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THE GENERAL PROBLEM OF ANTENNA RADIATION AND THE
FUNDAMENTAL INTEGRAL EQUATION, WITH APPLICATION TO

AN ANTENNA OF REVOLUTION—PART II*
BY

J. L. SYNGE
Carnegie Institute of Technology

5. The gap. Let us assume the gap to be cylindrical, of radius R = a; let it extend
from z = — ri to z = ??. Let us suppose that on the gap

E = -iV/v, (V = const.) (5.1)

so that V is the potential difference across the gap. Then, by (3.18),

M(z0) = irck2VN(z0), N(z0) = -f- f }^dz. (5.2)

Now

r = a -\- (z — zoy, * = r~V ,

1 d\j/ 1 k2 ,3, , •
rTr = ~2; + *&+**)'

Xi = Til (1 — Wr — cos kr) + tt-j (kr — sin kr),k r & r

Xa = Til (kr — sin kr) — ro (1 — cos kr).k r for

Note that xi , X2 are power series in positive powers of kr. We obtain at once

JJ(~ - JL / ^ zo  1 V Zg \
°J kv I [a2 + („ - zoyy* ^ [a2 + („ + z0)T2)

+ \ ^ {In k(v - z0 + [a2 + (, - z0)2]1/2)

+ In k(t] + z0 + [a2 + (17 + 2o)2]1/2) — In A:2a2}

r,.2~2 rv
- — f (xi + %) dz.

(5.4)

We shall now make two important simplifying assumptions. The first is

ka <3C 1. (5.5)
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This means that the radius of the antenna at the gap is small compared with the wave
length. Then we have approximately

N(Z0) = ^ ([a2 + („ - 10)T2 + [a + („" + 20)T2}' (5'6)

provided a/1) is not large. The second assumption is

a/v « 1. (5.7)

This means that the gap is long compared with the radius of the antenna at the gap.
Then (5.6) gives approximately

N(z0) = (, v ~ 20 . + | v + 20 (5.8)
ki) [\ 7/ - Z0 | | V + Zo \)

and so

N(z0) = for | | < v,

N(z0) = 0 for | z0 | > ij.

Substitution in (5.2) gives

M{z0) = 2-irckV/r] for | 0O | < V (in gap)

M (z0) =0 for | z01 > t? (outside gap)

(5.9)

(5.10)

6. Impedance and relative current. In this section we introduce the impedance Z
and the relative current <£(z), and show how Z is found when #(z) is known. The argu-
ment is exact; we understand by N the exact expression (5.2) rather than the approxi-
mation (5.9).

We define the impedance of the antenna to be

Z = V/IQ) (6.1)
It may seem unnatural to use I(0) in defining impedance. The point z = 0 is at the center
of the gap, and there is no current there. In fact, 1(0) means 2ircaII(0), according to
(3.14). It might seem better to use the currents at the ends of the gap. But it appears
simpler to use 7(0) as basic; we can easily pass to the other definitions, if required. In
the case of a very short gap (Sec. 8), these subtle distinctions disappear, for we have
then

/(-„) = 1(0) = I(v)
approximately.

Let us write
<t>(z) = I(z)/I(0)-, (6.2)

this will be called the relative current.
On dividing (3.17) by 7(0), we get

f» I a

K(z, z0)(j>(z) dz = iirck2Z N(z0), (h < z0 < h) (6.3)fJ I,
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With this equation we associate the boundary conditions

m = 1, = o. (6.4)
The equation (6.3) contains the unknown function- <t>(z) and the unknown constant

Z. If we knew <f>(z), we could calculate Z at once, giving any value to z0. If we have only
a rough idea of it would be better not to take a definite value of z0, but to introduce
a weighting factor f(z0), and calculate Z from

z   L_ J',3 f(zo) dz0 K(z, zo)0(z) dz -6
^ fl; N(z0)f(z0) dZo

For the present let us leave the weighting function /(z) arbitrary except for the
assumptions that it is continuous, has a continuous derivative, and satisfies the end
conditions

m = m = o. (6.6)
Let us write J for the numerator in (6.5) and understand the limits of integration
(k , l2). Then

(6.7)

J = JJ K(z, z0)<p(z)f(zo) dz dz0

= ~ Jf -£-£r dz dz0 + k2 JJ i(z, z0)<t>(z)f(z0) dz dz0 ,

and on integration by parts

J = JJ z0)x(z, 2o) dz dz0 , (6.8)

where
x(z, z0) = -<t>'{z)f'(z0) + fc2^(z)/(z0). (6.9)

Now we may write (6.8) as follows:

J — J i "f" J 2 j

Ji = II Hzho)x(z' z)dzdz°>

j2 = II {x(z, Zo) exp (ikr(z, z0)) — x(z, z)} dz dz0
(6.10)

[r(z, Zo)]2 - [fl(z)]2 + (z ~ Zo)2.

