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LINEARIZED COMPRESSIBLE FLOW*
BY

H. PORITSKY
General Electric Company

1. Introduction. The solutions of Laplace's equation indicated in the preceding paper
(referred to in the following as I) find ready application in the study of linearized
compressible flow. This linearized approximate theory of high-velocity flow is based on
the assumption that velocity components induced by an obstacle placed in a uniform
stream of high velocity W0 are small compared to W„ . Under this assumption the
velocity potential <p of the disturbed flow (that is, of the flow induced by the obstacle)
can be shown to satisfy the differential equation:

<Pxx + <Pvv + (1 — M2)lf>zz = 0, (1-1)

where subscripts denote derivatives, and M is the Mach number of the flow, that is,
the velocity of the stream W0 , assumed in the direction of the z-axis, divided by the
velocity of sound at the pressure of the undisturbed flow. The same equation is also
satisfied (under the assumption in question) by other thermodynamic gas quantities,
for instance by the pressure p which is given by

V - Po = -WoPoW = —WoPoV, , (1.2)

as well as by the velocity components u, v, w, given by

u = <px , V = <Py , w = <pz . (1.3)

Equation (1.1) holds both for M < 1, that is when the flow is subsonic, as well as
for M > 1, when the flow is supersonic. In the former case, by introducing coordinates

x, y, z — /3z', /32 = (1 - M2) (1.4)

one transforms the Eq. (1.1) into the Laplace equation

Vxx + <Pm + <£Vz' = 0. (1.5)

On the other hand, to obtain such a transformation for the supersonic case, it is neces-
sary to carry out the following change of variables:

x, y, z = i(iz', 132 = M2 — 1 (1.6)

in which real values of z correspond to pure imaginary values of the variable z'. The
solutions of I thus have to be re-examined in view of this substitution.

Of much recent interest are supersonic "conical" flows, that is, flows in which the
velocity components u, v, w, the pressure p, etc. remain constant along straight lines
through a point (the vertex or origin). Such flows are produced by conical obstacles,
that is by solids whose boundary consists of straight lines through a vertex. To satisfy
the assumptions of the linearized equation (1.1), the conical obstacle must lie close to
the s-axis or it may be a thin fin containing the z-axis and inclined at a small angle of
attack to the main flow.

♦Received April 26, 1948.
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It will be recognized that for supersonic conical flows, u, v, w, p — p0 are homo-
geneous solutions of Eq. (1.5) of degree zero, while the velocity potential is a solution
of Eq. (1.5) of degree 1.

The theory of conical flows is due essentially to A. Busemann,1 where in the bibliog-
raphy are given references to earlier papers. Among more recent studies of conical flows
are these by H. J. Stewart,2 R. M. Snow.3

While most of the following is devoted to homogeneous solutions of Eq. (1.1) for
M > 1 of degree zero, solutions of degree n are also discussed. Examples are given both
of conical flow and conical flow modified by superposition of other solutions.

The supersonic case M > 1 will be understood throughout the following.

2. Conical supersonic flow. To adapt the solutions of I to the solutions of Eq. (1.1)
for M > ], in view of Eqs. (1.5), (1.6) the following replacements must be made:

z -> z/fr, (2.1)

R = (x2 + y2 + z2)I/2 -> (:r2 + y2 - z2/02)1/2 = [z2 - 02(x2 + y2)]U2/Pi, (2.2)

a + iy _ „ • (x + iy)
R+z *z + [z2 - 0V + 2/2)]1

„ _ x T iy r,: T   /o o\
" — D I _ PI . I r.2   1 ,.2\"11/2 • \"-v)

From Eq. I. (2.20) one obtains for the general solution of (1.5) the real part of

m - /[,+*£-$)' •]- <2'4)

It will also be convenient to introduce the variable

  ^    0(% ~f~ iy)   y I   iu (cy r\
e ~ i ~ Z + [z2 - P2(x2 + 7,2)]1/2 ~ £ + lV ~ * (2'5)

and this can be used as the argument of / in place of Z; here £, rj denote the real and
imaginary parts of e; p its absolute value, its argument. Thus, one is led to the solu-
tions

/(t)' € = z + (/- /fr2)1/2 • (2'6)

Each velocity component u, v, w, for conical flows can be represented as the real part
of an analytic function of e.

