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1. Introduction. The theory of the motion of a projectile is usually based on the
assumption that the projectile possesses complete rotational symmetry, in the sense
that rotation through any angle about the axis of symmetry leaves the projectile as a
whole unchanged in outward form and in internal mass distribution. This assumption
of symmetry is suitable in the case of an ordinary shell, but is not suitable in the case
of a finned projectile which possesses symmetry of a more restricted type. The purpose
of the present paper is to investigate the effect of various types of rotational and re-
flectional symmetry on the aerodynamic force system acting on a projectile. According
to the basic aerodynamic hypothesis2 the aerodynamic force system depends on the
instantaneous motion of the projectile. The form of this functional dependence is re-
stricted by the symmetry of the projectile. Our purpose is to investigate this restriction
mathematically.

The instantaneous motion of a projectile is described by choosing some base-point 0,
fixed in the projectile, and specifying the velocity (u) of 0 and the angular velocity
(o>) of the projectile. The aerodynamic force system, exerted by the air on the projectile,
is described by the equipollent system consisting of a force (F) acting at 0, together
with a couple (G). Then the vectors F and G are functions of the vectors u and w. They
are also functions of the air density (p) and the local sound velocity (c), but these func-
tional dependences will be suppressed as a matter of notational convenience. Choosing
any rectangular coordinate axes Oxxx2x3, we may express the functional dependence of
force system on motion by the six equations

Pm = fm(M 1 , U2 , U3 , 0>1 , C02 ,
(1.1)

Gm = gm(ui , u% , u3 , Uj , C02 i W3)) (w = 1, 2, 3),

tim , wm , Fm , Gm being components along Oxm .
2. Types of symmetry. Let us consider projectiles possessing one or both of the

following types of symmetry (Fig. 1):
(i) n-gonal rotational symmetry about an axis A ;
iii) reflectional symmetry in a plane P.

Symmetries may be described in terms of "covering operations" which leave the pro-
jectile as a whole unchanged. We shall be concerned only with the aerodynamic force

'Received March 15, 1948. The theory contained in this paper was developed under contract with
Aberdeen Proving Ground, and is now published with permission.
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system and not with the dynamics of the projectile. This means that we are interested
in its external form, but not in its distribution of mass. Consequently all remarks about
symmetry are to be interpreted relative to the external form only. The covering opera-
tion for n-gonal rotational symmetry about an axis A is a rotation about A through
an angle a where a = 2ir/n, n being an integer greater than unity. (An ordinary bomb
with four fins possesses tetragonal symmetry, n — 4.) For certain formal purposes, it
is convenient to include the case n = 1, although this actually implies no symmetry.
The covering operation for reflectional symmetry in a plane P is a reflection in P in
the ordinary geometrical sense, i.e. each particle of the projectile is replaced by another
particle at a position such that the line joining the two positions is bisected orthogonally
by P. The covering operation for n-gonal symmetry may be carried out physically;
that for reflectional symmetry cannot.

However, we may view the question of symmetry in a different, but equivalent,
way. We may apply the covering operations, not to the projectile, but to a set of axes.
Consider first the case of n-gonal symmetry about an axis A. Choose a set of rectangular
axes OXiXiXs with origin on A. Apply the covering operation to these axes, leaving the
body unmoved. Let the new axes be 0x[x2x'3 . The two sets of axes are equivalent in the
following sense: Any general statement about the connection between aerodynamic force
system and motion must have the same form no matter which axes are used. Otherwise
put, it is impossible for an experimenter to determine, by aerodynamic measurements,
which of the two equivalent sets of axes he is using. This means that the six aerodynamic
functions in (1.1) are the same for two sets of equivalent axes. If primes indicate com-
ponents along Ox'xx'zx'z , we must have

F'm = f m(y 1 ! ^2 ) ^3 , «I , 0>2 , CO3),
(2.1)

G'm = gm(u[ , u'2 , u3 , toj , u'2 , coQ, (m = 1,2, 3),

fm and gm being the same functions in (1.1) and (2.1).
The same remarks apply in the case of reflectional symmetry in a plane P. In this

case, we choose the origin 0 on P, and reflect Ox,x2x3 in P to obtain 0x[x'2x3 . However
some care must be exercised in this case because the orientation of the axes is changed.
This introduces no difficulty in the case of the polar vectors u and F, but must be taken
into consideration in the case of the axial vectors w and G. This point will be discussed
below in the appropriate place.

On account of the ease with which the notation of complex variable lends itself to
the treatment of rotations in a plane, we find it convenient to use the following notation:

u = Ui -)- 1U2 , a) = a)i + iw2 ) P = Pi ~\~ iP21 G = Gi -f- iG2 , (2.2)

with similar definitions for the primed quantities. Let us rewrite (1.1) and (2.1) in the
form

P = f(M, u, u3 , a, u, (o3), F3 = f3(u, u, u3 , u, w, w3),

G = g(u, u, u3 , co, co, co3), G3 = g3(u, u, u3 , co, co, co3),

F' = f(u', u', u'3 , co', co', <o0, F3 = f3{u', u', u'3 , co', co'; co0

G' = g{u', u', u'3 , co', co', C03), G'3 = g3(u', u', u'3 , co', co', coQ,

(2.3)

(2.4)
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where the bars denote complex conjugates. Here the functions / and g are complex
functions of complex arguments, and f3 and g3 are real functions of complex arguments.
Since we have changed the arguments in passing from (1.1) and (2.1) to (2.3) and (2.4),
the functional forms f3 and g3 are different in the two sets of equations. No confusion
will arise from this, because we shall not refer to (1.1) or (2.1) again.