For a thin antenna, r is small for z = z0 . However, the integrand in J2 remains finite
as R —» 0. This is the reason for splitting J as above, and forms the basis of later ap-
proximations. For the present the argument remains exact.

The integral Ji gives

Jl = Jll + Jl2 + Jl3 , (6.11)
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where

Jn = L ['' x(z, z) dz, L = -In(fcV),
Jh ■ .

= J1 x(z, z) In dz, (6.12)

J13 = P x(z, Z) In {k\l2 -z + (R° + (l2 - z)2)l/2][z -h+ (R2 + (z - J,)2)'72]} dz.
Jh

Note, for later approximation, that J12 , J13 remain finite for an infinitely thin antenna.
We have, by (6.6),

(6.13)

Jn = L f' {-4>'(z)f'(z) + k2<j>(z)f(z)\ dz

= L f' {f"(z) + k2f(zy\<f,(z) dz.
Ju

Now (6.5) may be written

7   *_ Jf) + Jia(^> f) + J13(<ft> /) + J2(^1 /) ((■ 1
Trcfc2 /!; N(z)f(z) dz ' { )

This notation puts in evidence the dependence of the J's on the two functions—the
relative current and the weighting function /.

The function/is at our disposal. We see from (6.13) that Jn would vanish for an/
sinusoidal in kz. However, unless the whole length of the antenna is a multiple of |X,
there exists no such function with continuous derivative, satisfying the end conditions
(6.6). So we approach a sinusoidal / by a limiting process, jn which (on attaining the
limit) the continuity of the derivative is lost, but (6.14) remains true.

Let e be any small positive number. We define a function/^z, e) as follows:

h < z < — e : K^f^z, e) = —sin kl2 sin k(k — z), (6.15a)

— e<z<e : K(e)fi(z, «) = K(e) cos kz + $ sin kz sin k(k + l2)
(6.15b)

— | cosec kt sin k{l2 — Zi)(l — cos kz),

e < z < l2 : K{t)fi(z, e) = —sin kh sin k(l2 — z), (6.15c)

K(e) = — sin kli sin kl2 — \ tan Jfce-sin k(l2 — k). (6.16)

To avoid complicating the argument, we assume

sin kli 9^ 0, sin kl2 ^ 0. (6.17)

This means that neither arm of the antenna, measured from the center of the gap, is a
multiple of JA. Such critical cases must be approached by a special limiting process.
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We note that ^(2, e) is continuous, with continuous first derivative, and satisfies

| 2 | > e : /r(2, €) + k2Mz, e) = 0, (6.18a, c)

I. I <«: /:'<*, •) + ViM <) = -"'Swl'J0- <618b>
Then, by (6.13), in an obvious notation,

"*» = /'. *<«> *■ <619>
Let us write

/,(2) = lim /i(2, «), (6.20)
•->0

so that
U < z < 0: /1 (2) = sin k(U — 2)/sin kli , (6.21a)

0 < 2 < l2 : /1 (2) = sin &(Z2 — 2)/sin &Z2 . (6.21c)

Proceeding to the limit e —» 0 in (6.19), we get (since <£(0) = 1)

Ju(4>, /,) = fcir, r = sm f/2 ■ 7Zl7}.
- sin A:?! sin fcZ2 (6.22)

Let us now put/](2, e) for/(2) in (6.14) and proceed to the limit e —> 0. In this limiting
process, /1 (2, e) and its first derivative remain finite in the whole range (^ , Z2), and so
the contributions to J12 , J13 , J2 from the range (— e, e) vanish in the limit. Thus we
get

7 _ kLT + /1) + Oftj /1) + «/2(<ft, /1) ,A OQ^
«*■ fi; N(z)fl(z) dz ' (6"23)

whereZ^) is as in (6.21) and T as in (6.22); L = —ln(fc2a2).
This is accurate, and indeed holds for the general N of (5.4) as well as the more

particular N of (5.9). The fact that f, (2) has a discontinuous first derivative at 2 = 0
creates no trouble. It is of course understood that in evaluating ,/2 by (6.10) and JV1 ,
J13 by (6.12), we are to put

. x(z, Zo) = -0'(z)/i'(zo) + /c20(z)/i(zo). (6.24)

On substituting for N from (5.9) in the denominator of (6.23), we obtain

z — ~4TCJC}1 + Ji-M, fi) + Jute, fO + J'M, /1)},

(6.25)
, _ sin kg j 1 — cog kt)

kv + 5 kr,

This is the formula we shall use in the later work. It is accurate except for the approxi-
mation involved in (5.9).