Turning to the relations I. (4.4) between the velocity components u, v, w—these
relations are equivalent to the vanishing of the curl of the velocity vector—we must
keep in mind that while I. (4.15) yields a solution of the equation

eu = sw
dz dx' K '

'A. Busemann, Infinitesimale kegelige Ueberschallstromung, Schriften der deutschen Akademie der
Luftfahrtforschung 7B, 105-122 (1943).

2H. J. Stewart, The lift of a delta wing at supersonic speeds, Q. Appl. Math. 4, 246-254 (1946).
3R. M. Snow, Aerodynamics of thin quadrilatera iwings at supersonic speeds, Q. Appl. Math. 5,

417-428 (1948).
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for the complete functions U, W (that is, not only for their real parts) in the old co-
ordinates, on account of (2.1), it must be replaced by

U = f / Z' z 1 dW = ~ 2 / dw (2-8)

to furnish a solution of (2.7) in the new coordinates. Likewise I. (4.17) k replaced by

V = 2 / ~ dTF = f / (2"9)

Taking real parts of (2.8), (2.9) to obtain it, v, one obtains

u + iv = - | + f (2.10)

where bars denote conjugates.
For conical flow it is sufficient to determine the velocity components in a plane

z = const., for instance in the plane z = 1. For z = 1, t reduces to

)3(x + iy)    fire" ™ = pe'"- (2-11)1 + [1 - 0V + y2)]i/2 1 + (1 - /3V)1

The radical in Z or e vanishes along the Mach cone

r2 = (x2 + y2) = z2/0\ (2.12)

Its section by the plane 2=1 yields the "Mach circle"

r = 1/0, 2 = 1 (2.13)

and in the e-plane this corresponds to the unit circle

4 = e1", P = | « | = L (2.14)

Inside the Mach circle, the radicand in (2.11) is positive, and with the positive radical
e may be considered to be a map of the Mach circle on the inside of the unit circle
p = 1 with radial direction angle to preserved, but with a radial distortion.

A geometric representation of this transformation is shown in Fig. 1 where the
point P in the plane z = 1 is transformed into the point P2 in the e-plane which has
been placed on the z — 1 plane. This is done by drawing a sphere of radius 1/0 through
the vertex or origin 0, with center on the z-axis, projecting P by means of lines parallel
to the z-axis on P, and P[ on this sphere, then projecting these from 0 back on z = 1
to P2 and P'2 respectively. Indeed, note from Fig. 1 that

[sin a = r/( 1/0) = r0,
j'♦ " P>0'

2 O'O
i « P,0' (2,5)
Itan S - TTvT = Pi.
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Now since

a

Fig. 1.

. a
sm-

tan - =
A acos2

2 sin ^ cos ^ (2.16)

2 cos21

sin a
1 + cos a
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one obtains from (2.11) and (2.15)

' - 1 + (1 - W ■ <2'17)

Equation (2.12), as well as the obvious fact that 0, P, P[ , P2 all lie in the same plane
through 00', leads to (2.11).

On the Mach circle, that is for r/3 — 1, in the plane z = 1, the points Pi , P[ coincide,
and likewise P2 , P'i coincide and lie on the unit circle p = 1. For P inside the unit circle,
two points, P2 , P'2 are obtained in the c-plane and these correspond to reciprocal values
of p; these result from (2.17) by using a positive and negative radical.

