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ON THE CHARACTERIZATION OF FIELDS OF DIABATIC FLOW*
BY

B. L. HICKS
Ballistic Research Laboratories, Aberdeen Proving Ground

INTRODUCTION

In an earlier paper (Reference 1) the steady flow of a compressible fluid containing
distributed heat sources was described in terms of the velocity vector V and alternately
two other vectors W and M. For rotational flow the W language was found to lead to
more simple differential equations than the other two languages. The physical content
of the equations expressed in each of the three languages was, of course, the same. When
each of the vector fields V, W, M, was in turn assumed to be iriotational, however, the
corresponding fields of diabatic flow were radically different in their physical charac-
teristics.

These results suggest several questions concerning the characterization of fields of
steady diabatic flow:

(i) is W the most convenient vector to use in formulating the equations for rotational
flow?

(it) how do the restrictions upon the heat source function Q depend upon the char-
acter of the vector function N chosen to represent an irrotational field of flow?

(Hi) can a relation be established between the character of a vector representation
N of an irrotational flow field and the form of the partial differential equation for the
potential function <pN ?

We answer these questions by introducing into the flow equations a vector N pro-
portional to V, the scalar proportionality factor (V/N) not at first being explicitly
restricted. From the form alone of the derived equations in N, it is possible to answer
the first question. The assumption of irrotationality of the N field, V X N = 0, then
leads to the required information about irrotational fields of flow.

Through proper choice of the V, N relation and subsequent inspection of the form
of the N equations, a number of new types of irrotational diabatic flow can be dis-
cussed by giving their character, specified by the function g(N) = V/(N2RT)'/2 and its
form, specified by an arbitrary function F(tpN) that enters the partial differential equation
for the potential function <pN . Four general types of flow are chosen for discussion to
illustrate the wide variety of diabatic irrotational flows, as compared to adiabatic
irrotational flows, that are possible even without explicit formulation of boundary
conditions. We thereby emphasize the need for preliminary and simultaneous investi-
gation of all steady diabatic flows at the formulational level before the attempt is made
to construct special solutions.

*Received April 5, 1948. Summaries of this paper and of related studies of diabatic flow have been
presented at meetings of the American Physical Society. [Cf. Phys. Rev. 71, 476(A), 72, 179(A) (1947),
73, 636 (L), 74, 1230 (A) (1948).]
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BASIC EQUATIONS

1. Derivation of N equations. We use essentially the same fundamental equations as
in Reference 1, namely those governing the steady motion of an inviseid compressible
fluid that contains heat sources.

- Vp + v-vv = 0, (1.1)p
• V-pV = 0, (1.2)

p - RPT = 0, (1.3)

c,V-VT, = TV-VS = Tc„V• V log (T'p-(^1,/T) = Q. (1.4)

The quantity Q is the heat added locally per unit mass of fluid and unit time. In Refer-
ence 1 these equations were studied in the V, W, and M languages, W and M being
related to V by the equations

V = 7,W = «M (1.5)

in which V, = (2cvTt)l/2 is the limiting velocity corresponding to local stagnation
temperature T, and a = (yRT)' ~ will be called the local velocity of sound.* In the
present paper we make the more general substitution

V = (gRT)1/2 N (1.6)

which includes the W and M transformations when g is appropriately specialized. For
the present g can be any function of the coordinates and other variables and will not
be restricted until later. Both g and N = | N | are dimensionless.

Substitution of (1.6) in (1.1, 2, 4) and elimination of V and p gives

V logp + jN-VN + | gNN-V log gT = 0, (1.7)

V-N + N V logp + ~ N-V log (g/T) = 0, (1.8)

- :L^Li N • V log V + N • V log T = Q/[cpT(gRT)l/2] = 2qN . (1.9)
7

In (1.9) we have defined a quantity qN which represents in dimensionless form the local
heating of the fluid. We adjoin the equation obtained from (1.7) by scalar multiplication
of N

N-V log? + |jV2<7N-V log T = - |iV2gN-V log g - gK-V±N2 (1.10)

*In a gas undergoing dissociation or chemical reactions, the velocity of sound is a function of the
local thermochemical properties of the gas.
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and solve (1.9, 10) for N-V log p, N- V log T in terras of N-V (N2/2), N-V log g
and qN :

N V log p = -?(n-V |iV2 + | tf2N-V log g + N\n)/[ 1 + iV2^), (1.11)

n • v log r

= [2?w - + |tf2N-V log?) /(l + Afy). (1.12)

Substitution in (1.7,8) gives the equations of motion and continuity in N language.