3. Consequences of ?i-gonal rotational symmetry. We suppose that the projectile
has n-gonal rotational symmetry about an axis A. We choose the origin 0 on A, the
axis Ox3 along A, and the other two axes in the plane perpendicular to A, but otherwise
arbitrary except for the condition that they must of course be at right angles. We consider
some state of motion and the corresponding aerodynamic force system. These are
described respectively by the complex and real components (u, u3 , co, co3) and (F, F3 ,
G, G3) on the axes 0xix2x3 . Now apply to the axes the covering operation, i.e. a rotation
about 0x3 through an angle a. = 2ir/n. The same motion and the corresponding force
system may also be described by the complex and real components (u', u3 , co', 003)1
(F't F3 , G', 6") on the new axes Ox[x'2x3 . The transformation from one set of com-
ponents to the other is easily seen to be as follows:

u' = ue~,a, u3 — u3 j co' = coe-*", u>3 = co3 ,

(3.1)
F' = Fe~ia, F'3 = F3, G' = Ge~ia, G'3 = G3 .

If we substitute these in (2.4) and then compare with (2.3), we get the following equa-
tions, which must be satisfied for arbitrary values of (u, u3 , co, co3):

i a r / — i a — i a — i a — i a \ j* / — — \e j{ue , u e , u3 , coe , coe , co3) = j(u, u, u3 , co, co, co3),

e"*g(ue "*, u e'", u3 , we , coe*", co3) = g(u, u, u3 , co, u, w3),
1

f3(ue~,a, u e'", u3 , ooe~"", we'", co3) = f3(u, u, u3 , co, w, co3),
(3.2)

g3(ue u e'a, u3 , coe coe1", co3) = g3(u, u, u3 , co, co, co3).

We now make an important assumption, namely, that the functions /, f3 , g, g3 may
be expanded in power series in the transverse components ux , u2 , co: , co2 , or, equiva-
lently, in power series in the complex quantities u, u, co, co. We shall write these power
series in the form

F = f(u, u, u3 , co, co, co3) = Fvari(u3 , co3)t/t?corcos,
VQT8

G = g(u, u, u3 , co, co, co3) = X Gpars(u3 , co3)uIwVco*,
VQT8

Fa = U, U3 , co, co, co3) = Fvlh(u3 > cj3)u"uWcos ,
pgr 8

G3 = g3(u, u, u3 , co, co, co3) = ^2 GZ,(u3 , co^BW,
pars

the summations covering the ranges p, q, r, s = 0, 1, 2, • ■ ■ . Here the functions

F2qr3 , co3), GpqTa(u3 , C03), FVqr8(u3 , CO3), Gpqra(zi3 j C03)

are the same functions for equivalent axes.

(3.3)
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We note that the coefficients Fill, and Gp„l, are in general complex, and certain
relations must be satisfied by them in order that/3 and g3 may be real. We have/, = f3 ,
and so

E KVr.(u3 , co3KuW = E Kl, «02V5V
pqra pqra

(3.4)
= E KlUih , co3)u°uWw.

pqra

This holds for arbitrary values of uv , u2 , coi , w2 , and may be treated formally as an
identity in u, u, co, co. A similar identity arises from g:i , and so we have

,(^3 1 OI3) = F\v'ar{U3 , C1I3), Gpqr,(U.3 , CO3) = G„p,r(u3 , 0)3),

(3.5)
(P, Q,r,s = 0, 1, 2, • • •)•

We see that FPP'rr{u3 , co3) and G^rr{u3 , a>3) are real; this result is important later in the
paper. (The summation convention for repeated suffixes does not operate, here or else-
where.)

We now substitute the series (3.3) in (3.2), and obtain the following result from the
first of (3.2):

E Fpgr,(u3 , = E exP [*'«(! - p + q — r + s)]Fvar,(u3 , w^wVcoV. (3.6)
pqra pqrs

This may be treated formally as an identity in u, u, u, to, and we obtain

FPar,(u3 , co3) sin | a(l - p + q - r + s) = 0, (p, q,r, s = 0, 1,2, • • •)• (3.7)
f

Thus all coefficients F„ar,(u3 , ui3) must vanish except those for which p, q, r, s are such
that

sin | «(1 — p + q — r + s) = 0. (3.8)

Since a = 2-ir/n, we see that the only surviving coefficients Fvqr.(u3, a>3) in the case of n-gonal
rotational symmetry are those for which p, q, r, s satisfy one of the equations

p — q-\-r — s — 1 = mn {m = 0, ±1, ±2, • • •) (3.9)

(We recall that p, q, r, s are of course non-negative integers.) Similarly, the only surviving
coefficients GVQT,(u3 , co3) in the case of n-gonal rotational symmetry are those for which p,
q, r, s satisfy one of the equations (3.9).

A similar argument applied to the third and fourth equations of (3.2) shows that
the only surviving coefficients F^r,{u3, w3) and G^L(m3 , ai3) in the case of n-gonal rotational
symmetry are those for which p, q, r, s satisfy one of the equations

p — q + r — s = mn {m — 0, ±1, ±2, • • •)• (3.10)

The results are most easily interpreted if we introduce P and Q defined by

P = p + r, Q = q + s. (3.11)



1949] AERODYNAMIC SYMMETRY OF PROJECTILES 349

We note that as p, q, r, s cover the range 0, 1, 2, • • • , P and Q cover the same range.
For a given value of P, there will occur in the power series (3.3) the combinations

„ p „ P_1 2 „ P-i P /o 1 r>\U , U 03, U 03 , • • • U03 , 03 , (3.1^)

and for a given value of Q the combinations

—0 —Q-l— -0-2—2  0-1 —o /o 1 o\U , U 03, U 03 , 1103 , 03 . (3.13)

The result regarding surviving terms may be displayed as follows:

PrQrs(u3 , 0>3) Pp<,la(U3 1 ̂ 3)