Note: Do not confuse the range (—e, e) with the gap (— 77, 77). The former is merely
a mathematical device, introduced to eliminate 4> from the first term in the numerator
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of (6.23). As a matter of fact, we shall make no further use of this e; it has done its
work in providing the formulae (6.23), (6.25).

7. The thin antenna. We cannot expect to get results for an antenna of general
form without a considerable amount of calculation. But if the antenna is thin, the large-
ness of L may be used as a basis of approximation. In the present section we obtain
the principal parts of the current and impedance for a thin antenna. This current is,

■€

Fig. 13. Cylindrical antenna with spheroidal ends.

in fact, the familiar sinusoidal distribution. The present derivation of this distribution
may be of interest because previous derivations have been by no means clear. More-
over, in the present method, it is not necessary to assume that the antenna is cylindrical;
it is merely necessary that the radius R be small throughout. The ends of the antenna
require no special treatment. Further, our formula for impedance contains a shape
term. The method of the present section does not open up a process of successive ap-
proximations; that will be given in Sec. 10.

It will be well to mention here assumptions which will be introduced explicitly later:
The antenna is thin at the gap (ka « 1). (7.1)
The antenna is thin throughout (kR(z) « 1, h < z < l2). (7.2)
The gap is long compared with the radius (a/tj « 1). (7.3)
The gap is short compared with the wave length (krj <SC 1). (7.4)

Obviously (7.2) contains (7.1).
We turn back to the exact formula (6.14), in which f{z) is arbitrary. By (6.13) we

have

Jn = L /"' {*"(«) + k2<t>(z)}f(z) dz. (7.5)
J ii

We rearrange (6.14) in the form

['' {<f>"(z) + k2<p(z) - %-kc]zZL~xN(z)}f(z) dz = -L~\Jl2 + J13 + J2). (7.6)
Ju

Now make the assumption (7.2). Then L is large and the right hand side of (7.6) is
small of order LT1, provided <t>(z) and <f>'(z) remain bounded as L tends to infinity. Since
/ is arbitrary except for the end conditions (6.6), it follows from (7.6) that

*"(«) + lc%{z) - i-KcliZL~lN{z) = L_1SF(z), (7.7)

where 5(z) is some finite function. Integration gives

<p(z) = a cos kz + @ sin kz + iirckZL'1 f N(t) sin k(z — t) dl + L_1 g(z), (7.8)

where g(z) is some finite function. This solution is subject to the three conditions (6.4),
and if we knew g(z) we could find a, /3, Z. But we do not know g(z), and can merely
make use of the fact that the last term is of order L~l.



1948] THE GENERAL PROBLEM OF ANTENNA RADIATION 139

Whatever g(z) may be, the three equations for a, f}, Z are consistent provided

sin kh / N(t) sin k(li — t) dt
J n

sin kl2 / N(t) sin k(l2 — t)
Jo

dt

* 0. (7.8a)

Let us make the assumption (7.3), so that we may use (5.9) for N. Then the above
condition for consistency reads

(1 — cos kt)) sin k(l2 — li) + 2 sin krj sin kli sin kl2 ^ 0. (7.8b)

Assuming that krj, kh , kl2 are such that this inequality is satisfied, we obtain a, 13, Z
from (6.4), and substitution in (7.8) gives accurately

*(«) = <h(z) + ZT'Ofc), (7.9)

-X + £ l
Fig. 14a. Infinitesimal gap at center.

where J2(z) is an unknown finite function and 4>i(z) is given by

h < z < rj : JffoJfcGr) = —sin kl2 sin k(h — z), (7.10a)
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-I -A z-T] o f
Z.

Fig. 14b. Finite gap (t? = 1/4) at center.

— y<z<y '■ K(y)4>i(z) = K(v) cos kz + \ sin k(h + l2) sin kz
(7.10b)

— \ cosec kt\ sin k(l2 — W(1 — cos kz),

rj < z < l2 : K{ri)4>^z) = —sin kh sin k(l2 — z), (7.10c)

K(ri) = — sin kh sin kl2 — \ tan %kt] sin k(l2 — li). (7.11)

(These formulae should be compared with (6.15), (6.16). Note that l2 — h is the length
of the antenna.)

Physically, <£i (z) represents the principal part of the relative current for a thin
antenna with a gap which is long compared with the radius of the antenna, and becomes
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a better approximation the thinner the antenna becomes. Graphs of ^(z) are given
in Figs. 14a-g (for discussion, see Appendix, p. 155). Outside the gap, <t>t(z) has the
sinusoidal distribution, so basic in antenna theory.

To get the impedance, we substitute for 4> from (7.9) in (6.25). This gives

^ ~ ~~4mich ^12^1 ' ^ > /») + , fi)

(7.12)
+ L fi) + Ji3(fl, fi) + J2(0, /1)]}.

