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ON THE STABILITY OF THE SUPERSONIC FLOWS PAST A WEDGE*
BY

G. F. CARRIER
Brown University

1. Introduction. When an ideal1 compressible gas approaches a symmetrically oriented
infinite wedge with uniform supersonic speed, there exist for many wedge angles and
upstream velocity magnitudes two alternative steady flow configurations. Associated
with one of the flow fields is a plane shock which is attached to the wedge vertex and
downstream of which is a uniform subsonic flow. The alternative solution includes a
"weaker" attached shock which is more sharply inclined to the wedge surface. Down-
stream of this shock there also exists a uniform flow field with a larger velocity than
that of the strong shock solution. Usually, in this latter case, the downstream flow is
supersonic but there is comparatively small range of "inlet" conditions for which it is
subsonic. The weak shock is usually observed in experimental work although with
sufficient care one can observe the strong shock configuration.2

It seems of interest, then, to see what a perfect fluid theory will predict in regard
to the stability of these two flows when they are subjected to small time-dependent
disturbances.

In the opening sections of this paper we shall be concerned with the interaction of
small plane disturbances and plane shock waves. The results of both this plane wave
investigation and an independent alternative procedure will then be used to show that
both configurations are stable.

2. The wave equations. The fundamental equations which define the motion of an
ideal compressible fluid are those implying the conservation of momentum, mass, and
energy. A convenient form in which they may be presented is the following [in Eq. (3)
we have already used the fact that p = p0IiT}:

(V • grad) V + dV/dt + po1 grad p = 0, (1)

V • grad (In p0) + d(ln p0)/dt + div V = 0, (2)

(V • grad -(- d/dt)(p/Po) = 0. (3)

Here V, p, and p0 are respectively, the velocity, pressure, and density, at any point in
the field of flow,3 and y is the ratio of the specific heats. We shall be interested in the
superposition of a small disturbance on a known steady flow. It is therefore convenient
to write

V = U2 + a2(grad <p curl E), (4)

V = P2(l + 7 q), ' (5)

Po = p2( 1 + p). (6)

♦Received Sept. 6, 1947; revised March 1, 1948.
'We imply vanishing viscosity and heat conductivity, and the validity of the ideal gas law, p = pRT.
2A. Kantrowitz has successfully produced the strong shock solutions.
3The subscript zero merely distinguishes the density from the variable without subscript which will

soon arise.
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Here, the subscript 2 characterized the state parameters associated with the steady
flow downstream of the shock. The disturbance is characterized by the functions, <p,
q, p, and E. No justification is needed for the foregoing representation of the disturbance
velocity except to note that any vector can be expressed in this manner. In fact, we may
(and shall) still require without loss of generality that div E should vanish identically.

Using now a perturbation process to linearize Eqs. (1), (2), (3), with regard to the
disturbance parameters,4 we obtain the following linear differential equation

Aip - d2<p/df = 0, (7)

dE/dt = 0, (8)

dS/dt = 0. (9)
It is implied in the manipulations which lead to these equations that

q = —d<p/dt. (10)
In Eqs. (7) to (10) (and henceforth) t represents the time multiplied by a2 ; M is the
Mach number | U2 |/ct2 ; A is the Laplace operator; d/dt — d/dt + M2-grad; and S =
q - p.

It is of interest to interpret these equations from a physical point of view. Equation
(7) implies that the function <p represents an acoustic wave which propagates according
to a conventional wave equation. The vector E characterizes that part of the velocity
vector which implies a non-vanishing vorticity and, according to Eq. (8), drifts with
the stream. Finally, S, the linearized entropy, also drifts with the stream. The fact
that these latter quantities propagate in this manner is, of course, well known [4],

3. The boundary conditions at the shock. In this section we shall be concerned
with the formulation of the conditions which must apply at the downstream side of
the shock when the steady flow field is disturbed in the immediate neighborhood of
the shock. We shall be interested only in those situations where the upstream field
remains undisturbed (i.e. either the disturbance originates in the downstream field or
sufficient time has elapsed since its formation so that the upstream field is again free
from any perturbations). Since, for a stationary shock, the Rankine-Hugoniot condi-
tions5 uniquely determine the state variables on the downstream side in terms of the
upstream state variables, no time dependent changes in the field can occur unless we
admit oscillations of the shock locus which have a magnitude consistent with that of
the disturbance functions. At any time t, then, the shock is displaced from its steady
state position by an amount6 yp = \p(/y, z, t). In order to determine the downstream
state variables we must apply the Rankine-Hugoniot conditions to a shock moving
with a velocity and oriented with regard to its equilibrium configuration at angles
\pv, „ Here, we have implied the omission of higher order terms7 in \pv, \pt , ■ ■ ■ . This
linearization is essential if the procedure is to be consistent with that of Sec. 2.