3 J ^3) (fpqraiMs ) ^3)

survive only if survive only if
(3.14)

P — Q = mn +1 P — Q — mn

m — 0, dbl, =t2, • • •

(P = v + r, Q = q + s)

Since, for small cross velocity and cross spin, the significance of the terms in the
series (3.3) decreases with increasing degree, it appears advisable to arrange the terms
in order of increasing degree. The degree of a term with coefficient having subscripts.
V, Q, r, s is

D = p + q+ r+ s = P + Q. (3.15)

To get a surviving coefficient FPQr3 or Gvar, for a term of degree -0, we must satisfy
the first of the following equations and one of the second:

P Q — D, P — Q = mn 1 (m = 0, ±1, ±2, • • •)• (3.16)

Equivalently,

P — | (D + 1 + mn), Q — | (D — 1 — mn). (3.17)

To get a surviving coefficient or G'^l, for a term of degree D, we must satisfy
the first of the following equations and one of the second:

P + Q = D, P — Q = mn (m = 0, ±1, ±2, • • •)• (3.18)

Equivalently,

P = | (D + mn), Q = ±(D- mn). (3.19)

The equations (3.16) and (3.18) form a sieve by means of which we reject certain
terms from the series (3.3), the existence of the rejected terms being in fact inconsistent
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with the assumed symmetry. It is difficult to describe in words the detailed consequences
of the operation of this sieve. Some statements will be made below, but the most rapid
way to see the results is to consult the diagrams (Figs. 2a-n). These show by heavy
dots the surviving terms for symmetries ranging from digonal to octagonal.

To interpret these diagrams, let us take Fig. 2e as an example. This refers to the
cross force F and cross torque G in the case of tetragonal symmetry. P and Q are plotted
as rectangular Cartesian coordinates; since neither P nor Q can be negative, only the
first quadrant is shown. The two families of lines are those given by (3.16) for D =
0, 1, 2, • • • and m = 0, ±1, ±2; ■ • ■ . The dots are those intersections of these lines
which occur at integer or zero values of P and Q. Lines, such as P + Q = 2, which give
no such intersections, are not shown.

We may analyze the diagram by proceeding through increasing values of the degree
D. There is no term of zero degree, nor indeed of any even degree; this is consistent
with the general Theorem I, given later.

For terms of the first degree, we have D = 1, and an intersection occurs at P = 1
and Q = 0. Thus, by (3.11), we have surviving terms with

p = 1, q = 0, r = 0, s = 0,
and

p = 0, <7 = 0, r = 1, s = 0.

Consequently there are linear terms in the expansions of F and G of the forms

P1000 (u3 , a>3)w + F00i0(u3 , <o3)w,

(3.20)
G1000 (^3 f (*)3)^ ~f" G 0010 (,U3 , C03)cd,

respectively, and no other linear terms.
For terms of the third degree, we have D = 3, and intersections occur at

(P = 2, Q — 1) and (!' = 0, Q = 3). Thus we have surviving terms for the following
values of p, q, r, s:

p q r s

2 10 0
1110
0 12 0
2 0 0 1
10 11
0 0 2 1

0 3 0 0
0 2 0 1
0 10 2
0 0 0 3 J

\P = 2, Q = 1

IP = 0, Q = 3

Thus the following terms of the third degree occur in the expansion (3.3) of F, with
Similar terms in the expansion of G:
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F2100(^3 ) 0)3)11 U -J- F 1110(^3 j ^3)utlO) -J- F0120(^3 y ^3)ww

+ F200i(u3 , 0)3)u0) + ^1011(^3 , 0)s)u0)0) + F002i(u3 , co3)co2a>

~l~ ^0300(^3 7 <*>3)% ~h F0201(113 , 0)3)110) -f- ^0102(^3 > 0)3)110)

+ F 0003 (ll3 , w3)w .

There are no other surviving terms of the third degree in these expansions.
In the case of the diagrams for the axial components F3 , G3 , the lines shown have

the equations (3.18). The reader should have no difficulty in interpreting the other
details of the diagrams. Let us now make some general statements with regard to the
consequences of ra-gonal rotational symmetry.

First, let us consider consequences of evenness or oddness in the order n of the
n-gonal rotational symmetry. The following results follow easily from (3.17) and (3.19):

I. In the case of n-gonal rotational symmetry of EVEN order (digonal, tetragonal,
hexagonal, etc.), the series (3.3) for F and G contain only terms of ODD degree, and the
series (3.3) for F3 and G3 contain only terms of EVEN degree.

II. In the case of n-gonal rotational symmetry of ODD degree (trigonal, pentagonal,
etc.), the lowest EVEN degree occurring in the series (3.3) for F and G is (n — 1), and
the lowest ODD degree occurring in the series (3.3) for F3 and G3 is n.

Secondly, let us consider the survival of terms of low degrees (D = 0, 1, 2).
If D = 0, then P = Q = 0. In the case of F and G, we have to satisfy the second

of (3.16) in the form 0 = mn + 1. If n ^ 1, this cannot be satisfied by any m in the
range 0, ±1, ±2, ■ ■ • .If n = 1, it is satisfied by m = — 1. Thus we have the result:

III. The absolute terms in the series (3.3) for F and G survive only in the degenerate
case n = 1, which corresponds to no real symmetry at all.

