problem discussed in Sec. 4, Eq. (43):

F = G2 =  (61)
(a + | x |)
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Within a period ir this function oscillates between A2/a4 and A2/{{a + 7r/2)4). The
corresponding periodic function J can be analysed in Fourier series and Whittaker's
solution obtained. The question now is to compare solutions computed one way or
the other.

The comparison is easier when the variation of the function is small; hence we assume

A = Ba2, a »| (62)

and compute expansions with respect to the small quantity

e = 2a<K1'

Let us start with the solution obtained in Sec. 4. It contains the quantity <S, (Eq. 47).

_ Air/2 = Bit/2 _ tt / _ _i , /jrV \
1 a(a + ir/2) 1 + tt/2a 2\ 2a \2a/ ' 7 (63)

we shall keep terms up to ir/2a only, since the computation of second order terms proves
rather cumbersome. The solution is given in Eq. (47), and contains

sin Si = sin (ttB/2) — B (7r2/4a) cos (ttB/2) + • ■ • ,

cos Si = cos (7T.B/2) + B (x2/4a) sin (ttB/2) + • • ■ .

Using these expansions in Eq. (47), we note a first term in (ir/2A) sin Si cos S, that can
be dropped, since A is of the order of a2. We thus are left with

and the term in parenthesis is again of second order. Thus,

sinh2 ^ = —sin2 = —sin2 (tB/2) + 25 ^ sin (ttB/2) cos (ttB/2)

= —sin2 B ^ + B 7- sin Bit2 4 a

(64)

Terms in 1 /a2 cpuld be computed here without much trouble, but they lead to serious
complications with the Whittaker's formula, that we want to discuss now.

We first compute the Fourier coefficients of the periodic function J derived from F
according to Eq. (14):

J = T, 0"e'2nx (65)
n=» — co

We obtain
r>2 pir/2 —i2nx O D2 /**/2 — *2nx

= e dx= f
v J-r/a (1 + | x |/a) * Jo (1 + x/a)
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The result is

'•"fM1 +s)1 -i + ffe)'
(66)

Comparing (66) and (63), we note that to the first order

& « | el'2. ' (67)

We also see that 0„ decreases as 1/n2 as needed, and that it is of the first order in l/a
Whittaker's formula (7) reads

sinh2 (m |) = " Ai(0) sin2 (| el"). (68)

We shall prove easily that A,(0) is practically unity and equation (67) shows that Whit-
taker's formula (68) checks completely with our solution (64).

Let us now discuss the infinite determinant (8):

A,(0) = | Bmv |, Bmm = 1,

(69)
Bmv = e0 - lm2' }m *

Diagonal elements are all equal to unity while non-diagonal terms are proportional to
6m-P; hence, according to (66), these non-diagonal terms are all very small, of the order l/a.

Such a determinant can be computed in the following way: we first take the product
of the diagonal elements, that is 1. Next we take all the diagonal elements but two,
namely n, n and m, m, which we replace by the non-diagonal terms Bnm and Bmn , then
we take all the diagonals but three (n, n; m, m; p, p) which we replace by Bnm , Bmv ,
Bpm , etc. Thus, we obtain

-A I Bmp | 1 ^inmBnmBmn | tpBnmBmjfBpn — • • •
(70)

n m p 5^ n 

The rule is obvious, and the expansion is ordered with respect to powers of l/a, with
no term in l/a and terms in l/a2 , l/a3 • • • . We decided not to use terms in l/a2 our
expansions, hence our determinant is practically unity. Some difficulty may occur
when 60 — 4m2 becomes very small (of the order of l/a), when the determinant becomes
very large. We already noticed in Sec. 1 the inadequacy of Whittaker's formula (68)
near the poles of the determinant. There is a compensation, when 60 = 4m2, between
the determinant having a double pole and the sin2 (x/2 (0O)1/2) a double zero. Our formula
(64) does not exhibit any such trouble.

Otherwise, both methods check completely. It is hoped that the general method
•developed in this paper will be found useful for practical discussion of many problems
reducing to Hill's equation.