If P lies outside the Mach circle, the construction of Fig. 1 fails; now the radicand
in (2.11) is negative and one obtains

£ = 1 ± i(J3V - 1)1/2 • (218)

As will be noted from Fig. 2, now

773 = csc 8, (2.19)

where 25 is the angle subtended by the Mach circle r/3 = 1 at the point P in question,
and Eq. (2.18) yields

e = , CSC 5 6= eic"'5). (2.20)
e

Fig. 2.

Now co — 5, w + 5 are the angles X, n made with the real axis by the tangents from P
to the Mach circle. Replacing the argument e in (2.5) by its function log e/i = X, /u.
we now obtain in place of (2.6)

fM + 9(p)> X = w — S, /i = co+5 (2.21)
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for the velocity components of a conical flow, where /, g are arbitrary real functions;
their arguments X, ix are constant along the tangent lines to the Mach circle.

According to Busemann1 the introduction of e is due to Chaplygin, whom he also
credits with Fig. 1, and Eq. (2.10).

Recalling the alternative procedure of I, Sec. 3, one obtains in a similar fashion
for homogeneous zero-degree solutions of Eq. (1.1), or through the substitution of (2.1)
in I. (3.5), the following differential equations:

(l ~ ^PjVrr T (} - )<pr + ^ = 0 (2.22)

or in (x, y) -coordinates

/3V\ 2tfxy ( PY'\ 2P\x<p, + y<pu) n (n
 ~/~r" <Pxv \ ~~ ~£- = u-

It is sufficient to solve these for z = 1, and extend the solution to other values of
z by replacing r by r/z.

For z — 1, Eq. (2.23) is elliptic for r < 1/jS, hyperbolic for r > 1/(3. Its characteristics
are given by

(1 - x2f )<b/ + 20'dx dy + (1 - yY)dx2 = 0, (2.24)

whose integration leads to the tangent lines to the circle r = 1//3 of Fig. 2.
For conical obstacles lying inside the Mach cone, the disturbance held vanishes

outside the Mach circle. For conical obstacles outside the Mach cone the disturbance
field in the plane z = 1 extends to the region enclosed by the characteristics from every
point of the obstacle section and the Mach circle itself. Thus for a yawed conical fin
shown in Fig. 3, the disturbance in z = const, covers the horizontally shaded region
consisting of the Mach circle and the region between the circle and two of its tangents
through the fin end.

Fig. 3.

By introducing s = log p and to as variables one converts Eq. (2.22) for z = I into
the Laplace equation as in I. (3.9) for r fi < 1, while for r/3 > 1, by X, /x as in (2.22)
one is led to

^ = 0. (2.25)
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3. Flow around cone. The simplest example of a conical flow is obtained by choosing

W = A log e = ^L(log p + io>) (3.1)

where A is a real constant. The real part of this,

W = .4 log p, (3.2)

represents an axially symmetric flow: it will be shown that this flow corresponds to the
disturbance produced by a circular cone of small angle placed with its axis along the
z-axis. Indeed, Eq. (2.10) yields

u + iv fM) = ¥(;->>"• <3-3)
the factor e " shows that u, v lies in an axial plane and the factor p — 1/p shows that
its magnitude depends on p only.

If 7 is the (small) cone semi-angle, then the condition

\u + iv\ ,———! = tan 7 = 7 (3.4)

holds along the cone boundary r = tan 7 (for 2=1) along which Eq. (2.11) yields for
small /3r

 &!L    P tan 7 _ £7
p ~ 1 + (1 - 0V),/2 ~ 2 ~ 2 •

Substituting this value in (3.4), (3.5) and neglecting p in comparison with 1/p, one
obtains

H? = Woy, A = Wny2 (3.6)

and (3.1) yields

W = WtT/2 log t, iv = 1Fo7j log p. (3.7)

Substitution from (3.7), (3.8) in (1.2) yields for the pressure rise over the conical surface

1/2~PoWl = 2 T" log y = 2 72 log (—), (3.8)

which essentially agrees with the familial' solutions of this (linearized) problem.
It will be noted from (3.1), (3.3) that along the Mach cone through the vertex the

conditions

u = v — w = p — p0 — 0 for r/3 = 1, p = 1 (3.9)

hold. These conditions are satisfied by the conical flow around any conical obstacle
lying entirely inside the Mach cone.