V logp = <7(1 + N*g) '(^iffN vliV2 - ^N V log g - 9#)n
(1.13)

- gV | N2 + gV X (V X N),

V • N = 11 + —27
-^)N"V1° gg

+ T^A ffN-V \n* + (1 + N2g)q„

(1-14)

For completeness we list the expressions for N • V log T, , N • V log p, , quantities pro-
portional to the rate of variation of stagnation temperature and of stagnation pres-
sure in the direction of flow.

(l + iV^N-V log T, =^N VS = 2 qx, (1.15)

N-V logp, = -tfW(l + N'g). (1.16)

As we might expect, these variations are proportional to qN and vanish for qN = 0.
Furthermore T, increases and p, decreases in the direction of flow for positive qy . The
decrease of p, owing to heat addition is known as "momentum pressure drop" in one-
dimensional theory (compare Eqs. (15) and (60) in Reference 2 and references cited
there).

2. Significance of choice of the function g. We can now observe how the character
of the function g affects the appearance of the N equation. The factor [1 + (7 — l)N2g/2y]
appears in both Eqs. (1.13, 14) together with g, Vg and qN . If either g or qN is an ex-
plicit function of T (cf. the special case of V language described in Sec. 3) then it may
not be especially profitable to reduce the equations to the N form because T cannot
be determined and eliminated from (1.13, 14) prior to complete solution of the set
(1.1, 2, 3, 4) or the set (1.12, 13, 14, 15). If, on the other hand, g and qN are functions
of N, p and the coordinates or even of the individual components 2V, of N together
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with p and the coordinates, one can regard (1.13, 14) as a set of four simultaneous
non-linear partial differential equations in the four dependent variables N, p.

We choose to study a less general function g, namely

g = g(N) (2.i)
corresponding to the form for qN

Qn — Qm(Ni i £>•)• (2-2)

When g and qN are thus restricted, the N equation of motion (1.13) contains as dependent
variables only N and p and the N equation of continuity (1.14) only N. Equation (1.14)
can then be rewritten in a more compact form which exhibits the "sources" proportional
to qN in the gN/Hi field, letting g' = dg/dN,

V-JT.N = (1 + N2g)(l + y-^N2g) 'H,qN , (2.3)

where

1 + hr d I *"• <2-4)_ 7 V y ) Ng
Equation (2.1) includes both W and M languages for which g has the forms

gw = (1 - IF2)"1, (N = W), (2.5)
7 — 1

9m = y, (N = M). (2.6)

Since N2g = V2/RT has the same value for all <7(AO, the relations among V, N, W and
M are

(V2/RT) = N2g = W2(l - W2)'1 = yM2 (2.7)
7—1

These equations are often used in the form

1 + N2g) = (1 - W2)~l = (l + M2). (2.8)

It is only W language that a term in N • V N(or V -N) does not appear in the equa-
tion of motion. The W language therefore yields more simple equations than any other
N (or V) language, and W is thus the most convenient vector to use in formulating the
equations for rotational flow.

PROPERTIES OF IRROTATIONAL N FIELDS

3. Integrability of the equation of motion. We now suppose that the N field is con-
tinuous and irrotational and therefore admits a potential function <pN

N = V<pN . (3.1)

The consequences of the assumption of irrotationality for an N field were first examined
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in References 3a, b for the adiabatic M and W cases. In Reference 1 we saw that irrota-
tional diabatic M and W flows were quite different from one another. We may therefore
now expect a still wider variety of flows because of flexibility in choice of the function g.