Here everything is known, except 0.
Let us sinn up:
For a thin antenna with a gap much longer than its radius, the relative current is given

by (7.10), with an error of order L-1, and the impedance is

— Atrckh > /1) + > /1) + , /1)}, (7.13)

Fig. 14c. Finite gap (7; = 1/2) at center.

with an error of order L~x. Here

L = —In(k2a2), a — radius at gap, k — 2ir/X,

sin ltt] , , „ 1 — cos k-n , ^ N .
h = -^- + -,V kri , ( V <2 < 77) is gap, (7 14)

r = S|n .—fy = cot kli — cot kl2 .sin kk sin kl2
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We must remember that /i is given by (6.21) and does not depend on e, whereas 0i is
given by (7.10) and does depend on 77.

On account of the assumed thinness of the antenna, we can simplify the expressions
(6.10) for J2 and (6.12) for J13 . In fact, we shall put R — 0 in J2 and J13 , since the
consequent error is of order ka, and so is negligible in comparison with IT1. Thus we
write

= \u x(-e'z)hl^fdz'

J13 = [ x(z, z) In [4k\l2 - z)(z - li)] dz,
u (7.15)

J2 = / / | z ~ Zo |_1{x(*> Zo) exp ik \ z — z0 | — x(z, z)} dz dz0 ,
Jh Jl 1

x(z, Zo) = -4>i(z)fi(zo) + fc2</>i(z)/i(z0).

We note that the shape of the antenna is now involved only in J12 , and that there is
no contribution to J12 from cylindrical parts of the antenna.

Putting Zx = Ri — iXi , the approximate resistance and reactance are (with an
error of order L"1)

Ri —  tTl J22 J
1_

Awckh
(7.16)

Xi = {kLT + J12 + J a + J 21),

where
J21 22 ~ J2 • (7.17)

Thus the resistance is independent of shape.
8. Thin antenna with short gap. The calculation of the impedance from (7.13) is

direct. The result will, of course, depend on the gap-length 2-q, and will be very involved
on account of the complexity of (7.10). Let us therefore, for simplicity, introduce the
assumption (7.4); we consider the gap short compared with the wave-length, but still
long compared with the radius of the antenna.

If k-q is small, h = 1 approximately. Further, by (7.10), we have approximately

h < z < 0: 0i(z) = sin k(li — z)/sin kl 1 , (8.1a)

0 < z < l2 : 0i(z) = sin k(l2 — z)/sin kl2 . (8.1c)

(Note: the consistency condition (7.8b) becomes sin kl 1 sin kl2 ^ 0 for small kij.)
On comparison with (6.21), we see that 0i = /1 . This greatly simplifies the work by
introducing symmetry. We have

x(z, Zo) = -0i'(z)0i'(zo) + &20i(z)0i(zo), (8.2)
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and so

£ -Ho
Fig. 14d. Infinitesimal gap at point dividing antenna in ratio 3:5.

li < z < 0 : x(z, 2) = — k2 cosec2 kl 1 cos 2k(k — z), (8.3a)

0 < z < l2 : x(z, z) = —&2 cosec2 fcZ2 cos 2k(l2 — z), (8.3c)

z < 0, z0 < 0 : x(z, 20) = —k2 cosec2 klx cos k(2lx — z — z0), (8.4aa)

z > 0, z0 < 0, or z < 0, z0 > 0 :
(8.4ac)

x(z, z0) = —k2 cosec kli cosec kl2 cos k{l 1 + Z2 — z — z0),

z > 0, z0 > 0 : x(z, 2o) = —A:2 cosec2 &Z2 cos fc(2Z2 — z — z0). (8.4cc)
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It is best to combine J13 and J2 in (7.15). We have

// | z - z0 r.x(z> 2) dz dz0
to

(8-5)
= [ x(zi 2) ln[4fc2(i2 — z)(2 — Zj)] dz — 21n(2ke) f x(z, 2) dz.•'ii •'ii

Here //(t) means integration over the square , l2) with omission of the strip \ z — z0\ <
(. Now

J2 = lim / / | z — z0 rMxfe 20) exp ik \ z — z0 | — \{z, z)} dz dz0 , (8.6)

and so

J13 + J2 = lim / / | z — z0 r'xfc 2») exP ^ I 2 — 20 I dz0
«—»o LJJto

+ 21n(2/ce)ji x(2, 2) dzj.

o

Fig. 14e. Finite gap (rj = i/4) with center dividing antenna in ratio 3:5.

