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The four roots are

p = 1 ,o (12)
dz _ t ± K
dr ~ f + 17(1 ± z31/2)/2

where the ± signs are independent; the yield equation in the original form of Eq. (5c)
has been used in obtaining (12).

4. Conclusion. It is clear that real characteristics do not exist in general, since P
can be real only when 77 = <7-9 — co = 0. But when 77 = 0 and «^0 the stress equations
become identical with the three equations for plane strain, under the Mises yield condi-
tion; the characteristic parameter P then reduces to

P = t±K
£

As may be easily verified, this is the standard result for the slope of the characteristic
curves in problems of plane plastic flow4, which provides a useful check on the present
results.

An analogous but simpler investigation of Eqs. (6) leads to the conclusion that
there are also no curves on which the velocity derivatives are undefined, even though
the values of u, w and the stresses are defined.

4See, for example, William Prager, Plasticity for the aerodynamicist, J. Aero. Sci. IS, 253-262 (1948).

EFFECT OF HYPERBOLIC NOTCHES ON THE STRESS DISTRIBUTION
IN A WOOD PLATE*

By C. BASSEL SMITH, University of Florida

1. Introduction. If from an orthotropic material a flat plate is cut parallel to a
plane of elastic symmetry, it will have two perpendicular axes of symmetry in the
plane of the plate. Such a plate is said to be orthotropic.1 An example of this kind of
plate is a plain-sawn board. In the discussion that follows, an orthotropic plate is
assumed to be bounded on two sides by hyperbolic notches given by the equation
y2/a2 — x2/b2 = 1, and indefinitely extended in the other direction. The x- and y-axes
are taken parallel to the axes of symmetry. The plate is subjected only to forces directed
parallel to the x-axis and applied in the plane of the plate. These forces are assumed to
act at great distances from the y-axis, and in such a way that the traction over any
cross-section perpendicular to the x-axis is statically equivalent to a single force of
magnitude P directed along the .r-axis. The problem will be treated as one of plane
stress.

2. The stress distribution in a wood plate with hyperbolic notches. The components
of stress and strain in the orthotropic plate described are connected by the following
relations2:

*Received June 11, 1948.
'A. T. Price, Phil. Trans. (A) 228, 1-62 (1928). H. W. March, Physics, 7, 32-41 (1936). U. S. Forest

Products Laboratory Reports Nos. 1300, 1301, 1304, 1312, 1316.
*1. 2U. S. Forest Products Laboratory Report No. 1503. Love's notations for the stress and strain
components are used, (A. E. H. Love, The mathematical theory of elasticity, 4th ed., Cambridge University
Press, Cambridge, 1927).
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e = — X — — Y*>xx 777 ^ X 777 1 y )
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@xy >
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In these equations Ex and Ey are Young's moduli in the x- and ^-directions, respectively.
Poisson's ratio <rI1( is the ratio of the contraction parallel to the y-axis to the extension
parallel to the x-axis associated with a tension parallel to the x-axis and similarly for
<ryx. The quantity nxy is the modulus of rigidity associated with the directions of x and y.

Since the equations of equilibrium are deduced with no reference to the law con-
necting stresses and strains, they will be satisfied by a stress function F such that

Y = — X - — (2)
dy2' " dx2' " dx dy' '

Substituting Eq. (2) into Eq. (1) and then making use of the compatibility equation

d2exx , d2eyy d2ex
+dy2 1 dx2 dx dy'

we obtain the following differential equation, satisfied by the stress function Fa:

»!? + ««» +4?_0 (3,
dx dx dr\ Qfj

where'

 
2 \fj.x„ E

K = (W/2(± _ 2*^ (4)

and

77 = ey (5)

with
e = (Ex/Ev)1/4. (6)

The solution of Eq. (3) is facilitated by taking F to be of the form

F = R[F\{x + iarj) + F2{x + iprj)] (7)
where

a = [K + (K2 - 1)1/2]1/2, p = [K - (K2 - 1)1/2]1/2, (8)

i is the imaginary unit, and the letter R means that the real part of the expression in
the bracket is to be taken. The functions Fl and F2 are any analytic functions of the
complex variables x + iar\ and x + i&r], respectively.

'For an orthotropic plate like the one discussed here the relation <rxyEy = <ryxEx holds. See U. S.
Forest Products Laboratory Report No. 1503, p. 7.

4For wood, K as defined here is probably always greater than 1.
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The stress distribution in an orthotropic plate in a state of plane stress is then ob-
tained by finding a solution to Eq. (3) in the form of Eq. (7), and in addition requiring
that the function F satisfies the following relations on the boundary of the plate5:

1(f)-x., Hf) = -y-as \dy/ as \ dx/

where ds denotes an element of the boundary, and X„ ds and Yv ds represent the x-
and ^-components of the force per unit thickness of the plate acting on the element of
arc ds from the positive side as indicated by the direction of v, the normal to the boundary.