With V X N = 0, the equation of motion becomes

V log p + r,V<pN + gV | N2 = 0 (3.2)

in which

V = \ gN • v log {gT)

-«{1+hr qN - ^2^ g^-V^N2 + \ N-V log

(3-3)

We distinguish two cases, r? = 0 and rj ^ 0. For the degenerate case i? = 0 we suppose
that g is not restricted to be a function of N alone. Then from (3.2, 3)

V logp + gV^N2 = 0, (3.4)

^~<7N-v|jV2 - | N-V log g = qN. (3.5)

Equation (3.4) implies that p and g are functions of N alone. Also Eq. (3.3) shows that
(gT) and therefore, by (1.6), that (V/N) are constant on each streamline. This type
of flow therefore corresponds to irrotational V flow (see Reference 1) that has been
generalized to allow variation of (gT) between streamlines.

When ?7 5^ 0, it is sufficient to consider only functions of N alone as was shown to
be appropriate in Sec. 2. If the integrability condition with g' = dg/dN

1
2 9 2gw + ATN .^(f-IL—Lg 1 + N2c) 1 = (3-6)\Ng

for the equation of motion (3.2) is satisfied then the latter integrates to

log PN + J F(<pN) d<pN = constant, (3.7)
where

PN = pH2(N) = p exp J gdiN2. (3.8)

(Integration of (3.3) also yields a relation among N, p and T along each streamline.)
Equation (3.7) is the analogue of the barotropic condition p = f(p) for irrotational V
fields of flow. It states that PN is constant on potential surfaces and expresses the varia-
tion of PN along streamlines, i.e. d log PN/ds = NF(<pN). The function PN becomes
equal to the stagnation pressure Pw = p, in W language. In general the behavior of
PN is similar to p, in that as N (or W) increases, p decreases for constant PN or p, .
It is noted that in terms of H2 , the continuity equation (1.14) becomes (compare (2.3))

V-(j?K/ff,) = H;\l + N2g)FM (3.9)
showing that "sources" in the (gN/H2) field are proportional to F(<pN).
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The integrability condition can be rewritten in two other useful forms hv com-
bining it with the continuity equation (1.14). Then

and

= J)vV" + 2("- £)"-

- - -y-^r »)v's+[• - w*(» -

(3-10)

(3.11)
Qn

in which s = N/Ar is a unit vector in the direction of flow. According to Reference 3a,

„ .. 1 dA.4V-s = hm —r —t—
AA->0 A A ds

can be interpreted as the fractional rate of change of stream tube area A.4 with respect to
arc length ds along the stream tube. Equations (3.6, 10, 11) are alternative statements of
the relation between the character of the function g(N) and the mode of variation of
V • s and qN throughout the field of flow. Since the coefficients in these equations depend
only upon N and g(N), through special choice of the function g(N) we will later be
enabled to study flows characterized by special relations among the functions qN ,
V -s and F(<pN).

4. The partial differential equation satisfied by the potential function <pN . If N =
Vis substituted directly into (1.14), the resulting equation contains qN as well as
derivatives of <pN . Because in general the function qN is not open to arbitrary specification
in an iirotational N field, it is desirable to consider F(<pN) that appears in the integrability
condition as the basic function describing the form of the flow. For a given g(N) and
F{<ps) the behavior of qN follows from the integrability condition. It is therefore best
to use Eq. (3.9) which does not contain qN and which can be expanded to read

V-N = g~\l + N2g)F{fpN) + (g - ^)n- V ~ N2. (4.1)

Substitute

df>N dtps d'ipfi
dx, dx, dXi dx,'v-x-LSf, «viiv--E(fe)"^ + 2E

The desired differential equation for the potential function is then

S tS [' - Gfe)'] -20 § S?2? " ("*+ (4-2>
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in which

a - I-frt. (4.3)
The type of this partial differential equation is determined by the sign of the de-

terminant D = det | a,, | where a,,- is the coefficient of d2<pN/dx,dx,- in the partial differ-
ential equation. Calculation of D gives

D = 1 - N2G = 1 + N ^ - N2g. (4.4)

The differential equation (4.2) is therefore of

elliptic

type forparabolic

hyperbolic,

G < AT2,

G = N~2, (4.5)