(8.7)
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This double integral is best evaluated by rotating the z, z0 axes through half a right
angle in the plane of the integral. It is convenient to introduce the function

$(x) = f -—-—- dt = Ci x + i Si x — In yx, In 7 = 0.5772. (8.8)
J 0 *

We find

(J\3 J2)/k — (c2 Ci) In A 727272
(h - *.)'

4 k2l\ll

+ $(4 kl) {c2 — c, — i(c,c2 + 1)}

— $(2 kl2){c2 — c-! + ic2(c2 — c,)j

- $(-2kh){c2 — Cx — ici(c2 — Ci)},

c2 = cot kl2 , Ci - cot kli , 21 = l2 — Zj = length of antenna.

(8.9)

O i. S>

Fig. 14f. Infinitesimal gap at point dividing antenna in the ratio 1:3.

When we substitute from (8.9) in (7.13), we get the following expression for the
principal part of the impedance of a thin antenna, expressed in ohms (1 Heaviside unit =
120 7rc ohms):
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Z\ — Ri — iX i

lil2_ on sin 2kl , ,
sin k | k | sin kl2 \ 1 al

+ $(2Jfc | lr |)(i — cot k | lx |)

— $(4kl)(i — cot 2kl)

(8.10)

+ $(2kl2){i — cot kl2) f — iX

where
,0 !

X, = 30./!2/A = —30/c cosec2 fcZi / cos 2A;(^ — z) In 7777-.

f1' a'—30k cosec2 kl2 J cos 2k(l2 — z) In

dz

(8.11)
dz.

Here z = lx , z — l2 are the ends of the antenna (lt < 0 < l2); the gap is short and at
z = 0; 21 is the length of the antenna; a is the radius at the gap, and R(z) the radius
at the general point; k = 2x/A, where X is the free wave length.

If we take the gap at the middle, then —l1 = l2 = l, and (8.10) becomes

7i\ = 60 cot kl{2i hi (I/a) — $(4/cZ) (i — cot 2kl)
(8.12)

+ 2<£(2kl)(i — cot kl)} — iX, .

Except for the shape term X, , this agrees with the formula given by Brown and King1
using the method of Labus.2 There is also agreement with the principal part of Schel-
kunoff's formula3 and with the formula of Hallen.4 Schelkunoff's treatment of the
influence of shape is difficult to follow. Hallen includes a shape term in his equation
(26), but later specializes to a cylindrical antenna, so that a formula such as our (8.11)
does not occur explicitly in his equation (39). Owing to the inadequate treatment of
the gap in the work of Hallen and Schelkunoff, the validity of their higher approxima-
tions is open to question. It must be remembered that an error of the order L-1 is ad-
mitted in our formulae (8.10), (8.12).

In (8.12) it is not assumed that the antenna has z — 0 for equatorial plane of sym-
metry. Deviation from this symmetry influences X, , but not the other terms.

Let us consider an antenna with the gap at the center and total length nearly §X,
so that

kl = + «, (8.13)
where «is small. Then, approximately, with errors of orders t and t respectively,

cot kl — —e, cot kl cot 2kl = — |. (8.14)

[G. H. Brown and R. King, Proc. I. R. E. 22, 457-480 (1934).
*J. Labus, Hochfrequenztechnik und Elektroakustik 41, 17-23 (1933).
3S. A. Schelkunoff, Proc. I. R. E. 29, 493-521 (1941).
4E. Halite, Nova Acta Reg. Soc. Sci. Upsaliensis 11, No. 4 (1939).
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Then we may neglect parts of (8.12) and write

Zn = R, - iX1 = -120ie In - - 30$(2tt) - iX. ,a

R, = 30(log 2tt7 - Ci 2tt) = 73.13,

X1 = 120« In l- + X. + 30 Si 2tt,

= 120e In - + X, + 42.54.a

(8.15)

a i
Fig. 14g. Finite gap (y = 1/4) with center dividing antenna in the ratio 1:3.
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The case where the antenna is approximately of total length JX, but with the gap
not at the center, is also of interest. Again we have (8.14), and substitution in (8.10)
gives approximately ■

Zx = —30 cosec kl2)$(2x) + 4ie In l\ l2
} - iX. ,al

Ri = 30 cosec2 kl2(In 2iry — Ci 2x) = 73.13 cosec2 kl2 , (8.16)

l\l2Xi = 120e cosec kl2 In al + X, + 42.54 cosec kl2

Thus, by moving the gap away from the center of the antenna, we increase the resistance,
but the tuning of the antenna to make = 0 is more difficult, because the derivative
of X, with respect to e is greater.

We see that the problem of matching the antenna to a coaxial line, as far as reactance
is concerned, depends on the shape term X, in an important way. This term is discussed
in the next section.