■"Details of such a process may be found in [4]. The most naive approach, however, gives the same
result as a rigorous analysis.

'See [1], [2], [3],
6Here, we choose rectangular coordinate axes as follows: the axis x is normal to the plane of the shock,

the plane z — 0 is normal to both Ui and U2.
'The angles, of course, are actually arctan \j/v , • • • .



1949] STABILITY OF SUPERSONIC FLOWS PAST A WEDGE 369

Before writing down these jump conditions, the following notation must be intro-
duced.8

U3 = iu2 + jt>2 ; Ui = m ;

uf, vf, wf, u*, v*, w*, are the upstream and downstream components of velocity in-

I Disturbed State Shock Position

Steady State Velocities

-■y _ — Disturbed State Velocity

Fig. 1

The coordinate system depicted here is applicable only to the work of Sec. 5. The earlier work
utilizes x = 0 as the shock locus. In this diagram, of course, the z components of velocity are

not visible.

8i, j, k will denote the conventional Cartesian unit vectors.
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stantaneously normal to and tangent to (in planes 2 = 0 and y — 0, respectively) the
displaced shock locus; Su2, 8v2, 8w2, Sp2, 8p2, are the changes in u2, ■ ■ • , p2 , associated
with the shock displacement. From Fig. 1, it is readily seen that (after linearization
with regard to ip„ , iz)

uf = m, — , vf = v1 + , (11)

U* = u2 — V2ipv + 8u2 , vf = v2 + u2\pu + 8v2 , (12)

wf = ux\l/z , w$ = u24'>z + 8w2 . (13)

The Rankine-Hugoniot conditions may now be written in the forms

Pi(wf - it) = (p2 + Sp2)(ut - ft), (14)

Pi + pi(w* — i,y = p2 + (p2 + 8P2)(u% - ity, (15)

yR(Tt - T2)/(y - 1) + (uf - it)2/2
(16)

—■— (8p2/p2 — 8p2/p2) + (uf - i,)2/2(7 — 1 )p

v? — v$ , wf = wf . (17)
If we now substitute Eqs. (11) to (13) into Eqs. (14) to (17), linearize with regard

to all disturbance parameters (i.e. 8u2 , 8p2 , ■ ■ ■ , \pv), and utilize the identities9 piM, =
p2u2 , • • ■ , we obtain

S«2 a22 + u22 — (7 — l)u^u2 „ , J , , v2 , \
— = -3. 3 (1 - Pi/P2)l it + — iJ (18)
U 2 1^2 H2 \ U'2 /

~ = (1 - Pi/p2)(ui/a2) iv (19)
a 2

= (1 — Pi/P2)(ui/a2)ipc (20)
&2

8p u2 2a2 + (7 — 1 )(ul - u1u2) „ . , J , , v2 ,
= — —   ~2—-5 • (l — Pi/P2J1 it + — it

/p2 Ct 2 &2 u2 \ o2yp2

8p

(21)

- f = "(7 ~ 1) (1 - pw pJi, + J *,) (22)TP2 P2 ^2 \ CI 2 /

The five quantities on the left sides of these equations must be associated with
the values of grad <p + curl E, — d<p/dt, and S, on the plane x = 0. In fact, if we now
take 7 = 1.40, and define m = u2/a2 , n = v2/a2 , and use the fact that10 UiU2 = a*2 —
(7 — 1)1*2/(7 + 1); we can write the boundary conditions in the form

'These identities, of course, are the steady state Rankine-Hugoniot Conditions.
10Here a* is the critical velocity.
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[grad <p + curl E]*.,, = (1 - Pl/p2)[ial(^l + mpy) + j«2&, + ka2>^], (23)

[—d<p/dt]x„0 = (1 — pi/p2)oc3(^i + n\p„), (24)