The above example is often used to introduce the variables log p, 6 in a purely geo-
metric and fluid-dynamic manner, namely by means of the pressure field developed
around a circular cone.
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4. Lift decrease near edge of wing. As a further example, consider the lift decrease
near the edges of a wing in a supersonic stream placed (with its span) normally to the
main flow. Away from its edges, the well-known two-dimensional flow is set up with a
Prandtl-Meyer expansion on the suction side and a pressure shock on the pressure side.
The approximate solution for small angles of attack a is obtained from the two-dimen-
sional form of (1.1) (see for instance, Durand4) and yields equal and opposite pressure
changes ± Ap on both sides, confined to dihedral Mach angles cot"1/? to each side of
the wing, as shown in Fig. 4, and given by

± Ap = dzp0W%a/f3. (4.1)

Fig. 4.

Near each edge the flow ceases to be two-dimensional. Placing the forward corner of
the wing edge at the origin it is found that the disturbance due to the edge OE is conical.
If the wing edge OF lies inside the Mach cone, the disturbance is confined to a Mach
cone which is tangent to the dihedral angles.

We shall consider the case of a rectangular wing first (see Busemann1). For this case
Fig. 5 shows the Mach cones of disturbance at each edge, and Fig. 6 the section by the
plane 2 = 1.

Proceeding far enough down stream one comes to the end of the wing and the flow
is further disturbed, but this disturbance is only.felt down stream and does not affect
the conical flow in the Mach cone originating from each forward vertex.

The boundary values for the pressure p — p0 are given in Fig. 6 and are as follows:

P ~ Po
A p

— 1 over AB,

+ 1 over AD, (4.2)

0 over BCD.

Similar conditions apply to w which is related to p — p0 through (1.2). It will be noted

4W. F. Durand, Aerodynamic theory, Vol. 3, Springer, Berlin, 1935, p. 235.
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that (3.9) is violated, which is not surprising since the wing does not lie inside the
Mach cone.

In addition to (4.2) there is a condition over AO. To determine the latter note the
boundary condition

v — —w0 tan a = —w0a, (4.3)

which holds to each side of the wing surface, and which we apply over its projection
on y = 0. Differentiation of (4.3) yields

Fig. 5. Fig. 6.

From the conditions of vanishing velocity curl, one now obtains from (4.4)

t = °" (4'5)
This boundary condition enables one to continue w (and hence p — p0 which is pro-
portional to w) from one side of the wing section AO to the other side by means of
positive reflection across AB. It must be kept in mind that the reflection refers to the
analytic continuation of w across the boundary, and not to the flow actually existing
on the other side. The condition (4.4) and the reflection is applied separately to the flow
above and below AO.

Carrying out a positive reflection for w and p from above AO, and similar reflection
from below, it is found that the values obtained for both images are the negatives of
the actual values obtaining in the physical flow at the same points. Thus w, p are single-
valued over a "two-sheeted Riemann surface" which has a second-order branch point
at 0. The relation

(4.6)
maps the two-sheeted interior of the unit circle of the e-plane into the single-sheeted
interior of the unit circle in the emplane with OABCDA of Fig. 6 going into the semi-
circle OABCDA of Fig. 7. In the emplane the boundary values for (p — p,,') / Ap
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are as follows

0 over DCB,

-1 over BAB',
P - Po

Ap (4.7)
0 over B'D',

1 over D'AD.

