
439

-NOTES-
A PROBLEM OF THE TEMPERATURE DISTRIBUTION IN A MOVING MEDIUM*

By A. E. BENFIELD (Cruft Laboratory, Harvard University)

The thermal problem solved in this paper is primarily of geophysical interest. How-
ever, it seems worth while to give an account of it here, as the boundary conditions are
rather unusual and the solution, which makes use of the Laplace method, involves a
transform not given in the usual references. It is thought that the problem may be of
interest to those generally concerned with questions of thermal conductivity. The
geophysical implications will be discussed in another paper, to be published elsewhere, f

We wish to find the temperature T(x, t), where x is the space coordinate and t is
time, in a semi-infinite medium, having initially a constant temperature gradient, A,
when the medium moves to the left with a positive constant speed, v, as shown in

TCX.t)

Pig. 1. Qualitative curves showing T(x, t) at times t = 0, h , t2 = 2<i
where 0 < <i < U . T(0, t) = —M.

*Received June 15, 1948.
fA. E. Benfield, J. Appl. Phys. (in press).
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Fig. 1. No material passes the boundary plane x = 0, but instead, on reaching it, the
material is annihilated without the evolution of heat. Furthermore, the plane x = 0 is
maintained at a temperature which decreases linearly with time at the rate X. Therefore-
the boundary conditions are as follows: when t = 0, T(x, 0) = Ax; and at x = 0, T{0, t) =
— \t, where X is a constant .

The application of the divergence theorem shows that the differential equation to
be satisfied is

„d*T , dT dT ...
ks? + "5*~Tt (1)

where K is the thermal diffusivity. The medium moves in the negative x direction
with this sign convention the speed v = —dx/dt > 0.

-t=t.

T^Xlb
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Fig. 2a. Curves for Ti(x, t) = A(x + ft). Ti(0, t) = Avt.

Pig. 2b. Qualitative curves for T2(x, t). Ti(Q, t) = —(Av + \)t.
T(x, t) = T, (x, t) + T,(x, t).
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The problem may be split into two parts; thus

T(x, t) = T,(x, t) + T2(x, t) (2)

where

Ti(x, t) = A(x + vt) (3)

as shown in Fig. 2a, and T2 , which is shown qualitatively in Fig. 2b, remains to be
found. The boundary conditions for T2(x, t), however, are not hard to find; by considering
Eq. (2), and the boundary conditions for T and T, , we see that they must be T2(0, t) =
— (Av + \)t and T2(x, 0) = 0. As T,(x, t) obviously satisfies Eq. (1), T2(x, t) must do
the same.

Calling T2 the Laplace transform of T2 , defined by

T2 = L{T2} = f e~v'T2(x, t) dt, (4)

Eq. (1) becomes

■jjr d T2 , dT2 —+ <5>

where p, in Eqs. (4) and (5), is the usual constant, as used by Carslaw and Jaeger.1
The solution of Eq. (5), which is a second order differential equation with constant

coefficients, is well-known and may be written as

e-'x/2K[B1 exp {x[v/AK2 + p/K]l/2} + B2 exp{-x[v/4K2 + v/K]W2}]

where B, and P>2 are the arbitrary constants, whose values depend on boundary condi-
tions. However, as we are interested in a solution of T2 which remains bounded, and in
fact equals zero, as x —^><», we shall set Z>i = 0 and write

T2 = B2 e~vx/2K exp {- x[v'/iK2 + p/K]1/2}. (6)

We must now find the value of B2, which is donejn the conventional way by considering
the situation when x = 0, for_which value of x, T2 = B2 . Since T2{0, t) = — (Av + \)t,
it follows that when x = 0, T2 = B2 = — (Av + \)L{t}; and so, since L{t\ — l/p2,
we can now rewrite Eq. (6) as

T2 = —(Av + X) e~"I/2K exP \ ~x\-v + V/K] ' ^

In order to find T2 we now need to know L-1 [exp { —x[v2/AK2 + p/K\l/2\/p2]. It is
known2 that

^exp { x[(y + p)/K]i/2lj = i exp {+x{v/Ky/2} erfc

+ \ exp {— x(v/K)1/2} erfc

(8)

.2 (Kty (vty

■11. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, Clarendon Press, Oxford, 1947, ch. XI.
2Cf. Carslaw and Jaeger, loc. cit., p. 270, Eqs. (2) and (3).
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where erfc y — 1 — 2-k~1/2 jje""' du. If we set v = v2/iK and make use of the theorem3
that

[ T(t') dt'\ = - L[T]Jq ) VV

it simply remains for us to integrate the right-hand side of Eq. (8) with respect to time.
Related problems have been considered by Jaeger,4 Paterson6 and Horenstein.6

Proceeding now to the integration we find, integrating by parts, that

( erfc /(<) dt = t erfc / -\—^ [ terdf
J 0 7T Joo

(9)

where fit) = at 1/2 + bt1/2, a = x/2K1/2 and b = v1/2 = v/2K1/2. Writing
t = (1 /b)(t1/2f — a), "we find that

rf n*'/2 1 rf
1 t 6'r df = %b erfC 7 + b J„ tU2f 6~f' df (10)

The integral fi t1/2 f e~r df in Eq. (10) may be evaluated by integrating by parts and
further substitutions, but for the case in hand this is unnecessary. This is because Eq.
(8) contains not only the expression erfc /, but also erfc g where g(t) = at~1/2 — bt1/2;
and as a result of the symmetry of / and g it turns out that the second term of the right-
hand side of Eq. (10) cancels in the integration of Eq. (8).