G > AT
Since G is a function of N alone, the equation can change type within the field of flow
where N attains the values specified in (4.5). This behavior is similar- to that of irro-
tational adiabatic flow in the V field which is of elliptic, parabolic or hyperbolic type
for M <, =, >1. There is however, a major difference. The character of the function
g(N) alone determines the values of N, if there be any, for which each of the expressions
in (4.5) is satisfied. Appropriate choice of g(N) can then lead to flows whose type is
fixed (e.g. elliptic for all values of N) as well as to flows which change type for specified
values of N. Because the character of g likewise determines the mutual behavior of
V-s, qN and F(<p„) (cf. Eq. (3.11)), the required connection between character of g
and behavior of qN has thereby been demonstrated. Whenever, for example, D = 0,
the relation between V-s and F{<pN) does not depend upon qN (cf. Eq. 3.11). In a later
section, we shall study some flows illustrating these remarks.

There may be a question at first sight as to whether F{ipN) and qN can be found such
that <pN will satisfy both (3.10) and (4.2). We can analyze the situation as follows. Let
N = [ATj], i = 1, 2, 3. For rotational flow there are five dependent variables AT,- , p
and qN that satisfy the four equations (1.13, 14) giving an underdetermined system.
The variation of one dependent variable, e.g. p, qN (or one Ni) can then be specified
arbitrarily. Now when N, = d<pN/dXi we have seven equations in the six variables AT,- ,
J), qx and <pN and the system is overdetermined. The equation of motion (3,2) however
reduces to the two equations (3.6, 7) which contain the new (arbitrary) function F{tpN).
As this function is not determinable from the basic equation we regard its specification
as part of the formulation of our problem and can consider then (3.7) to be an integral
of the motion which eliminates p from further consideration. We now take (3.10) and
(1.14 or 4.2) to form the basic system that must be solved. This system contains qN ,
Fn , <pN and its derivatives and is accordingly underdetermined. If we choose qN to be
the known function (1.14) with (N = V<pN) can presumably be solved for <p.v • There
would then be, however, no reason to suppose that these functions <pN and qN would
satisfy (3.10). We shall consequently regard (4.2) as the basic equation. Choice of the
functions g and F(<pN) will specify the character and form of the flow respectively. Pre-
sumably specification of both form and character will work a corresponding restriction
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upon the natui-e of the boundary conditions that can be imposed on the function <pN .
For example we have already seen that the type and change of type (with corresponding
adjustment of the nature of the appropriate boundary conditions) of the partial differ-
ential equation (4.2) is entirely governed by the character of the flow.

The solution of a problem in diabatic irrotational flow can then be visualized as
consisting of the following steps. With character and form of the flow specified together
with matching boundary conditions, Eq. (4.2) can be solved for <pN . Substitution of <pN
thus determined in the integrability condition (3.6 or 10) and the "Bernoulli" type
equation (3.7) yields the functions qN and p. The system consisting of Eqs. (1.13, 14)
can then be regarded as solved. Determination of the temperature follows by integration
of (1.12) if T is known at one point on each streamline. The velocity V and heat function
Q can also be calculated subsequently from (1.6, 9).

The indirect nature of this solution process must be noted. Although one might
normally expect Q to be known rather than F(tpN), it is the latter that, at present at least,
must be chosen first and Q thereafter determined. It is this peculiarity of irrotational
diabatic flow which leads us to investigate in general fashion irrotational flows whose
character only is specified, in order that we may derive more explicit equations con-
taining qN .

THE RELATIONS AMONG CHARACTER, FORM, TYPE CHANGE AND HEAT
SOURCES

5. Methods of investigation. We now propose to illustrate the remarks in the last
section by examining a number of flows of given character. There are several paths
we may follow in proceeding to this specialization. We could for example try to find
all functions for which the flow remains of a given type. This procedure is simple only
for cases for which D is constant throughout the flow. We might also return to Eq.
(3.11), which connects the physically visualizable quantities V-s and qN , and impose
conditions on the coefficients appearing there in order to insure, for example, that V ■ s
be proportional to F(<pN) throughout the field of flow. As a third possibility we could
assume a priori convenient special forms for g{N) (such as rational functions) and
examine the corresponding characteristics of the flow. Any of these procedures will lead
to conditions upon g(N) and will supply partial answers to the questions implied by the
other procedures.