9. The shape term in the reactance. Let us consider the term X, , given in (8.11).
For simplicity, let us assume that the gap is at the center of the antenna and that the
antenna has an equatorial plane of symmetry (z = 0). Then (8.11) reads

f1 a2
X, = — 60/c cosec2 Id / cos 2k(l — z) In s,2 dz, (9.1)

J o

21 = length of antenna.

We note that X, receives no contribution from cylindrical portions of the antenna.
We can now settle the vexed question of contribution from the ends of a cylindrical

antenna, by supposing the antenna to be a cylinder (R = a), terminated by spheroids
of semi-axis b (Fig. 13, p. 138). Then on the ends

(mi (z-i+ by __. .
a2 + b2 ~ L ^

No assumption is made at first about the magnitude of b. Equation (9.1) gives

X, = 60fc cosec2 kl [ cos 2k(l — z) ln[l — (z — I + b)2/b2\ dz. (9.3)
J l-b

Since the logarithm breaks into the sum of two logarithms, this integral is easily evaluated
in terms of Ci and Si functions; we find

X, = 30 cosec2 kl{sin 4kb(Ci 4kb — Ci 2kb)
(9.4)

— cos ikb Si 4ckb — (1 — cos 4kb) Si 2kb}.
If kb is small, this approximates to

X, = 120 kb. cosec2 kl. (In 2—1) ohms. (9.5)

Since this tends to zero with kb, we see that there is no contribution to reactance from
the ends of a cylindrical antenna cut off square at the ends. (Of course, "contribution from
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the ends" implies some mathematical division of reactance into "contributions" of
various sorts; our statement refers to the division we have made in using the integral
(9.1).) In fact, X, = 0 to our order of approximation if the ends are rounded for a length
b comparable to the radius a of the cylindrical part even for non-central gap.

Spheroidal antenna. The impedance of a spheroidal antenna can be calculated ac-
curately by means of spheroidal functions.5 However for a thin spheroid, the present
method may be used. Let us take the gap at the center. Then

(.R{z))2/a2 = (Z3 - z2)/l2, (9.6)

and so by (9.1)

X, = 60k cosec2 kl f cos 2k(l - z) ln[(Z2 - z2)/l2] dz
Jo

= 30 cosec2 kl{sin 4fcZ(Ci ikl - Ci 2kl) (9'7)

— cos 4fcZ(Si 4kl — Si 2kl) — Si 2kl}.

For I = X/4, kl — It, we have

X. = -30 Si 2x. (9.8)

Referring to (8.15) with e = 0, we see that Xt = 0; the reactance of a thin spheroidal
half-wave antenna (with the gap in middle) is zero. This fact is mentioned by Schelkunoff
(loc. cit.), but the reason for this statement is not clear.

Conical antenna. For a symmetrical thin conical antenna fed at the vertex, we put

R(z) = (3z (9.9)

where /3 is the semi-angle of the cone. Equation (9.1) gives at once for the shape term

X, = 120 cot kl In ~ + 60. (9.10)

For the approximation to be valid, we should take /3 of the same order as ka.
Graphs of impedance are given in Fig. 15 (see Appendix).
10. Successive approximations. The method of Sections 7 and 8 gives the principal

part of the impedance for a thin antenna, but it does not open up a method of successive
approximations. To get such a method, let us return to the exact integral equation
(6.3) and write it in a slightly different notation as follows:

- f' ' 2) <t>(t) dt + k2 ['' iKt, 2)0(0 dt = iirck2ZN(z), (k < z < l2). (10.1)
Jix oz ot J11

Let us introduce the integration operator S such that

Sf(z) = [ f(t) dt. (10.2)
J 0

V

5J. A. Stratton and L. J. Chu, J. Applied Physics 12, 241-248 (1941); L. Infeld, Q. Appl. Math. 5,
113-132 (1947).
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0 1.0 Z.O 3.0 4.0
Fig. 15a. Resistance of thin antenna with infinitesimal gap at point of quadrisection.

Then

= _ J^'^ dt + (10.3)

= ~Jt dt - A,
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•on account of (6.4). Here A is a constant,

A = [ ' tft, 0)<*>'(<) dt. (10.4)

Now we operate on (10.1) with S2; this gives

S f' f(t, z)<t>'{.t) dt - As + k2S2 f' z)<f>(i) dt = iTck*ZS2N(z). (10.5)

1oooo

1060

a-ao
a

100

-100

-I oeo

M 4-. 6

Fig. 15b. Reactance of a thin cylindrical antenna with infinitesimal gap at point of quadrisection.
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To treat these integrals, consider the operator B, defined by

