
429

A MATHEMATICAL FORMULATION OF THE GENERAL CONTINUOUS
DEFORMATION PROBLEM*

BY

A. GLEYZAL
David Taylor Model Basin, Navy Department, Washington, D. C.

1. Introduction. The purpose of this paper is to formulate precisely and simply the
general stress-strain problem for continuous flow or continuous deformation of con-
tinuous media such as viscous liquids or elastic or plastic solids. We shall use an embedded
coordinate system which is considered to be embedded in the material so that each
particle of the body carries with itself coordinates x' — (x1, x2, x3) which1 vary contin-
uously from particle to particle but which do not vary with time for a given particle
as the body deforms.

The square of the arc length for an embedded element dx' = (dx1, dx2, dx3) is given
by a quadratic form ds2 = g{j dx' dx', summed2 on i = 1, 2, 3 and j = 1, 2, 3, where
the fundamental tensor3 gi:- is a continuous function not only of x' but also of the time t.
This changing fundamental tensor is of basic importance in the theory and will be called
the deformation tensor.

In terms of the deformation tensor the following two principles may be stated:
1. Every continuous flow or continuous deformation may be described by the deformation

tensor ga(x', t) where git is the fundamental tensor of space referred to embedded coordinates
in the body.

2. All equations relating stress and finite strain must be expressible as tensor equations
relating a stress tensor tr,-, and the deformation tensor <?,, where <ru and <?,, are referred to
the same embedded coordinates in the body.

Deformations or stress-strain laws which cannot be so expressed have an indefinite
meaning since the deformation or stress-strain properties of the material would then
depend upon the choice of coordinate system. The above principles immediately impart
conceptual ease and clearness to the general precise stress-strain problem for continuous
deformations. In many cases the writing of the complete equations for such a problem
becomes mechanical.

Elementary examples to illustrate the procedures and equations are given in this
paper. A tensor generalization of "natural strain" is found and Young's modulus and
Poisson's ratio for "finite strain" are derived. Infinitesimal strain and strain velocity
are defined for continuous deformations and related to the deformation tensor.

The general problem of stress and finite strain for elastic bodies has been considered
by Murnaghan (3), Biot (4), and Seth (5). The author believes it would be of interest
to translate the stress-strain relations assumed in these papers into tensor equations in

*Received March 6, 1948.
'Unless otherwise specified all superscripts or subscripts such as i, j, k, a, f) take on the values 1, 2,

and 3.
2An expression containing a letter which is repeated as a superscript and subscript is summed on

that letter unless otherwise stated.
3The reader is referred to Eisenhart [l]4 and McConnell [2], for accounts on tensors and their applica-

tion in geometrical and physical problems.
4Numbers in brackets refer to the bibliography at the end of this report.
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embedded coordinate systems. Definitions of finite strain based on geometrical quantities
may also be so translated.

This use of a moving and deforming coordinate system may be said to be an in-
tensification of the Lagrangian viewpoint, where the position and velocity of a particle
referred to space coordinates are expressed as functions of embedded coordinates and
the time t. It is closely related to the intrinsic viewpoint in geometry, where quantities
such as the curvature of a surface are expressed in terms of the fundamental tensor of
the surface itself without reference to the space in which the surface is immersed.

2. The general problem. Consider a body or continuous medium immersed in space.
Let x", a = 1, 2, 3, be the coordinates of points of space referred to a fixed coordinate
system. Let xr be a set of coordinates embedded in the body so that x' are the coordinates
of a particle of the body. Any deformation may be uniquely described by three dis-
placement functions:

x" = x"(x\ t) (1)

which prescribe the position x" of the particle x' at time t.
The square of the element of arc length in the space is given by a quadratic expression:

ds2 = g„p dx" dxp,

where the coefficients gap are known functions of x". Often Cartesian coordinates may
be chosen so that gu = g22 = ?33 =1 and gi2 = g23 = foi = 0. In the embedded co-
ordinates

ds2 = gu dx' dx' = gal^~. dx%)(— dx'\
\ dx' ' ^dx' '- dx' ' ^dx'

Therefore g^ , a function of x' and t, is given by

_ dx" dx?
9<i ~ g"" dx' dxp { )

so that gu is expressible in terms of ~galj and x"(x\ t).
We shall make use of transformation equations such as

_ _ dx" _ — dx" dx"
~ dx" ~ dx' dx1"l/iv i/fcV vy U/

where /!„ , Xa(3 are the components of a tensor in x" coordinates and , X,,- are com
ponents of the same tensor in x' coordinates. The formulas for raising or lowering indices
of tensors or Xare formulas such as

Mi = S Mr > = g !7<r X,' ,

where g" is the "reciprocal" of the deformation tensor gu , that is,

gtTgri = s),

where 8) is the Kroneker delta:

5) =1 if i — j, 5* = 0 if ! ^ j.