[<S]*-o = (1 — pl/p2)a4(^( + niv), (25)
where

«! = (2 + 4m2)/3(l - m2), (26)

«2 = (5 + m2)/6m, (27)

a3 = —m(5 + m2)/3(l — ra2), (28)

<*4 = -(1 - m2)/3m. (29)
4. The interaction of a plane acoustic wave and a shock. Let us now consider the

hypothetical situation where the semi-infinite space x > 0 is unobstructed so that a
uniform field exists downstream of the shock located at x = 0. Furthermore let us
consider solutions of Eqs. (7), (8), (9), subject to the boundary conditions (23), (24),
(25), which are of the form11

V = Af(t - fr - vy - fz) (30)

E = (LB + jC + kD)f(t - <rx - yy — fz) (31)

S = Ff(t — ax — r/y — fz) (32)

* = Gf(t ~.vy - fz). (33)
This form implies that the disturbance consists of a plane acoustic wave with wave
fronts £x + i\y + fz = const, and of similar vorticity and entropy waves. In order
that these waves obey Eqs. (7), (8), (9), one sees by a simple substitution that

t + v + f - (1 - mi - n„)2 = 0 (34)
and

1 — ma — mi = 0. (35)
Here, we have used the notation of the foregoing section in writing d/dt = d/'dt +
m d/dx + nd/dy. The boundary conditions at x = 0 are given by Eqs. (23). (24), (25),
and in this case (supplemented by the condition div E = 0). They take the form

A—£ 0 f — y —«i(l — n)

— ?7 — f 0 <7a a 2

— f V —or 0 a2

0 a ri f 0

■ m — n 0 0 0 <x3(l — nri)_

B

C

D

G

= 0 (36)

"It will turn out that these solutions are certain eigenfunctions. We shall interpret them later.
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and

F = «4( 1 - «>?)<?. (37)

It is readily shown that this implies B = 0, and that Eq. (36) can be reduced, with
the aid of Eq. (34) and (35), to the form

1 - M1
4 + 8m:
5 + m*

0 1 1
= 0, (38)

1 0 — 2m

where m = [1 - W + f2)(l - m2)/{\ - nrj)2]1'2. (39)

The solution of Eq. (38) is

M = — m ± (1 — ra2)/(5 + m2)1'2, (40)

and implies that

{ = (1 - nv)[± (5 + to2)" 1/2 - 2m/(l - to2)]. (41)

Before attempting to interpret this class of solutions, we must establish some supple-
mentary facts. Using the relations12

uxu2 = a*2 — (y — 1K/(t + 1), (42)

(a0/a2)2 = 1 + (7 — 1)(to2 + n)/2, (43)
ana

2al/{y + 1) < u\ + v\ = u\ + v\ < 2a0/(y — 1). (44)

(the first inequality is implied by the second law of thermodynamics) we may conclude
that the range of physically possible flows is given by

0 < n2 < oo, (7 — l)/27 < to2 < 1. (45)

This in turn implies that the bracket in Eq. (41) is always negative for such flows.
Finally Eq. (40) implies that 1 — m2 never vanishes or becomes singular; Eq. (39) then
implies that (1 — nrj)2 never vanishes or becomes singular, and hence (1 — nij) is always
positive. These conclusions require that £ be always negative [see Eq. (41)] and we
have established that no waves of the form given in Eqs. (30) to (33) can be downstream
moving waves. That is to say, a negative £ implies a wave moving in the negative x
direction.

The waves implied by the foregoing analysis can now be interpreted in the following
manner. A plane acoustic wave with wave fronts & + -qy + fz = t impinges on the
shock at x = 0 and reflects not as an acoustic wave but as an "entropy wave" S and
a "vorticity wave" E. In general, of course, an acoustic wave moving into the shock
would reflect as a combination of entropy, vorticity, and acoustic waves, and hence
the foregoing solutions are those eigen-solutions for which the amplitude of the acoustic
reflection vanishes.