Discontinuities for w, p occur at B, = il/2 and at D, = —i(i)W2 as well as at their
images in AO A, B', «, = i(i)1/2; £>', = —i1'2. In terms of ej we may set up (p — p0)
as follows:

V ~ Po _ I _ n _ „ , \ _ ffJ_ i K, (ti ~ + i\iY'2) ] ox
Ap ~ 62 e°+e*)-Rel r ln (t, _ i{t-('^)(ei + i^)\ (4'8)

B'.i/r,
fi-plane

d'.-ZtK Xd,-.vT

where , 02, • • • as shown in Fig. 9, are the arguments of the factors e, — i1'2, • • - w is
obtained by dividing p — p0 by — W0Po • In particular along A A, 0, simplify; thus

1/2   o~1/2
= tan"1 -—^t75  = tan-1 [(2 p)1/2 — 1], (4.9)

and one obtains from (4.8) for the local lift coefficient along OA of Fig. 5, as a ratio to
the lift along the wing proper,

2 (2P)1/2 2 . r
- tan ,  = - sin
7T 1 — p TV L

Utilizing the relation

2 p
1 + P (4.10)

& ~ 1 + p2 (4>11)

which follows from (2.11), one may replace (4.10) by

- sin-1 (J3r)1/2 = - cos-1 (1 - fir)1/2 = - cos"1 (1 - 2fir). (4.12)



1949] LINEARIZED COMPRESSIBLE FLOW 399

Replacing r by — x and averaging from x = 0 to x = —1//3, one obtains

3 r° 1 r1- / cos-1 (1 + afix) dx = jr- / cos-1 u du = ~. (4.13)
7T ^7T t/_i ^5

The net decrease in lift over the area within the Mach cone due to the edge effect is
thus 50%.

We turn now to a trapezoidal wing (see Fig. 8) whose edges make an angle ir/2 + y
■ x

Fig. 8.*

with the forward edge, where

0 < y < cot '/S. (4.14)

Figure 6 is now replaced by Fig. 9 and in the e-plane the Mach circle is transformed
into the unit circle of Fig. 10. t-plane

T
B

with the point E going into t — a where

*Note added in proof: S in Figs. 8 and 9 should be replaced by y.
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„ _ fi tan 7  
a ~ 1 - (1 - 02 tan2 7)1/2' ( }

The boundary conditions along p — 1 are still given by (4.7), while (4.5) now obtains
our AOE. By means of

«' = ~J (4.16)at — 1 v '

one transforms the unit circle in the e-plane into a unit circle in the t'-plane (see Fig. 11)

Fig. 11.

with the slit AOE going into the radius along the negative real axis. The point B, t = i
of Fig. 9 goes into

f d X .0/1 iy
— I :—: = eai — 1 a + i

(4.17)
v = —25 — tt/2, § = cot 1 a.

Analytic continuation by means of positive reflection across AE of Figs. 10, 11 is possible
and similarly leads to a single valued function in the

«i = e'1/2 (4.18)

plane, with Fig. 7 replaced by a similar figure but (see Fig. 12) with the discontinuity
A

points B, B', D, D' replaced by points making angles ±e/2 with the directions of positive
and negative e, . A solution analogous to (4.8) is now given by

^ = i- *2 - ,3 + =4_ £ - etry -
L t (6l + e~" )(ti + e* )J

(4.19)
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The solution just obtained (for p — p0 and hence also for w), while it satisfies all the
boundary conditions, will not do, however, for the following reason: since the wing
possesses lift and builds up a pressure rise and fall A p on the lower and upper sides
respectively, there is a tendency to set up circulation around each edge, similar to the
circulation of an incompressible fluid around the edges of an airfoil of finite span, and
responsible for induced drag. Since the component of the main flow normal to the wing
edge, W0 sin 7, is subsonic when (4.14) holds, this flow around the edge (indicated by
arrows on Fig. 9) possesses a singularity at the edge similar to that of an incompressible
fluid, leading to infinities of the form

A(e - a)~1/2 (4.20)

in the functions U, V, W. This type of singularity arises also in the case 7 = 0, but
there it affects only u and v and not w*. For 7 > 0, the flow lines due to this singular
flow lie essentially in planes normal to the edge, and W is also affected by it.