In the case of F3 and G3 we have to satisfy the second of (3.18) in the form 0 = mn.
This can always be done by taking m = 0. Hence we have the result:

IV. The series (3.3) for F3 and G3 always have absolute terms.
Now let us consider terms of the first degree, D = 1. Then either

P = 1, Q = 0, (3.22)
or

p = 0, Q = 1. (3.23)

In the case of F and G, we have to satisfy the second of (3.10). Corresponding to (3.22)
and (3.23) respectively, this gives

mn = 0, (3.24)
and

mn = —2. (3.25)

Equation (3.24) is satisfied for any n by taking m = 0. Equation (3.25) can be satisfied
only if n = 1 or n = 2, in which cases it has.solutions m = —2, m — —1, respectively.
Noting that (3.22) gives

p = 1, 2 = 0, r = 0, s = 0,

p =■ 0, q = 0, r = 1, s = 0,
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and (3.23) gives
p = 0, q = 1, r = 0, s = 0,

1 p — 0, q = 0, r = 0, s = 1,

we may state the following result:
V. For any n, the series (3.3) for F and G contain linear terms of the form

F1000 {u3 , u3)u + F 0010 (u3 , 0)3 )o),

(3.26)
Giooo(u3 , 103)11 Gooio(u3 , 0)3)0).

If n > 2, these are the only terms of the first degree; if n = 1 or n — 2, </iere are additional
linear terms of the form

F0100(^3 j oj3)m -(- F 0001 (U3 , 0)3)0),

(3.27)
Goioo(u3 , u3)u + G 0001 (u3 , 0)3)0),

respectively.
To discuss terms of the first degree in the series for F3 and Gz , we go back to (3.22)

and (3.23), and combine them with the second of (3.18). We get respectively,

mn = 1, (3.28)
or

mn = — 1. (3.29)

These can be satisfied if and only if n — 1. Thus we have the result:
VI. In the series (3.3) for F3 and G3 , linear terms occur only in the degenerate case

n — 1.
Finally let us consider terms of the second degree, D — 2. Now we have three alter-

natives:
P = 2, Q = 0, (3.30)

or
P = 1, Q = 1, (3.31)

or
P = 0, Q = 2. (3.32)

In the case of F and G we have correspondingly from the second of (3.16):

mn — 1, (3.33)
or

mn = — 1, (3.34)
or

mn = -3. (3.35)

The first two can be satisfied if and only if n = 1. Equation (3.35) can be satisfied if
and only if n = 1 or n = 3. Thus we have the result:

VII. The series (3.3) for F and G contain terms of the second degree if and only if
n = 1 or n = 3 (no symmetry or trigonal symmetry). If n ^ 1, all terms of the second degree
involve u2, mo, o)2 only.
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To discuss terms of the second degree in the series for F3 and G3 , we use (3.30),
(3.31), (3.32) with the second of (3.18). We get the following corresponding equations:

mn = 2, (3.36)
or

mn ■ 0, (3.37)
or

mn = — 2. (3.38)

Equation (3.37) can be satisfied for any n; the other two equations can be satisfied if
and only if n = 1 or n = 2. Hence we have this result:

VIII. If n > 2, the series (3.3) for F3 and G3 possess terms of the second degree of the
following forms only:

F 1100(2*3 , 033)1111 -f- F 1001(1/3 , 0)3)U03 ^0110(^3 ) 013)1101 -)- Fooil(u3 , 0}3)0)0J,

Giioo(u3 , 033)uu -f- (?iooi(lt3 , 0}3)U0> + Gol\o(u3 , 033)u03 + Gooil(M3 ) «3)&X<>-
(3.39)

If n = 1 or n — 2 (no symmetry or digonal), all terms of the second degree occur.
The following result may be added as an immediate deduction from the second of

(3.16):
IX. Except in the degenerate case (n = 1), there occur in the series (3.3) for F and G

no terms making
V + r = q + s.

This means that, in the diagrams of Fig. 2 which refer to F and G, we find no dots on
the main diagonal, P = Q.

4. Consequences of reflectional symmetry. Let us now suppose that the projectile
has reflectional symmetry in a plane P. If there is also n-gonal rotational symmetry
about an axis A, we shall suppose that A is contained in P.

Let us choose the origin 0 in P (and on A if there is n-gonal rotational symmetry).
Let us choose the axis 0x3 in P (and along A if there is n-gonal rotational symmetry).
Finally, let us choose the axis Oxi in P, so that Ox2 is perpendicular to P.

The covering operation is a reflection in P. Applied to the axes, this operation
changes Oxxx2x3 into Ox[x'2x'3 , where Ox' , Ox3 coincide with Ox 1 , Ox3 respectively, and
Ox2 is Ox2 reversed.

Consider any state of motion of the projectile. This may be described by the com-
ponents (ui , u2 , u3 , o>i , o>2 , oj3) along 0xix2x3 or by the components {u[ , u'2 , u'3 ,
oi'i , <02 , 013) along Ox[x'2x', . It is understood that a component of angular velocity in
a given direction is positive if it corresponds to a positive rotation about that direction.
Although we may be accustomed to defining a positive rotation as a right-handed
rotation, that definition must not be used here, because we are considering two sets
of axes with different orientations. We accept the definition that a rotation is positive
if it corresponds to a cyclical rotation of the axes. Thus oi3 is positive if it tends to turn
Oxx into Ox2 , and o>3 is positive if it tends to turn Ox[ into 0x'2 . It is then easy to see
that when we reflect the axes in accordance with the covering operation described
above, and describe one single state of motion by components along the two sets of
axes, the two sets of components are related by the following formulae of transformation:
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Ul = Hi , Vj2 = W2 1 ^3 = ^3 1
(4.1)

CoJ = —COi , 0)2 — C02 , CO3 = — C03 .

To this state of motion there corresponds an aerodynamic force system, which may be
described by the components (F, , F2 , F3 , Gx , G2 , G3) along Ox^2x3 or by the com-
ponents (F[ , F2, F'3 , G[ , G2, G!i) along Ox[x'2x3 . As in the case of angular velocities, a
component of torque is positive if it tends to produce a cyclical rotation of the axes.
Thus G3 is positive if it tends to turn Ox, into Ox2 , and G3 is positive if it tends to turn
Ox' into Ox2. We have then the following formulae of transformation analogous to (4.1):

EV   Z7T 777/   rr T?f   777
' 1 — f I , r 2 — * 2 > ^3 — ^3 j

(4.2)
G[ = — Gj , G',= G2, G'3= -G3 .