I2Here, a0 is the stagnation acoustic velocity of the steady downstream field.
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If one wished to consider the general reflection problem, the following procedure
would be indicated. Eq. (30) would be replaced by

<P = AJ(t - ZxX - ny - fz) + A2f(t - %2x -tjy - fz),
where for given tj and f the values of £, and £2 are the two roots of Eq. (34).'In this prob-
lem the incident wave is represented by A,f(t — • • • — fz) and thus Al and the function
/ are known. The boundary value problem of determining the reflection is treated as
before, but now the equation replacing Eq. (36) is non-homogeneous and thus there
are not eigenvalues to be found but rather one obtains the coefficients A2/Al , C/Ax ,

S. The wedge flow stability problem. Let us consider the foregoing field of flow
where now, however, we insert a solid boundary along the plane my — nx = 0 (i.e.
along the direction of the vector U2). We are interested in the existence within the
region above this plane (i.e. the wedge surface) of oscillations which occur without
the aid of external excitation. The boundary conditions which now apply are those
already formulated for the boundary x = 0, the condition that the velocity component
normal to the wedge surface vanish at the wedge, and the requirement that the wave
be outgoing.

Let us now consider that an acoustic disturbance which vanishes outside of a region
R iVa < y < Hi) exists in the field. This disturbance may be considered as being com-
posed of plane waves.13 Some of these waves are moving away from the origin. Within
a finite time these waves leave the region R and neither they nor their reflections from
shock and wedge can return. Any waves moving toward the origin reflect appropriately
from wedge and shock and, within a finite time, reach the origin. Here the nature of
the combined reflection is not evident. In fact, if the region R is to be disturbed for
more than a finite time, the disturbance introduced at the origin must be self-sustaining
once it is initiated. It is evident, then, that we must look for an eigenfunction of our
problem in a form that defines the behavior near the origin. In the following, we shall
not worry about convergence in the large. The solutions considered will be of a type
such that the leading terms of the expansions determine the eigenvalue. This will turn
out to be such a value that whether the function is defined over the complete region
or not, the solutions desired do not exist. We shall first consider those flows for which
the down-stream field is supersonic.

It is convenient at this stage to use a coordinate system such that the x-axis is rotated
about the z-axis into the upper wedge surface. Using this rotated coordinate system
(see Fig. 1), we may write solutions of Eqs. (7), (8), (9), in the form

ip = f(x ,y) exp {ic[t — Mx/(M'2 — 1)]} cosaz, (46)

E = [{iF(y) + jG(y)} sin az + kH(y) cos az] exp \i<\j ~ ~ _ n]} (47)

S = S(y) exp {ic[t — x/M — \y/M(M~ — 1)]} cosaz. (48)

Here f(x, y) must satisfy

  U - U(.M2 - 1) + k2f = 0 (49)

"Either a discrete set or a continuum of such waves may be needed here.
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where k2 — c2 / (M2 — l)2 + a2/(M2 — 1), and E and S satisfy Eqs. (8), (9) independent
of the dependence on y of F, G, H, S(y). We may also write

ip = g(y) exp {ic[t — M\y/{M2 — 1)]} cos az. (50)

Finally, defining fi2 = M2 — 1, r2 = x2 — ft2y2, 6 = arc tanh f3y/x, solutions of Eq. (49)
may be written in the form,

y) = Jv(kr) cosh vd. (51)

These functions are such that fy vanishes at y = 0 and is non-singular at the origin if
the admissible values of v are governed by Re(v) > 0. This latter condition will be
critical in determining the stability of the flow. Using Eqs. (46) to (48) and (50), the
boundary conditions Eqs. (18) to (22) and the condition div E = 0 may now be expressed
in the following form.

7 c M
fAy, y) ~ M2 _ 1 ffry, y) + H'(y) - <*G(y) = A1g(y) + Rig'iy), (52)

fv(\y, y) + «F(y) + ~ II(y) = A2g(y) + B2g'(y), (53)

a(:
M

M2 "1 1 f(\y, y) - Mfx(\y, y) = Atg(y) + B4g'(y), (55)

<%) = A5 g(y) + B5g'(y), (56)

~ F(y) + G'(y) - aH(y) =0. (57)

The number At , S,- , given here can readily be deduced from Eqs. (18) to (22) and are
functions of two parameters14 say m and n.

Let us now consider the function
CO

/ = Z) <W.+m(z, y) (58)
M = 0

as defined in Eq. (51). This choice for / and the associated choices of F(y), ■ • • S(y)
are to satisfy Eqs. (38) to (43). We can anticipate that such functions will be appropriate
only for certain eigenvalues v. Let us assume, for the moment that v ^ 0. Then we
must write

F(y) = 11 b»J,+l>(k£y),
M = 0

G(.v) = Z c„J,+„(kZy),

where f = (1 + X2 - M2)l/2.