It may be noted that the six components g" may each be written in terms of the six
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components gu by the rules for finding the reciprocal of a matrix. It follows that g"
may also be expressed in terms of gap and x"(x', t). Thus we may write

fif" = g'^.e, xa). (3)

In accordance with the principle stated in the introduction there exists for any
material a stress-strain law of form

"ii = entente', t), x\ t], (4)
where <p<,- is a functional5 of the six functions gu(x\ t) and may vary also with the
numbers x' and t. In many cases it suffices to choose as <pu a tensor formed from git
and g" by the processes of addition, multiplication, differentiation and integration. For
example ipu may be formed as the sum of such tensors as6

9a , [ 9u dt, gu , [ gu dt, [ [ gu dt, gu , gr'grig„
J o «/0 •'O •'O

etc., with coefficients which are functions or functionals of invariants such as

il tj I 7i rs uv
g gu , g / gu at, g g grugs, ,

J 0

etc. In short <Pa is any covariant tensor of order two which may be formed from g{j
and g" by tensor addition or tensor multiplication and by differentiation or integration.7
For a given material <p(j is determined by experiment.

The equilibrium conditions may be written:

<Pi.i 0, (5)
where

and

- £ - Ah)+®
I (iff + Iff-if?) m

Equations (1) to (7) combine in a straightforward manner to form three equations in
the three unknown functions xa = xa(x', t) which may readily be written out. Solutions
of these which satisfy the boundary conditions of the problems are sought. These
boundary conditions may be, for example, specified stresses aaf> referred to space co-
ordinates. They may become boundary conditions on the three functions by use of the
equations: = <Pi,- = aap dx"/dx' dx"/dx'.

3. Relationship of GSi and infinitesimal strain. To translate Eqs. (2) into more
familiar terms let us transform both the embedded and the space coordinates, in a given

6A functional is an association of a number with one or more functions.
6A dot placed over a quantity will indicate its time derivative when the x' are kept constant.
7It may be readily verified that the derivative or integral of a tensor with respect to time is also a

tensor with regard to any transformation of coordinates from one embedded system to another embedded
system.
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deformation, in such a way that both coordinate systems become Cartesian and have
identical axes at the instant t = U . Then we may write

— a a i a
X = X "T U ,

where u = u'(x', t) are "displacements" and u'(x', <,) = 0. The one-one component
of the deformation tensor is, by Eq. (2),

and the one-two component is

- (i _l_ du du f1 , dw* dt/
gi2 \ + 3x7 dx2 + to1 V + dx2) + dxT dx2'

with similar expressions for the remaining components. It will be noted that these
expressions are, except for a factor of two and the appearance of unity in some of the
terms, identical with well known "exact" expressions for the "finite strain tensor".
If t is infinitesimally near to then u is infinitesimal and

, 0 du' du du
?11 = 1 + 2a?' +

with similar expressions for the remaining components. Now du1 /dx1, 1/2(dul/dx2 +
du2/dx1) etc., are components of infinitesimal strain as usually defined8 for the situation
which exists at time t — h . The covariant components of strain velocity vu may be
defined to be the time derivatives of these infinitesimal strains at time t = h , so that

2 911 ~ Vl1 ~ dx1 dt' ■

Alternatively, we may write

1 • dt)1
2 9n ~ Vl1 ~ dxh

d2u 1 • if d2u . d2u \
2 912 ~ Vl2 ~ 2 W dt + dx1 dt)'

1 - 1 / dv1 , dv2\
2 912 ~ Vl2 ~ 2 \dx2 + dx1)' etC"

where vl = du /dt (x{ = const) is the velocity vector (in either coordinate system^ at
time t = ft for the particle x'. In tensor form, therefore, the equations for strain velocity
are

1 " _1/ i \2 On ^1 j 2 *'; /.i)?

where vi%j is the covariant derivative of i\ defined by the equations

dVi / r\
Vi,i dx'

{,•',} being the Christoffel symbols as defined by Eqs. (7).
Since , vu and den are each tensors with regard to any change of embedded co-

ordinates the above results do not depend upon the choice of embedded coordinates
and are valid at all times t.