The formulae (4.1) and (4.2) are most easily remembered by the following rule:
When the axes are reflected, polar vectors (velocity and force) undergo ordinary re-
flection, but axial vectors (angular velocity and torque) undergo ordinary reflection
followed by a reversal of sense.

In the complex notation of (2.2), the transformations (4.1) and (4.2) read

U' = U, U3 — U3 j Co' = —CO, CO3 = —co3 ,
— — (4-3)

F> = F, Fl = F3 , G' = -G, G'3 = -G3 .

The above formulae refer to the effects of reflection of axes; the idea that the pro-
jectile is symmetric is not involved. This idea we now introduce, and substitute from
(4.3) in (2.4). We see that reflectional symmetry in the plane Oxxx3 implies the following
identities:

f(u, u, u3 , -co, -co, — co3) = f(u, u, u3 , CO, w, co3),

g(u, u, u3 , co, -co, —co3) = — g(u, u, u3 , co, 00, co3),
_ _ — _ _ (4-4)

f3(u, U, U3 , —CO, —CO, —C03) = f3(u, U, U3 , CO, CO, co3),

g3(u, u, u3 , -co, -co, —co3) = —g3(u, u, u3 , co, co, co3).

Here a bar over a functional symbol implies that the sign of i is changed throughout,
i.e. both in the arguments and in any complex coefficients which occur in the function.
Since f3 and g3 are real, it is of course a matter of indifference whether we use bars for
them or not.

We now assume that the functions /, g, f3 , g3 admit series expansions as in (3.3).
Substitution in (4.4) gives

X} (— l)T + 'Fvar,(u3 , —C03)wVc0rC0S = Fpar,(u3 , C03)t?VcoV,

X) (— l)r+*Gw„(«3 , —co3)wVcorco8 = — X Gw,(w3 , co3)uVcoV,
PQT8 VQT8

£ (-1Y+'KIUu3 , -co3K«W = Z FZ.{u3 , coJifwVco',
pgr 8 vqra

E (-l),+*G£i.(«. , -co3)uVSV = ~E G»J.(«3 , co3)wVcoV.

(4.5)
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Since these may be treated as identities in u, u, u3 , co, co, co3 , we deduce

Fpqrsfa'S ) ^3) ( 1) Fpgrsiw 3 j )

(fpqrafyt'S ) CO3) "™™ ( 1) ^pqrs(^3 ) ^3))

&(«. , -C03) = (-l)r+*^.(W3 , CO3), (4.6)

g£Uu3 , -cos) = -(-iy+"G(viUu3, U3),

(p, q, r, s — 0, 1, 2, • • •)•

We note that the exponent (r + s) is the degree in cross spin of a term in the ex-
pansions (3.3).

To show the implications of (4.6), we introduce the symbols 2? and 0 to represent
real functions of u3 and «3 which are respectively even amd odd in u3 . We may then
show the results as follows:

(r + s) even (r + s) odd

FPart and Fl3als E -\- iO 0 -\- iE (4.7)

GvaTB and G^rs 0 + iE E -\- iO

In making the above deductions from the assumption of reflectional symmetry, we
have made no use of the existence or non-existence of n-gonal rotational symmetry.
In fact, the consequences of the two types of symmetry are essentially different in
nature. As we saw in Section 3, n-gonal rotational symmetry eliminates terms in the series
(3.3). Reflectional symmetry does not eliminate any terms; it merely gives us informa-
tion with regard to odd or even functional dependence on axial spin u3 in the coefficients
in (3.3). But in the special case discussed below in Sees. 6 and 7, reflectional symmetry
does enable us to eliminate further terms from the expansion G3 .

5. Case of vanishing cross spin (a> = 0). Let us now consider the case where the
projectile has no cross spin. This may be either an instantaneous condition in a general
motion, or it may be a permanent condition enforced by constraints on the projectile.
Thus, if the projectile is mounted in a wind tunnel in such a way that its axis is fixed
in direction, then the cross spin vanishes. The projectile may be completely fixed, or
it may be free to rotate about its axis. We note that, for wind tunnel discussions, the
free air stream is to be used as frame of reference.

For vanishing cross spin, we have coj = co2 = 0, and so u = u = 0. Thus all terms
disappear from the series (3.3) except those for which r = s = 0. In fact, the series read

f(u, u, u3 , 0, 0, C03) = Fvaoo(u3 , O>3)wV,
■pa

g(u, u, u3 , 0, 0, w3) = X) Gvq0o(u3 , w3)uvua,
pq

(5.1)
f3(u, U, U3 , 0, 0, 0)3) = FpqOo(y3 ! ^3)mPua,

VQ

g3(u, u, u3 , 0, 0, co3) = X) Cofe > u3)uvu\
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We shall suppose that the projectile has reflectional symmetry in the plane Ox^x3
ang also n-gonal rotational symmetry about the axis Ox3 .

Since r + s is even, it follows from (4.7) as a deduction from reflectional symmetry

FpQoo = E + iO, Fp3Qoo = E -f- iO,
(5.2)

Gva oo = 0 + iE, (?pooo = 0 + iE.