"Actually, in Eqs. (18) to (22), they are given as functions of «i , uj, v2, as • • • , but each of these
can be written as «i = Ui(m, n), • • ■ .

M = 0
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If we now substitute these functions into Eqs. (52) to (57) and segregate the equalities
in the coefficients of </„+„(& £ y) for each n, we find that the equality in the coefficients
of Jv-iikty) constitutes a homogeneous condition for the eigenvalue. The remaining
equalities constitute non-homogeneous systems from which the a,- , 6, , • • • , for j > 0
may be evaluated.

If one carries out the foregoing process, the characteristic equation for v can be
written (after algebraic reduction)

/3 sinh (v — 1) 6„ B2

-M cosh (i> — 1) d0 Bt
= 0, (59)

where 60 = arc tanh (/3/X). It is also implied that the lowest order non-vanishing co-
efficient bn corresponds to n = I whereas the lowest order coefficient in H is d„ . Thus
the boundary condition at y = 0 can be satisfied only if Ii(0) = 0, i.e. only if lie(v) > Q.
It can readily be shown that B2 < 0, Bt < 0, /3/X < MB.JfiBi < X//3, for all wedge
flows.15 This leads to the fact that Re(v) < 0 for all such flows. It is therefore evident
that the type of disturbance defined here does not exist.

Before these considerations can be interpreted as implying the non-existence of
eigenfunctions of the type sought (i.e sustained oscillations), one more detail must be
supplied. It is quite possible that any such eigenfunction might have a branch point at
the origin which was not of the type admitted by the Bessel function expansion.16 For
example, one might expect that, near the origin, the wave function behaves like
r*(ln r)h(d). That this is not the case can readily be shown. Without algebraic detail,
in fact, the procedure is the following. We consider a solution of the differential equation
(7) in the form of an expansion whose leading term is r"(ln r)h(6), and define appropriate
functions E and S consistent with this expansion. Then, as with the Bessel function
expansion, the equalities among the coefficients of the leading terms which are implied
by the boundary conditions lead to a transcendental equation for the eigenvalue v. Again,
as one can readily verify, Re(v) is negative17 for physically possible wedge flows and
thus this type of eigenfunction is not admissible. ;AS a matter of fact, it is not even
certain that the expansion considered here leads to a function which is defined throughout
the field. If not, this consideration is superfluous but in any event an oscillation of this
type cannot exist.

At this point we must extrapolate these results and assume that no other type of
branch point will lead to admissible solutions. One can readily obtain the general result
that for a branch point of type rng(r), where g(r) is singular at the origin, Rein) will
be negative. Therefore, using this extrapolation (or, if the reader prefers, this conjecture), ■
we conclude that the flow configurations associated with a supersonic downstream field
are stable. This conclusion is, of course, based on the fact that no self-excited oscillations
' an exist which vanish identically near the origin (the plane wave results imply this)
and that no non-singular solutions obey the boundary conditions in the neighborhood
of the origin. This, of course, is in agreement with experimental evidence.

16See appendix for details.
16This possibility was first suggested to the author by S. S. Shu.
17In fact, the same are associated with this solution as were found for the preceding expansion.
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The subsonic case is more easily disposed of. The definition Qr = 1 — M2, r2 =
x2 + 0*y2, 6 = arc tan py/x, will lead to a set of differential equations and their solutions
which are analogous to those found by the corresponding procedure in the supersonic
case. Again, a set of Bessel functions multiplied this time by trigonometric functions in
6 will form a product series solution. However, in order that the waves be outgoing in
the subsonic field, we must now use the Hankel functions These are singular
for all v, of course, and again this type of series is not admissible. Therefore, with an extra-
polation of the same type we used before, we must conclude that the subsonic field is also
stable.

In view of the somewhat unusual nature of our results, it seems worth while to
summarize briefly without recourse to the physical picture. In the supersonic (subsonic)
case, once we have demanded solutions of Eqs. (7) in the form fix, y)ect, we have a
hyperbolic (elliptic) second order partial differential equation with constant coefficients.
The homogeneous boundary conditions require <pn = 0 on d = 0, L(<p, <pn) = 0 on
6 = 0O , an outgoing wave, and the overriding condition that p be non-singular at the
origin. Here, L represents a linear combination of the argument functions and their
derivatives with regard to r, <pn is the normal derivative of <p. Actually, the first three
conditions given here are sufficient to find a unique set of eigenfunctions in either case.
The satisfaction of the "overriding" condition (or the lack thereof) then determines
the admissibility of these eigenfunctions and in our case is not satisfied. Thus the tenta-
tively chosen functions are not suitable and hence no sustained oscillations exist.