Bf{z) = S [ i(t, z)f(t) dt
Jh

= J f(t) dt J y) dy ^10'6-)
Jli J0

= BJ(z) + BJ(z),
where

Then

BJ(z) = fit) dt jT [r(t, y)]2 = [fl«)]2 + (y~ t)2

where

(10.7)

r c< \ f' l, 2 ~ 1 + {[5(<)]2 + ^ r<,\ n
BJ(Z) ~ L 111 -*+(tw + <2r m

= + £*) In fc[z - t + {[fl«)]2 + (z - <)2}1/2]/(0 <*<

- (f° + £") In k[-t + mt)T + <2}1/2]/«) dt

= (]' - J') hxk[\z- t\+ j[fl«)]2 + (Z - mm dt (10.8)

- (£ - £") In M M I + {[^(<)]2 + <2}1/2]/(0

+ f ' In[kR(t)]2f(t) dt - ['' \n[kR(t)]2f(t) dt
J 2 Jq

= B:J(z) + BJ(z) - In(kW)Sf(z),

Bsf(z) = ( f - £') In k[ |z - t | + {[i?«)]2 + (2 - <)2}1/2]/(<)

- (j^° - £") In *[ | t | + {[«(#]■ + tr/2]f(f) dt, (10.9)

BJ(z) = f ln[a/fl(0]a/«) (tt.
•'O

In the notation of (10.6), (10.5) reads

B<t>'(z) - Az + k2SB<t>(z) = ivck2ZS2N(z), (10.10)
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or, since S<t>'(z) = <j>(z) — 1,

LfoCO - 1 + k2$%{£)] + F<t>(z) - Az = iwck2ZS2N(z), (10.11)

where L — — In /c2a2, and F is the operator

F = (B2 + + B4)D + k2S(B2 + B3 + Z?4). (10.12)

Here D is the derivative symbol. Equation (10.11) gives

(1 + k2S2)<p(.z) = 1 + L~lAz - L~1F<t>(z) + L~liirck2ZS2N(z). (10.13)

8

s
■$ S
bCc

>a
*

S +
£
0

1?Xi
bD

1 3s
*9Ej
O

Ain

K= 8

K= 12.

z£ ■

Gap [<—

0 .2, .4- £ 8 A. 10
L

Fig. 15c. Resonant length of a thin cylindrical antenna with flat ends and infinitesimal gap at
different points.



154 J. L. SYNGE [Vol. VI, No. 2

Now the operator P inverse to 1 + k2S2 is easily found. It is

(1 + W7(*) = Pf® = m -k f sin k(z - dt. (10.14)
Jo

This means that for an arbitrary _ function f(z) we have P(1 + k2S2)f(z) =
(1 + k2S2)Pf(z) = f(z); this is easily verified.

In particular, we have

P. 1 = cos kz, Pz = k~l sin kz. (10.15)

Thus (10.13) gives

<t>(z) = cos kz + L-'Ak'1 sin kz - L^PF<f,(z) + L~\Tvck?ZPS2N(z). (10.16)

This is a transform of the basic integral equation (6.3). It is exact because in deriving it,
we have not actually used the approximation (5.9). With (10.16) we are to associate
the boundary conditions (6.4). The first of these is satisfied automatically. The others
give

cos kl, + L-'Ak'1 sin kl, - L~lTuPF4>{z) + L-1iirck2ZTlxPS2N(z) = 0,
(10.17)

cos kl2 + L~lAk~1 sin kl2 — IJ~iTi,PF<f>(z) + L~li%ck2ZTuPS2N(z) = 0.

Here Tu , Tu are substitution operators, meaning "put z = li , or z — l2 , finally."
We now eliminate A and Z from (10.16), (10.17); this gives for <f>(z) the equation

4>{z) — cos kz + L~1PF<j>(z) sin kz PS2N(z)

— cos klt + LTXTuPF<t>(z) sin Wi TtlPS2N(z) = 0. (10.18)

— cos kl2 + L~1Ti,PF<j>(z) sin kl2 Tl2PS2N(z)

Remembering that N (z) is known, the plan of solving by successive approximations
is now obvious. We are to substitute <j> =' in the PF column, being some initial
approximation, and solve, obtaining <j>2 . Then <j>2 is to be substituted in the PF column,
and the equation solved, giving <p3; and so on. At any stage, we might get Z from (10.17)
but it seems probable that a better value will be given by (6.23) or (6.25).