Turning to (3.11), we note that P = p and Q = q. Figure 2 shows the coefficients which
survive in the case of n-gonal rotational symmetry, but now we may read p instead
of P and q instead of Q on the axes of the diagrams. As already noted in Theorem IX,
on the main diagonal (p — q) there are no surviving coefficients in the series for F and
G (except in the degenerate case of no symmetry (n = 1), which is not shown in the
diagrams). But in the series for F3 and G3 there are terms on the main diagonal in all
cases. The coefficients are of the forms

FppOo(W3 ) ^3)1 Gppoo(U3 , C03). (5.3)

From the reality of F3 and G3 , it follows (as seen after (3.5)) that the above coefficients
are real. When this information is compared with (5.2), the truth of the following state-
ment is obvious:

X. For a projectile possessing reflectional symmetry and n-gonal rotational symmetry,
the coefficients (5.3) are respectively real EVEN and real ODD functions of oj;i .

6. Case of vanishing axial spin (co3 = 0). We next consider the case where the pro-
jectile has no axial spin («3 = 0), but may have cross spin. This may be an instantaneous
state of motion for a fin-stabilized projectile in free flight, or a permanent state enforced
by constraints to prevent axial spin for a projectile mounted in a wind tunnel.

Since an odd function of co3 must vanish with oi3 , it follows from (4.7) that, when
co;t = 0, the coefficients take the forms:

(r + s) even (r + s) odd

Fvar, and F™. k(u3) ik(u3) (6.1)

GTQr, and G'^l, ik(u3) k(u3)

where k is used to denote real functions of tt3 ; k does not, of course, represent a single
function. These results are consequences of reflectional symmetry, which assigns odd
or even dependence on o>3 , and of the condition of vanishing axial spin, which eliminates
either the real or the imaginary part for any given coefficient.

Since the coefficients in the expansions of F and G are initially to be regarded as
unrestricted complex numbers, the terms which survive n-gonal rotational symmetry
also survive after application of the above two assumptions. The character of the re-
striction placed on the coefficients in the series for F and G due to vanishing axial spin
may be summed up in the following statement:

XI. For a projectile possessing reflectional symmetry and n-gonal rotational symmetry,
and having no axial spin, the coefficients Fvars , Gpar, are respectively pure real and pure
imaginary functions of u3 for (r + s) an even integer. If (r + s) is odd, the situation is
reversed.
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Further, it is easily seen that the assumption of vanishing axial spin does not eliminate
any terms in the expansion of F3 . From (6.1) it is seen that these coefficients Fp", are
pure real or pure imaginary functions of u3 depending on whether (r + s) is an even
or odd integer.

The fact that a projectile possesses reflectional symmetry and no axial spin, when
combined with the result (3.5), does eliminate additional terms in the expansion of the
axial torque G3 for the projectile. By (3.5), G™rr(u3 , cj4) are real, and so, in particular,
Glllr(u3 , 0) are real. But, by (6.1), G^lr(u3 , 0) are pure imaginary. Hence

<Cr(u3 , 0) = 0. (6.2)
Thus we have this result:

XII. For a projectile possessing reflectional symmetry and n-gonal rotational symmetry,
and having no axial spin, the series (3.3) for G3 contains no terms for which p = q and
r = s.

Let us examine this result, proceeding by increasing degree D.
If D = 0, we have the coefficient G'olinUh , 0), and it vanishes by (6.2).
If D = 1, we have the coefficients

^?1000(W3 t 0), Goioo(u3 , 0), (?ooio(w3 , 0), Goo0l(u3 , 0).

Obviously, (6.2) tells us nothing about these coefficients. However, as we saw in Theorem
VI, these coefficients occur only in the degenerate case n = 1.

If D = 2, the subscripts of G^'r,(u3 , 0) may be written as follows:

2000

0020

*1100

1001
(6.3)

0110

*0011

0200

0002.

Of these, those marked with a star vanish by (6.2). We are left with 6 terms. Combining
this with Theorem VIII and (6.1), we have the following result:

XIII. For a projectile possessing reflectional symmetry and n-gonal rotational sym-
metry, and having no axial spin, the terms in the series (3.3) for the axial torque G3 may be
described as follows:

a. There is no absolute term.
b. There are linear terms only if n = 1 (degenerate case).
c. If n = 1 or n = 2, there are six terms of the second degree, with subscripts

as shown by the unstarred entries in (6.3); if n > 2, there are only two terms
of the second degree, which may be written
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k(u3)(uui + wco) (6.4)

where k is a real function.
The last deduction follows from (3.37), since, by (3.5),

GllUu, , 0) = GtfUus , 0), (6.5)
and, by (6.1), Giooi(u3 , 0) is real.

We note, that for n > 2, the expansion of G3 reads

G3 = k(u3)fyiu + wco) + (terms of higher degree). (6.6)

7. Case where cross spin and axial spin both vanish (w = 0, co3 = 0). We shall
now bring together the situations discussed in Sees. 5 and 6 by supposing that the
axial spin co3 and the cross spin co vanish simultaneously. We discuss here only the axial
torque G3 .

As a particular case of (6.2), we have

GSo(w3,0) = 0 (p = 0, 1, •••)• (7.1)
This means that when &> = co3 = 0, for a projectile possessing reflectional and w-gonal
rotational symmetry, we are to delete the main diagonals in the charts of Fig. 2 for G3 ;
these coefficients no longer survive. Under these circumstances, let us seek the surviving
coefficients of lowest degree in the series (3.3) for G3 . It is then a question of finding
the smallest non-negative integer D to satisfy (3.18) with the additional condition
P Q, since the main diagonal has been eliminated.

The equations to be solved read

P + Q = D, P — Q — mn (m = 0, ±1, • • •),

P * Q.
(7.2)

These imply

D2 = (P + Q)2 = (P - Q)2 + 4PQ = mV + 4PQ. (7.3)

The possibility m = 0 is excluded, since by (7.2) it would give the forbidden relation
P = Q. Hence the smallest D is given by taking m2 = 1 and either P — 0 or Q = 0.
This smallest value of D is n, and the solutions giving the smallest D are

P — n, Q = 0, m — 1; P — 0, Q — n, m = —1. (7.4)
Let us summarize as follows:
XIV. A projectile possesses reflectional symmetry and n-gonal rotational symmetry.