6. Some general comments. It seems of interest now to speculate on the causes of
the fact that the weak shock is usually observed in expex-imental work. Each of the
flow configurations will be altered (as indicated in the fore-going) by any externally
generated disturbances. In the supersonic case, such disturbances can get into the field
only through the boundary layer and even then must propagate downstream within
their Mach cone. On the other hand, disturbances originating at the trailing end of
the finite wedge may go upstream in a subsonic stream and the forced oscillations of
the strong shock may be sufficiently great to "push it over" into the other flow. Essen-
tially the same point of view may be stated in the form: A disturbance in the weak shock
field has a very small probability of getting near the origin where the overall behavior
is determined. In the strong shock field, large disturbances are continually fed towards
the origin, and unless such disturbances can be minimized sufficiently, the transition
to the weak shock flow will occur.

7. A remark on a previous investigation. In a recent paper [5], J. I. Levinson has
treated this same stability problem also using the small time-dependent-perturbation
theory. He, however, considers a sustained excitation proceeding from the upstream field
toward the downstream field.. Although it is true that random upstream disturbances
might initiate downstream perturbations, the proper investigation must not admit
sustained excitation but must consider only the eigenfunction perturbations. We must
therefore consider the physical argument as presented in that paper as incorrect for
the problems which are usually of physical interest. Furthermore, in the boundary
conditions at the shock, the author utilizes the fact that the shock is wavy but neglects
the fact that it is moving. That is, he omits the terms corresponding to i/-, in our Eqs.
(18) to (22). Hence, the actual calculations cannot even be used to find the response
of the downstream field to an upstream excitation. His conclusions, which imply in-
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stability of all strong shocks and many weak shocks, are consistently contradicted by
experimental evidence.*

Appendix

The inequalities which imply Re(v) < 0 may be developed as follows

_ 5 m (2 + 4m2)n
2 ~ 6M ~ 3(1 - m2)M '

„ 5 + m?
Bi= ~ 3(1 — m2) '

X = n/m,

p2 = n2 + m2 - 1 = M2 - 1.

We shall use the inequalities

1 > m2 > 1 /7, n2 > 1 — m2.

We have, then,

_R _ _L (4 + 8m2)n2 — (5 + m2)( 1 — m2) (7m2 — 1)(1 — m2)
2 + 6M(1 - m2) > 6M(1 - m2) > '

^ (4 + 8m2)n2 — (5 + m2)( 1 — m2) — 2fi2m2(5 + m2)
X ~ X ' 2/32(5 + m)m

^ § (7m2 - 1)(1 - m2) ^
> X ' 2|82n2(5 + m2) U'

Hence MB2/\B, > p/\.
Furthermore

_ X _ X (4 -j- 8m)n — (5 + rn')(l — m2) — 2n2(5 + m2)
\Bt 0 ~ p ' 2(5 + w2)re2

_ X — (6n2 + m2 + 5)(1 — m2)
j8 ' 2n2(5 + w2) < U

and the inequality is completed.
We may now define (— MB2) — sinh a and ( — f3B4) = cosh a, so that Eq. (59)

reduces to

sinh [(v — 1)0O + a] = 0
or

v60 — 60 — a.

*Note added in proof: Certain discussions have occurred while this paper was in proof which indicate
that the analysis of the foregoing problem is not complete. Although no eigenfunctions exist which are
exponential in time, we must still investigate how an arbitrary initial disturbance grows with time. This
problem has been solved for certain special cases and a continued treatment of this stability question
will appear as Part II of this paper.
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However, we have shown that tanh a > tanh d0 , so for tanh a < 1, a > d0 and v is
negative. For tanh a = Q > 1, we have a = 1/2 In (1 + Q)/(l — Q) and Re(a) = 1/2
In (1 + Q)/(Q — 1) = arc tanh 1/Q.

Since we have shown Q_1 > /3/X we again have Re(v) < 0.
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