'Except, by some writers, for the factor 1/2.
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The infinitesimal strain at time t for the time increment dt is simply

den = Vu dt = | g4i dt = | dgti .

Thus, assuming for convenience that gu = 0 when t = —

/'J — <
dtij 2 11

and we may say that one of the integrals of the infinitesimal strain tensor is one-half
the deformation tensor in an embedded coordinate system.

By the principles stated in the introduction it was to be expected that the infinites-
imal strain tensor dt(i should thus be expressible in terms of operations on gu since
surely the infinitesimal strain tensor is independent of any rigid motion of the body.

It is instructive to consider "deformations" for which deti = 0 at all times t. Such
a condition may be considered to be the equivalent of a stress-strain law in a problem.
If dtn — 0 then vif = 1/2 g{i = 0 and the deformation tensor gr,-is a function of x'
alone and does not vary with time. Hence the arc length ds2 = gu dx' dx' of an embedded
element dx' is a function of x' and dx' alone and does not vary with time since x' and
dx' do not vary with time. Thus the "deformation" consists of any rigid motion. The
solutions of Eqs. (2) for the displacement x° = xa(x', t) when x" denote Cartesian co-
ordinates, are simply the general equations for transforming from one set of Cartesian
coordinates to another such set.

Exam-pie 1. We solve a problem of a body under uniform hydrostatic pressure for
the case of finite strains using a set of generalized elasticity laws. We choose as stress-
strain law referred to embedded coordinates, the law:

fii = <Pa = Aeif + Bdgu , (8)

where A and B are "elastic constants",

= \ 9<r Jo gr'g.i dt + | gir ^ g"g,i dt (9)

and

e = | £ girgu dt. (10)

The tensor e,, as thus defined will be shown to be a generalization of "natural strain".
It is easily verified that d'= V/V, where V is an element of volume of the body. Let
us choose the space coordinate x" to be Cartesian, and the embedded coordinates x' to
coincide with x" at t = 0. Therefore

<7ll = <722 = gs3 — 1) <7l2 = 023 = <?31 = 0.

As trial displacement functions we take

x' = ax',

where

a = a(t), a( 0) = 1.
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Using Eqs. (2) the deformation tensor is found to be

9ll ~ 922 = 933 = a V 9l2 = 9^3 ~ 931 = 0.

The contravariant components of ga are then found to be

11 22 33 1 12 23 31 r,
9 =9 =9 = ji, 9 =9 = 9 =0.

Equations (9) yield by direct computation

en - e22 = e33 0, log a, e12 = e23 = e3i = 0.

We note that raising one of the indices of e,-,- by the equation e) — g"trj , we get
123 „ 1   2   3   n€1 — €2 — €3 — log d, €2 — €3 — €1 — u.

It may be noted that tu and e) are considered to be different components of the same
strain tensor. It turns out for this example, that e) and a) have identical values as the
components of the strain tensor or stress tensor, respectively, calculated in experimental
work. The quantity 9 is found to be, for this problem: 0 = log a3. Since x' = ax' and
x' are Cartesian coordinates it follows that a3 = V/V0 where V is the volume of the
body at time t and F0 is the volume at time t = 0. Therefore 6 = log ( V/V0) or 6 = V/ V.

Combining these equations we find

a* = <p) = AeJ- + B65- = (A + 3B)(log a)3- .
All components gu are functions of time alone and do not depend on x, x2, or x3. The
Christoffel symbols [ij, k] and {,%} are linearly dependent on dgu/dxh and consequently
vanish identically. It follows that <p),k = d(p)/dxk. Since the components are functions
of time alone the quantities d<p)/dxk vanish identically and we get <p),k = 0. Thus the
three equilibrium conditions = 0 are surely satisfied.

The stress tensor at the surface of the body referred to Cartesian coordinates due to
a hydrostatic pressure p is = pd$. Hence the mixed components of the stress tensor
referred to embedded coordinates are

= PS; g ^ sAa^) = p8} .
dr. r)x /dx" dx

Thus, the boundary conditions of the problem are satisfied if we relate the parameter a
to the pressure p by the equations

= pS) = (A + 3J3)(log a) 6; .
or

p = [A + 3B) log a.