The cross spin and the axial spin both vanish. Under these conditions the series (5.1) for
the axial torque G3 starts with terms of degree n, and the series is of the form

G3 = —ik(u3)(un — un) + terms of degree n + 2. (7.5)

To complete the proof of this statement, it follows from (7.4) that

G3 = G(„ooo(u3 , 0)u" + Gonoo(w3 , 0)u" + terms of degree n + 2. (7.6)

The coefficients are pure imaginaries by (4.7) and complex conjugates by (3.5), since
G3 is real. Thus, in terms of a real function k(u3), we may write (7.6) in the form (7.5).
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The angle of yaw (5) is the angle between the velocity of the point 0 and the axi#
of the projectile. Thus •■•k!;

tan 5 = ) u | /u3 . (7.7)

Let 6 denote the angle between the cross velocity vector u and the axis 0xt , which it
will be remembered lies in a plane of reflectional symmetry of the projectile. We shall
count 6 positive when the direction of u is generated from 0x\ by a positive rotation
(Fig. 3). Then

u = | u | e'1. (7.8)

Combining (7.7) and (7.8), we have

u = u3 tan S-e's. (7.9)

Substitution in (7.6) gives

G3 — 2ulk(u3) tan" 5 sin nd + terms of order tan"+2 5. (7.10)

To summarize:
XV. The formula (7.10) shows explicitly the dependence of the principal part of the

axial torque G3 on the yaw 8 and the angle 6 for a projectile possessing reflectional symmetry
and n-gonal rotational symmetry, in the case where the projectile has no cross spin or axial
spin.

As was to be expected, G3 is periodic in 0 with period a = 2ir/n, the angle of the
covering operation.

The formula (7.10) holds even in the degenerate case n = 1, when we have no rotar
tional symmetry, only reflectional symmetry.

8. Stability. An interesting question concerning the generation of axial spin arises
in respect of (7.10). Suppose that a projectile possessing reflectional symmetry and>
gonal rotational symmetry has no cross spin or axial spin (<o = co3 = 0). Then G3 is of
the form (7.10), from which we see that G3 = 0 if either (a) the cross velocity lies in
the plane of reflectional symmetry 0x^(6 = 0), or if (b) there in no yaw (5 = 0).

Let us consider the case in which the projectile is yawing (5 ^ 0) so that the vanishing
or non-vanishing of the axial torque depends only on 6. We shall then have G3l|r= 0
for 8 = mir/n, where m = 0, ±1, ±2, ••• .For these values of 0, the cross velocity
vector lies in a plane of symmetry. If the projectile has n-gonal rotational symmetry
and one plane of reflectional symmetry (containing the axis of rotational symmetry),
then it necessarily has n planes of reflectional symmetry. The angles between these
planes are x/n. , •.. .

We must observe that, for a given projectile, the axes Ox^2x3 are not uniquely
determined. Choosing Ox3 along the axis of the projectile in the general sense of flight,
and deciding to use right-handed axes, we have still a choice of 2n consecutive directions
differing by an angle v/n for the Ox, axis. For a given motion, a change from one such
choice of Ox, to the next alters 6 by ir/n, and changes the sign of sin nd in (7.10). Since
G3 is not altered, such a change reverses the sign of the function k(u3). We must therer
fore be careful not to attach importance to the sign of k(u3) until we are sure what
axes we are using.

Suppose then that we have made some definite choice of Oxi , as in Fig. 3. Consider
various directions of the cross velocity u. As we rotate w, weget successive positions of
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vanishing axial torque, namely, whenever u crosses a plane of symmetry. These will be
alternately stable and unstable, in the sense that if the vector u is displaced slightly
from one of these positions, the axial torque consequent on this displacement will tend
to decrease or to increase the angular displacement between u and the plane of sym-
metry originally coincident with u. The criterion for stability is that the generated
axial torque should rotate the projectile so as to bring the plane of symmetry from
which u was displaced back into coincidence with u. This requires a positive G3 for a
positive increment in 6; in other words the criterion for stability is

dGJdO > 0. (8.1)
Referring to (7.10), we see that we may make the following statement:

XVI. If k(u3) > 0, the projectile is stable with res-pect to axial spin when yawed in
the planes of symmetry 6 = 2mir/n (m = 0, 1, 2, • ■ •), and unstable when yawed in the
planes of symmetry 6 = (2m + l)ir/n (ra = 0, 1, 2, ••■). If k(u3) < 0, the situation is
reversed.

We have no a priori knowledge about the sign of k(u3). Suppose the projectile is to
consist of a body of revolution and fins as shown in Fig. 1, the broken lines being included
so that the projectile has reflectional symmetry. Let us for the sake of definiteness take
Oxl in a fin.

In the degenerate case (n = 1), where there is no symmetry except reflectional
symmetry (Fig. 4a), we expect stability when the fin is downstream. We note that u
represents the cross velocity of the projectile relative to the air, so that — u represents
the cross wind relative to the projectile; we may expect that stability occurs when
6 = 7T, as shown by the vector marked S in Fig. 4a. Thus, according to the above
criterion for stability, in order that (8.1) holds for 6 = x we must have k(u3) < 0 when
n = 1. Figure 4a also shows the relation between the angle 0 and stability. The shaded
portion of the plane is a region of stability in the sense that if the cross velocity vector
u once enters the shaded half-plane it can never leave and tends to settle on the position
<S. If u is initially in the unstable region (right half-plane) the projectile will rotate so
that u leaves the unstable region by the shorter route. These statements are not mathe-
matical deductions; they represent what, from general experience, we would expect to
happen in the case of a projectile with a single fin.