To introduce the required singularity one adds to (4.18)

HHt = Cl   pi ) sin a>i . (4.21)
Pi

This vanishes for p, = 1 and hence does not interfere with (4.7); it also satisfies (4.5)
over AOE of Fig. 9. Thus C in (4.20) cannot be determined from considerations of p — p0,
w only. It may be found, however, by means of the relation

dW
de «=0

= 0 (4.22)

without which (4.19), (2.8), and (2.9) would yield singularities for U and W at e = 0.
One is lead to

C - - 4" ,;■- C0B <"/2> , . (4.23)
I — a a +2a cos v + 1 s '

This completes the determination of p — p0 and w.
For negative 7 with the wing edge still in the Mach cone, a Kutta-Joukowsky condi-

tion holds at the edge and the solution (4.19) has to be properly modified. No singularity
is introduced at the edge.

The case 7 > cot_1/3 has been treated by Snow3.

5. Non-conical flows. Harmonic functions of various degrees of homogeneity were
considered in I, Sec. 4. By means of the substitutions (1.6), (2.1)-(2.3) they can lead to
solutions of (1.1) of similar degree of homogeneity.

As an example, familiar harmonic functions of degree n, — (n + 1) of the "product"
type are given by

[Rn, ir(n+1)]P:(cos 0)[cos m co, sin m co], (5.1)

where P™ are the "associated" Legendre functions, and cos 6 = z/R. Carrying out

*It is introduced by the integrations (2.8)-(2.10).
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the indicated substitutions in (5.1), we obtain the following solutions of the wave
equation (1.1) for the supersonic case (see Haves'):

(z2 - 0Y)[n/2-ln+1)/2lPZ(z/{z2 ~ /J2r2} 1/2)(cos mw, sin »); (5.2)

additional solutions of the same product form may be obtained by utilizing the asso-
ciated Legendre functions of the "second kind," Q", in place of P™. In particular, m = 0
yields the axially symmetric solutions:

(z2 - - 0Y/zTW2]. (5.3)

The velocity potential for the flow around an axially symmetric body with axis along
the 2-axis possesses this symmetry.

As a special case for n = 0 and the second exponent in the first factor in (5.3), there
results

(z2 - 0Vy*'\ (5.4)

This is the potential of a "point source" at the origin; it is of degree —1. The velocity
components for the same symmetric flow, as well as part of the velocity potential due
to transverse flow around an axially symmetric body, possess the type of symmetry
obtained from (5.3) for m = 1.

General solutions of (1.1) of degree n are obtained from I, (4.21), (4.22) by intro-
ducing « and the substitutions (2.1) to (2.3).

In particular 1.(4.21) yields

, = + (5.5)

for a general solution of (1.1) of degree 1. The real part of this could be used as a starting
point for the velocity potential of conical flows. The requisite boundary condition is
given by

<p*kx + i/ + + H'= 0, (5.6)

where (\x , A„ , A*) are the direction cosines of the normal n to the conical boundary.
Neglecting <p, — w in comparison with W0 , one may transform the above into

<PxK + <pvK — K + ^ X:)^ > (5-7)

where (A* , A£ , 0) are the direction cosines of the normal n' to the boundary section by
a plane z — const., this normal lying in that plane (see Fig. 13). Equation (5.7) can
be put in the form*

6W. D. Hayes, Linearized supersonic flows with axial symmetry, Q. Appl. Math. 4, 255-261 (1946).
*In principle, the singularity of the flow field of Section 8 at A, A' could be obtained by replacing

the wing with its sharp edges by a boundary of finite curvature, solving flow subject to (5.8), then passing
to the limit as the original wing with its sharp edge is restored.
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Fig. 13.

dn7 = "Iz f n7~ = aT ^ C°S y sin ^n'x^' ^5"8)

where (n, x) is the angle between the normal n' anil the x-axis.
By superposition of conical flows and of solutions of other degrees of homogeneity,

flows around a great variety of profiles may be obtained.