For most of the special flows to be discussed now the first, procedure is convenient.
Let us suppose throughout the flow

D = D0 constant. (5.1)

Accordingly as Dn is >, = or < 0 we shall term the flow field elliptic, parabolic or hyper-
bolic. By (4.4) we are then led to the differential equation for g(N)

N ^ - N2g + 1 - Do = 0, (5.2)

whose solution for D0 — 1 is

g = r2( 1 + D0)[(N/ky-D° - (N/k)2}-1 (5.3)
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and for D0 = — 1

g = iV~2(log k - log N)~\ (5.4)

In both cases, (and also for D not a constant)

G = (5.5)

the partial differential equation for <pN becomes

E d tpN
dx2 if- a- - 2(1 - n.)

TTi oXi ox, dXi ax.
(5.6)

= N2(N2 + -^F{<pN)

and the integrability condition in the form (3.11) simplifies to

1 - -^)(1 + D0 + N2g)FM = 2D0qN + 1 - D0 - ^)v-s. (5.7)

The flows characterized by (5.6) do not resemble "incompressible" adiabatic irrota-
tional flows for small N unless D0 = 1 (cf. Sec. 6) because all terms in the coefficient of
d2<pN/dXidXj are of order N2. The Glauert-Prandtl type of approximation can be made,
however, for suppose that throughout the flow

Ni , N, N3 I   II

N0 L' N0 N0 U'

where N is taken to differ but little from N0 anywhere. Then (5.6) becomes

n d'Vv , d2<pN d2<pN
0 dxI dxl + dxl No + (5-8)

That the value of D0 determines the type of the differential equation is now quite clear.
Equation (5.7) may be developed in similar approximate fashion once the value of D0
is chosen, and the function H2 (Eq. (3.8)) can be regarded as a function of N0 .

For some flows of interest (such as W and M flows) the type" of the partial differential
equation (4.2) may change in the flow field. A simple application of the second pro-
cedure is then appropriate. Let

g — go + N + g2N" + • • • . (5.9)

Then for N <3C 1

G = g0 + glN - + ' (5"10)

Only for g0 ^ 0 will Eq. (4.2) admit an "incompressible" approximation for N <JC I,

VV = golF(<pN). (5.11)

The Glauert-Prandtl approximation can be written down for almost any choice of g(N).
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6. Elliptic flow with D0 = 1. The general formula (5.3) for g corresponding to flow
of constant type reduces for D„ — 1 to G = 0 and

g = H2 = 2/{k2 - N2). (6.1)

The equation for <pN (compare (2.3) and (3.10)) is

VVv = \ (k2 + N2)FM (6.2)

which in the Glauert-Prandtl approximation (cf. (5.8)) is

1
2VVv = \ (k2 + Nl)F(<p„). (6.3)

The heating parameter q.v is given by

qN = \ k2(k2 - iV2)(fc2 - N2ylF(<pN) + i N3(k2 - N2)'1V • s. (6.4)

The "Bernoulli" equation becomes

l°g (p Nij + J F(<pN) d<pN = constant. (6.5)

Since the relation between W and N is

W2 = (y - l)N2/(yk2 - N2); (6.6)

values of W2 — 0, (7 — 1)/(7 + 1), 1 correspond to 0, 7/(7 + 2), 1 for (N/k)2.
It is noted that flow discontinuities such as stationary shocks and combustion fronts

cannot occur within this or any other field wholly of elliptic type.

7. Parabolic flow: D„ = 0. The only function g that gives wholly parabolic flow is

g = l/N(k - N) (7.1)
obtained from (5.3) where Da = 0. In this case G = 1 /N2, II., = (k — N)~' = Ng. The
partial differential equation for <p„ becomes

? [*■ - fe)!] dJS, ~2 S fe & <">
of which the Glauert-Prandtl approximation is

= kN0F(<p„). (7.3)
OX2

When J) = D0 = 0 the coefficient of qN in Eq. (3.11) vanishes and the equation expresses
the proportionality of V • s and F(ipN) (cf. also 2.3)

V-s = kF(<pN). (7.4)

The condition for vanishing of the coefficient of qN is thus synonymous with the condi-
tion for wholly parabolic flow. Equation (7.4) expresses a simple geometrical property
of parabolic flow, namely that the fractional rate of change of stream tube area in the
direction of flow is a function of <p\- only. Accordingly, the fractional rate of change of
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area of every stream tube intersecting a given potential surface is the same at that
surface.