In the case n = 2 (Fig. 4b), it would generally be agreed that the projectile would
turn so as to set the face of the fins at right angles to the cross wind. That is, taking
Oxi in one of the fins, the two positions for u given by 8 = v/2, 3x/2 are positions of
stability and the positions 6 = 0, ir are positions of instability. In order that this situation
may result from the above criterion of stability, it is necessary that k(u3) < 0 when
n = 2.

In both the above cases, it is interesting to note that the positions of stability are
those for which the cross velocity u is coincident with the bisector of the angle between
adjacent fins. The question then arises as to whether this holds true for projectiles
having more than two fins. This of course could be answered if there were an a priori
method for the determination of the algebraic sign of k(u3). In the absence of such a
method, experiment alone can decide. To explain the point at issue, let us discuss the
case of a bomb with three fins (n = 3), as shown in Figs. 4c, d.

Let us choose the axis Oxl in one of the fins. Two cases can arise, k(u3) > 0 and
k(u3) < 0, if we omit from consideration the particular case k(u3) — 0.
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Let us consider first the case k(u3) > 0. From Theorem XVI we infer that the pro-
jectile is in a position of stable equilibrium when 0 = 0, 2tt/3, 47r/3, i.e. when the cross
velocity vector u lies in one of the fins (Fig. 4c). Also we see that there is unstable
equilibrium when 6 = 7r/3, t, 5t/3, i.e. when the cross velocity vector u bisects the
angle between two fins. The shaded regions in Fig. 4c indicate regions of stability, in

©—I j—e-
n = 1 n = 2

no symmetry digonal

o-

n = 3 n = 4
trigonal tetragonal

n = 5 n = 6
pentagonal hexagonal

n = 7 n = 8
heptagonal octagonal

Fig. 1
Diagram showing cross-section with n-gonal rotational symmetry, with and without reflectional sym-
metry. (If dotted portions are included, we have reflectional symmetry; if they are omitted, we have no

reflectional symmetry).



362 C. G. MAPLE AND J. L. SYNGE [Vol. VI, No. 4

the sense that, if u lies in one of them, the projectile will rotate so as to bring u into
coincidence with one of the fins, and there will be an oscillation of u (in the shaded
region) about that fin.

On the other hand, if k(u3) < 0, the situation is reversed as shown in Fig. 4d. Now
the stable positions of equilibrium are those for which u bisects an angle between fins.

We have then the following interesting question, capable of answer by wind tunnel
experiments: If a three finned projectile is mounted in a wind tunnel so that it is free
to turn around its axis, are the stable positions of equilibrium those in which a fin
lies in the plane of yaw (Fig. 4c), or are they those in which the plane of yaw bisects
the angle between two fins (Fig. 4d)? The same question may of course be asked for the
case of four fins, or indeed for the case of any number of fins. It would indeed be in-
teresting to know whether the situation discussed for n — 1 and n = 2 continues for
higher values of n. It may be that for higher values of n the screening effect of the body
of the projectile becomes of significance, and no general statements can be made covering
all projectiles which have the same value of n.

(F, G) 8 \ \i <-F>' G*>
n = 2: digonal \/ \ n = 2: diSonal
All terms of odd /X/N. A11 terms of even

degree present ' \ / \ /\ degree present
(A

Fig. 2a Fig. 2b.

(F, (?) \V (F3,G8)
n = 3: trigonal VSA. n = 3: trigonal

Terms present in all ? \P\ n. N. Terms present in all
degrees >0 6 / degrees except 1
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(F, G) (F,, G,)
n = 4: tetragonal ° ' \ \ n = 4: tetragonal
Terms present in Terms present in
all odd degrees fi X all even degrees

5 -4- t> Co 7 6 9 IO

Fig. 2g.

(F, G)
n = 6: hexagonal
Terms present in
all odd degrees

2

(F'G)- , B \\ (ft.ft)
n — 5. pentagonal n = 5 : pentagonal

Terms present in all 7 \ Terms present in all
degrees except 0, 2 ^ degrees except 1, 3

4 5 6 7 6 9 IO

Fig. 2h.

(F,, Ga)
n = 6: hexagonal
Terms present in
all even degrees
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(F' G) xn = 7: heptagonal Q (F,, G,]
Terms present in all rj (/ x, n — 7: heptagonal
degrees except 0, 2, 4 T\ \ \ \ Terms present in all

degrees except 1, 3, 5

3 5 6 7 8 9 10 o % 2 4 6 7 8 9 IO
Fig. 2k. Fig. 21.

\A

(F, G) 6 ( / \ (F, , 6'.,)
n — 8: octagonal V N. n = 8: octagonal

Terms present in all Terms present in all
odd degrees 6 \ \ even degrees

Fig. 2

The heavy dots indicate surviving terms in the expansions (3.3) for various types of rotational symmetry.
■(F, G) are cross force and cross torque respectively. (F3, G3) are axial force and axial torque respectively.

For P and Q, see (3.11). D is the degree of the term.
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OF

K
Fig. 3

Projectile with reflectional symmetry; definition of the angle 6.

5
Fig. 4a. n = 1, single fin, k(u3) < 0. Fig. 4b. n = 2, two fins, k(u3) < 0.
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I
Fig. 4c. n — 3, three fins, k(u3) > 0.

*r-h

Fig. 4d. n — 3, three fins, k(ut) < 0.

Fig. 4

Stability of a projectile with respect to axial spin. <S indicates equilibrium directions of u (cross velocity
of projectile) which probably correspond to stability. I indicates equilibrium directions of u which

probably correspond to instability. Shaded regions are regions of stability.