Therefore,

p = | (A + 3B) log ~

This relation for pressure and volume of a body is algebraically simple because of
the particular choice of definition of finite strain (9) and the stress-strain law (8).
Equations of more complexity are obtained with other stress-strain laws. For example
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we might have chosen = 1/2 [<?,■,(£*, t) — g<j(x\ 0)] instead of Eqs. (9). In this case

^11 = €22 = 633 = 2 e*2 = 623 = C31 = 0

and

The invariant 6 is

1 2 si/. 1 | 1 2 3 n
1 = «2 = «3 = g I 1 _ rf)> «2 = «3 = «1 = U.

•-•s-K1-?)-
The equilibrium conditions <p),i = 0 are again satisfied identically. At the surface of
the material we have

Therefore,

or, since a3 = V/V0 ,

<r] = At] -(- Bdb) = pd'j .

V = | (A + 3B)

Example 2. We now apply the method to the tensile test where the stress is given
by a = a(t), cr(0) = 0. This stress is applied, let us say, in a direction parallel to the
a^-axis of a set of Cartesian coordinates x1, x2, x3. Let us write for the displacement:

—1 1 —2 ? 2 —3 7 3x = ax , x = bx , x = bx ,

where x1, x2, x3 are embedded coordinates and a = a(t), b = b(t) with a(0) = 1, 6(0) = 1.
Then,

ds2 = aW)2 + b2(dxy + b\dx3)2

and by inspection the deformation tensor is

<7ii = a 1 922 = 933 = b , g12 — 923 = 931 = 0.

The reciprocal matrix g" of gr,-,- has components

11 1 22 33 1 12 23 31 n
9 = a5' 9 = 9 = 9 — 9 = g = 0.

As stress-strain laws we choose again Eqs. (8), (9), and (10). The finite strains for this
case are then:

en = d log a, «22 = €33 = b log b, e12 = 623 = e3i = 0

or

el = log a, €2 = 4 = log b, el = el = 4=0.
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Also,

6 = ^ I0 g,'g<i dt = l0g fl&2'

Therefore

tp\ — A log a + B log ab2, <pl = <p\ = A log b + B log ab~,

12 3 n<P2 = <P3 = <Pl = U.

All deformation components gi7- are functions of time alone and do not depend on
x1, x2, or x3. Hence by using the same reasoning as in Example 1 it is found that the
equilibrium conditions <p]ti = 0 are satisfied. The stresses on the boundary of the speci-
men referred to Cartesian space coordinates are

—1   —2   —3 —1 —2 —3 ci<J i — (T, (J 2 — (T 3 — d 2 — 0*3 — (J i — U.

Using the transformation laws

we find

dx' dx
T~i>dx dx

1 _ 2 3 1 2 3 /-v
0*1 — (T j (T 2 — (7*3 — <7" 2 — & 3 — O" \ — U

as the mixed components of the stress tensor on the boundary of the specimen referred
to the embedded coordinates. Combining these results we find

<t = A log a + B log ab2,

0 = A log b + B log ab2.

Solving for log b by means of the second of these equations there results

log b = ~ T+wlog a-

Therefore

, 1 + 3B/A ,
a=Al+2B/A l0ga"

These equations are of the form of the elasticity laws for infinitesimal strains in a tensile
test if we substitute for infinitesimal strains, the "finite strains" el = log a, el — el =
log b. Comparing coefficients we are led to write two possible definitions of a generalized
Poisson's ratio v. Either

i+"=(i+?Mi +2B
A

or
B

A + 2 B'

These two definitions, it conveniently turns out, are equivalent. Hence, a generalized
Young's modulus is found to be
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E = A(A + 3 B) + (A + 25).
It is furthermore seen that the finite strains , el, el, as defined by (9) are in the case
of a tensile test the quantities called natural strains.

The author has attempted to obtain the exact solution of the problem of the hollow
cylinder under internal pressure or pure torsion and of a parallelepiped under pure shear
by the general method given here. The precise conditions on the three displacement
functions are readily obtained in each case for a number of stress-strain laws but their
solutions require lengthy computations. The author hopes that they may be carried
out in future work in this field.

It is believed that the concepts given here may be developed further to give a general
theory of continuous deformation in which the notion of energy is fundamental. The
author hopes to pursue these and other questions in a later paper.
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