Because (3.11) and (7.4) do not contain qN we use (3.10) to express its variation

qs = | N(k — N2 - 2kN + k^FM

+ \{k- N)-'(k - Af)vV* .

The "Bernoulli" equation becomes

log k P N + J F(<P.v) d<px = constant, (7.6)

and the relation between W and N

w''r^N^-HrN) i7J)
corresponding to W2 = 0, (7 — l)/(y + 1), 1 for (N/k) = 0, 7/(7 + 1), 1.

8. Hyperbolic flow with D0 = — (7 + 1). The character of g which is sufficient if
the coefficient of F(<pn) in (3.11) is to vanish is expressed as

g = y/N\ (8.1)
This corresponds to a type of wholly hyperbolic flow specified by D0 — — (7 + 1),
k —>a> and to G — +(7 + 2)/N2, //2 = Ny. The equation for <pN is

E [if' - (T + 2>(|f)'] % - 2(t + 2) r If If ^
1 N'FM

dXi dXj dXi dXj

= y +1
7

or in the condensed form of (3.9)

(8.2)

V-(.N~y-2N) « *_+! (8.3)
7

The Glauert-Prandtl approximation is

-1+1} + Txi + ~d%= ~r NoFM- (8-4)
Since the coefficient of F(<plW) in (3.11) is zero, qN is given by the simple expression

<7* = |iVV-s. (8.5)

In this case the area change of stream tubes is determined solely by qN and N. The
Bernoulli equation is

log (pNy) + J F{<pn) d<P.v = constant, (8.6)
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and the relation between W and N

W2 = 3L=4. (8.7)
7+1

This particular wholly hyperbolic flow is thus characterized by a constant value of W
(or M = 1) throughout the field of flow.

9. Mixed flow. It has been seen how proper choice of the character of the flow, as
defined by the function g(N), can establish flow whose type is constant throughout the
field of flow. That the type may change within tHe flow field is illustrated by reconsidera-
tion of the W and M fields of irrotational diabatic flow (Reference 1). (The functions gw
and gM are expressible in the form of (5.9) and accordingly admit the incompressible as
well as the Glauert-Prandtl approximation; see Reference 1.) The partial differential
equation for <pM is of elliptic, parabolic or hyperbolic type accordingly as M(= N) <, =,
or > (1/y)1/2. The partial differential equation for <pw changes type similarly at W =
N = [(t ~~ 1)/(y + 1)]1/2, (M — 1). It is the latter field which completes the set of three
flows determined by the vanishing in turn of the coefficients of qN , F(<px) and V-s in
equation (3.11), for an irrotational W field (Reference 1) possesses the property that

Qw = FW (9.1)

10. Concluding remarks. If, in the definition N = V[g(N)RT]~1/2, g is taken to be a
function of N alone, any N language yields a simpler set of fundamental differential
equations for rotational diabatic flow than the V language. In particular the W language
(derived from g = 27/(1 — N2)(7 — 1)) corresponds to the most simple expression of the
equation of motion and hence is best suited to describe a general rotational diabatic flow.

With proper choice of the function g(N), which is taken to determine the character of
the flow, the partial differential equation for the potential function <pN of irrotational
N flow can be made wholly of one type (e.g. elliptic) or of mixed type throughout the
field of flow. The differential equation for ipN always contains an arbitrary function F(<pM)
which fixes the form of the flow and also occurs in the analogue of the Bernoulli equation.
Choice of the flow character alone leads to the form of the relation among F{yN), V-s
(the fractional rate of change of stream tube area in the direction of flow) and qN (pro-
portional to the local rate of heat addition per unit mass of fluid). Because of the universal
occurrence of F(<pN) in the differential equations for <pN there is need for further study of
such quasi-linear partial differential equations containing arbitrary functions of the
dependent variable if irrotational diabatic flows are to be characterized more fully with
any degree of generality.
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