Therefore, combining Eqs. (9) and (10), we find that integrating Eq. (8) leads to

exp {-x[(b2 + y)/KY
L V = i e2ab[t + |j erfc / + | e 2ab[t - erfc g (11)

from which it follows that

x — vtT2(x, t) = —+ ^) (z + vt) erfc {^(KtP2) ~ ~ erfc 2(Kt)1 ■ (12)

It can be shown that Eq. (12) satisfies Eq. (1) and the boundary conditions for T2(x, t).
Furthermore, one can demonstrate that if we allow v —Eq. (12) leads to the ap-
propriate expression for the temperature distribution in a stationary medium.7

The solution of our problem, therefore, is the sum of Eqs. (3) and (12). This is shown
graphically in Fig. 1, which is the sum of Figs. 2a and 2b.

Equation (12) may be derived by other means than the method used here. For
instance, one may use the substitution8

rji   rji*g-vx/2K-v3 t/4K

and make use of the fact that T* satisfies the differential equation Kd2T*/dx2 = dT*/dt,

3Cf. Carslaw and Jaeger, loc. cit., p. 242, th. IV.
4J. C. Jaeger, Quart. Appl. Math. 4, 100-103 (1946).
6S. Paterson, Quart. Appl. Math. 4, 305-306 (1946).
6W. Horenstein, Quart. Appl. Math. 3, 183-184 (1945).
'Cf. Carslaw and Jaeger, loc. cit., p. 45, eq. (4).
8See, for instance, P. Frank and R. von Mises, Differentialgleichungen der Physik, F. Vieweg &

Sohn, Braunschweig, 1935, vol. 2, p. 605.
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thus transforming the problem into one of a stationary, rather than a moving, medium.
However, on applying the new boundary conditions, for T*, there results another un-
tabulated Laplace transform. In this case, the required transform may be found by a
differentiation, rather than an integration, but the differentiation seems to involve a
step of doubtful justifiability.

In conclusion, I wish to thank Dr. P. E. LeCorbeiller for his interest in this problem
and for several helpful discussions of it.

ON A CLASS OF SINGULAR INTEGRAL EQUATIONS
OCCURRING IN PHYSICS*

By H. P. THIELMAN (Iowa State College)

1. Introduction. Certain boundary value problems1 in electrodynamics can be formu-
lated mathematically as Wiener-Hopf2 integral equations. The equations are of the
form

fix) = f K(\ x - y |)g{y) dy, x > 0 (1)
J0

where K(\x — y |) is a real function of the absolute value of the difference between
x and y. The Eq. (1) is an integral equation of the "first kind", K(\ x — y |) and fix)
are given functions, and g{y) is unknown. One advantage of formulating a given prob-
lem, if possible, as a Wiener-Hopf integral equation is that such equations are susceptible
to the application of the theory of Fourier transforms. The application of the latter
theory is especially advantageous when the Fourier transforms of the given functions
are easily found. The object of the present paper is to show that for a certain class of
Wiener-Hopf integral equations a more direct method yields the explicit solution in a
more elementary and simpler way. The present method applies, however, only to those
integral equations of type (1), and to integral equations of the second kind such as

fix) = gix) - X [ KQx - y \)g(y) dy, x > 0 (2)
Jq *

if Ki\ x — y |) satisfies the same linear homogeneous differential equations with constant
coefficients in each of the regions 0 < y < x, and 0 < x < y. It should be mentioned
here that the special case of Eq. (2) with fix) = 0, and K(\ x — y |) = e~u~"' was
treated by Lalesco3 by a method similar to the one given here.

2. The general theory. We consider an integral equation of the form

f(x) = X f Ki\x - y | )giy) dy x > 0 (1')
•'n

*Received May 11, 1948.
'J. F. Carlson and A. E. Heins, The reflection of an electromagnetic plane wave by an infinite set of

■plates. I, Q. Appl. Math. 4, 313-329 (1947).
2N. Wiener, E. Hopf, Uber eine Klasse singularer Integralgleichungen, Sitzungsber. Preuss. Ak.

Wissensch. 696-706 (1931).
3Trajan Lalesco, Thiorie des Equations integrales, A. Hermann et Fils, Paris, 1912, p. 121.