A suitable choice of F for the problem considered is

F = RtpBlzt log (zx -(- wO — Wi — z2 log (z2 + w2) + w2}] (9)

where

Zi —— x —|— iat], z2 = x + ifi-q,

w1 = (2? + Ti)1/2) W2 = (zl + y

yl= b2 + aVo2, y\ = b2 + pYa2,

g ^^ ® ^
e{/3 arc tan (j3e\) — a arc tan (aeX)}' b'

and p = P/2ad, the average stress on the cross-section x = 0, since the plate is taken
to be of thickness d. To make the functions appearing in Eq. (9) single valued the fol-
lowing relations must be assumed always to hold:

jR[m>i] > 0, R[w2] > 0,

- | < amp (zj + wO < |, - | < amp (z2 + w2) < | (11)

By means of Eqs. (2) and (9) the stress components are found to be

*? -Y■ - - s).dx2

H-x.-r\vb(=^ + ̂ )1dy L \ w1 w2 /_

X, = + —) .L V Wi wj_
d2F

dx dy

(12)

(13)

(14)

The stress component Xx as given by Eq. (13) was calculated at several points
along the y-axis for a plain-sawn plate of Sitka spruce with hyperbolic notches, as in

5S. Timoshenko, Theory of elasticity, McGraw-Hill Co., New York, 1934, p. 179. U. S. Forest
Products Laboratory Report No. 1510, p. 7.
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the problem discussed here. The x-axis was taken parallel to the grain of the wood.
The elastic constants were taken to be:

Ex = 1.679 X 106 lb./in.2, = 0.112 X 106 lb./in.2,

Ey = 0.076 X 106 lb./in.2, = 0.464

The results of these calculations for several values of X are given in the table below.

Values of Xx fbom Eq. (13)

X = 10 X = 1.0 0.1

X,/p y xjP y Xr/V

0.0a
0.2a
0.4a
0.6a
0.8a
1.0a

0.6373
0.6505
0.6955
0.7971
1.064

30.84

0.0a
0.2a
0.4a
0.6a
0.8a
1.0a

0.6989
0.7142
0.7662
0.8832
1.180
3.192

0.0a
0.2a
0.4a
0.6 a
0.8a
1,0a

0.9784
0.9808
0.9884
1.001
1.020
1.046

It is evident that the value of the stress component Xx at x — 0, y = a is the maxi-
mum stress occurring in the plate in each case. Setting x = 0, y = a in Eq. (13), it is
found that

(A'x)max e2(/32 — a2) p r.

—p—= -h B, (15)

which gives the ratio of the maximum stress to p, the average stress on the cross-section
x = 0.

3. Isotropic stress function as the limiting case of the orthotropic stress function.
It is of interest to obtain from Eq. (9) the stress function for the corresponding problem
for an isotropic material. For an isotropic material a = /3 = e = 1, as is shown by
Eqs. (4), (6), and (8). For these values, the right side of Eq. (9) becomes indeterminate.
Evaluating, it yields

(1 + \2)ap f a2 . . . \
(1 + Xs) arc tan X + X VTS " " 1<>B <Z + ""/J

where

z = x + iy,

/ 2 . 2\1/2 2 2 I 72w = (z + 7 ) > 7 = a + b .

(16)

(17)

To make F single-valued, relations similar to those of Eq. (11) must hold. By letting
z = yz' = y(x' + iy') in Eq. (16), it is found that

dx2 t2 dx'2 dx'2 \y2) '
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with similar expressions for the other stress components. If, therefore, in Eq. (16) we
replace z by yz and then divide the right side by y2, the resulting expression can be used
as the stress function. Hence the change to elliptic coordinates, which is usually done
by replacing z by y sinh (u + iv), can be accomplished in Eq. (16) by substituting sinh
(u + iv) for z and then dividing the right side by y2. Thus we find the following expres-
sion for the stress function in elliptic coordinates:

F = p :—S.^n V° [yv + (sin2 v0)e~" cos v] (19)
v0 + sin t>0 cos w0

where the hyperbola y2/a2 — x2/b2 = 1 is given by the particular value, v0 , of the co-
ordinate v. Equation (19) is the stress function for the corresponding problem involving
the isotropic plate.6

6See paper by H. Neuber, Zeitsch. f. Angew. Math. u. Mech. 13, 439 (1933).
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Eigenfunction expansions associated with second-order differential equations. By ■ E. C.
Titchmarsh. Oxford, at the Clarendon Press, 1946. 175 pp. $7.00.

The subject matter of this book is composed of the analysis required to develop and justify the expan-
sion of an arbitrary function/(x) in the eigenfunctions of the differential equation y" + [X — q{x)\y = 0.
The classical theory is disposed of in Chapter 1 and the remainder of the book is largely devoted to those
situations where q(x) is singular at an end-point of the region and/or those where }{x) is defined over an
infinite or semi-infinite domain. In Chapter 4 one finds as examples the expansion formulae for Hermite,
Bessel, Legendre, Sonine, Laguerre, and hypergeometric functions. The latter chapters deal with the dis-
tribution of the eigenvalues, the nature of the spectrum, and with questions of convergence and summa-
bility.

The book is intended primarily for the mathematician, but its interest and value to the physicist
and engineer should be great.

G. F. Carrier

Modern operational calculus with applications in technical mathematics. By N. W.
McLachlan. MacMillan and Co., Ltd., London, 1948. xiv + 218 pp. $5.00.

This introduction to the theory of the Laplace Transform is intended as a guide to those interested
in the application of this transform to engineering problems. However, the questions of rigor are treated
in more detail than is customary in texts with this purpose. In fact, nearly one third of the book consists
of appendices dealing with such items as convergence questions. In Chapters 1 and 2 the transform is
defined and the fundamental theorems and identities are deduced. In Chapters 3 and 4, the solution by
transform methods of ordinary and partial linear differential equations is discussed. These and the subse-
quent chapters which, for the most part, are concerned with integral evaluation contain many examples
drawn largely from electric and acoustic problems. It is regrettable that no reference has been made to the
role of this transform in solving stability problems.

The book should be especially useful to engineers whose background is essentially non-mathematical
since the points of rigor discussed appear to have been selected for just such an audience.

G. F. Carrier