Under the assumptions (7.1), (7.3) we have (5.9), and hence we can calculate PS2N(z).
In general

Pf(?) = f(?) ~ k f f(t) sin k(z — t) dt

= /(0) cos kz + [ Df(t)- cos k(z — t) dt (10.19)
■'0

= /(0) cos kz + k~1f'(0) sin kz + k'1 [ D2f(t)-sin k(z — t) dt.
J0

Hence

PS2N(z) = r1 [* N(t) sin k(z - t) dt, (10.20)
J a
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Fig. 15d. Shape term in the reactance of a thin cylindrical half wave antenna terminated by
spheroids of semi-axis b (center gap).

and substituting from (5.9) we have

h < z < —r) :PS2N(z) = — 2AT3j7-1[cos k(z + y) — cosfe], (10.21a)

-V <z < v '■ PS2N(z) = -2rV'(l - cos kz), (10.21b)

ti < z < l2 :PS2N(z) = — 2fc~377_1[cos k(z — y) — cosfe]. (10.21c)

It is natural to take as first approximation </h (z), the function obtained by deleting
the PF terms from (10.18). This ^(z) is precisely that given by (7.10). Then the second
approximation <j>2{z) will be given by

<t>2(z) — cos kz + L~lPF<j>x(z) sin kz PS2N(z)

— cos kli + L^TiJPFQ^z) sin kh TuPS2N(z) = 0, (10.22)

- cos kl2 + L~lTuPF4>l(z) sin kl2 TuPS2N(z)

and the higher approximations by similar formulae.

Appendix: notes on figures 14 and 15.
Fig. 14■ Relative current in a thin antenna. The following graphs are drawn from

equations (7.10), which were obtained on the following assumptions:
(i) the tangential electric field is constant over the gap;

(ii) the antenna is very thin, but not necessarily cylindrical with flat ends;
(in) when the gap is infinitesimal (as in Figs. 14 a, d, f) its length is still much

greater than the infinitesimal radius of the antenna.
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The ordinate 0! (z) in each graph is the principal part of the relative current, 7(z)/7(0).
The abscissa z represents position on the antenna. The ends of the antenna are z = ,
z — I2 , and the ends of the gap are z = — r/, z = 77, so that z = 0 is the center of the
gap. Also

k = 2x/A, X = wave length,

21 = l2 — li = total length of antenna.

In each figure graphs are drawn for various values of kl up to kl = ir.
The following points are of interest:
1) When the gap is finite, the derivative of is continuous; when the gap is

infinitesimal, the derivative is discontinuous at the gap, unless kl = \-w or %.
2) The curve for kl = fx (that is, 21 = fX) is always a single sine curve, whether

the gap is finite or infinitesimal.
3) Certain curves are not shown, because they go to infinity. This means that

7(0) = 0 and the impedance is infinite (to this order of approximation). This
occurs for kl = ir (that is, 21 = X) in Fig. 14a. This infinity disappears when
the gap is widened in Fig. 14b. This does not mean that the widening of the gap
eliminates infinite impedance; in Fig. 14b there is-infinite impedance for kl =
8t/7, since this makes K{77) vanish in (7.11). However, when the gap is finite, it
is questionable whether the impedance is correctly defined (for matching pur-
poses) by Z = F/7(0).

For infinitesimal eccentric gaps, we get infinite impedance for kl = 47r/5 in
Fig. 14d and kl = 2tt/3 in Fig. 14f.

4) Fig. 14c has a remarkable feature: the current is constant in the gap for kl = t.
Fig. 15. Impedance of a thin antenna. These graphs are based on equations (8.10)

and (9.1).
Fig. 15a shows the resistance of a thin antenna plotted against kl. The gap is in-

finitesimal and situated at the point of quadrisection. It is interesting to compare this
curve with those given by King0 and Schelkunoff (loc. cit.) for an antenna with central
gap. The effect of moving the gap from the center to the point of quadrisection is to
change the point of great or infinite resistance from kl = ir to kl = 2tt/3. This comes
from the factor sin kl2 in the denominator in (8.10). Further, the resistance of a half-
wave antenna (kl = §7r) is changed by this shift of gap from about 70 to about 140 ohms.

Fig. 15b shows the reactance of a thin cylindrical antenna plotted against kl. As in
the case of Fig. 15a, the gap is infinitesimal and at the point of quadrisection. Graphs
are plotted for several values of the thickness parameter K = In (l/a), where 21 is the
length of the antenna and a its radius. The reactance vanishes not only in the neighbour-
hood of kl = 57r and kl = it, but also in the neighbourhood of kl = 2t/3 = 2.09.

The resonant length of a thin cylindrical antenna (i.e. the length making the re-
actance vanish) is a little less than half a wave length. The shortening below the half
wave length is a function of the position of the gap. This dependence is shown graphically
in Fig. 15c.

Fig. 15d shows the effect of rounding the ends of a cylindrical antenna, as in Fig. 13.
The antenna is half a wave length long and the gap is infinitesimal and at the center.
Flat ends correspond to kb = 0 and a completely spheroidal antenna to kb = ^ir.

6L. V. King, Phil. Trans. Roy. Soc. (A) 236, 381-422 (1937).


