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which can be written as

g"(x) + k2g{x) = f(x) - 2k2f"(x) + k4f(x)
2X

If we set f(x) = g(x) in (D) we obtain the Theorem IV. If g(x) is a solution of the
homogeneous equation

g(x) = X [ e~klx~°' | x — y | g(y) dy x > 0, fc > 0 (E)
Jo

then g(x) must satisfy the differential equation

g'\x) - 2(X + k2)g"(x) - k\2X - k2)g(x) = 0.

The real parts of the roots of the characteristic equation of the last differential
equation have to be in absolute value less than k in order that the integral may exist
with g(x) a solution of (E). The complete discussion of the spectrum of characteristic
values of this equation, as well as the treatment of certain integral equations of the
second kind is reserved for another paper.

ON THE GENERAL EQUATIONS OF PROBLEMS OF AXIAL
SYMMETRY IN THE THEORY OF PLASTICITY*

By P. S. SYMONDS (Brown University)

1. Introduction. The solutions of axially symmetric problems in plasticity which
have been presented in the literature depend in general upon the assumption of the
so-called "full plasticity" condition. According to this assumption, two principal stress
differences are taken equal to the yield stress in pure tension. This implies that two of
the principal stresses are equal, and thus reduces the problem to a statically determinate
one. On this basis solutions have been given for a number of important problems, such
as those of the indentation of a rigid surface of revolution into a plastic mass (see for
example papers of Hencky1 and Ishlinsky2).

This is a quite fictitious yield condition, with little physical or mathematical justi-
fication. Hence it is of interest to examine the general equations for axial symmetry
using the well confirmed Mises flow condition, and, in particular, to determine whether
or not these equations form a system of hyperbolic type. If so, the techniques of nu-
merical integration using the networks of characteristic curves, which have been de-
veloped for supersonic fluid flow problems, could be applied to these problems of plas-
ticity. Unfortunately the answer to this question, as shown in the present note, is that
the equations are actually of elliptic type, the "characteristics" being real only under
the special condition which reduces the problem to one of plane strain.

*Received July 8, 1948. The results presented here were obtained in the course of research con-
ducted under a contract sponsored jointly by the Office of Naval Research and the Bureau of Ships.

'H. Hencky, (Jber einige statisch bestimmte Falle des Gleichgewichts in plastischen Korpern, Z. angew.
Math. Mech. 3, 241-251 (1923).

2A. Ishlinsky, The problem, of plasticity with axial symmetry and Brinell's test, Prikl. Mat. Mekh. 8,
201-224 (1944).
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2. The general equations. In problems of axial symmetry defined by an axial co-
ordinate z and a radial coordinate r we are concerned with four stress components
Oz j ov , <to , Tri, and with two velocity components u, w. The two equations of equilibrium
are

j d T rx ■ <J T 
dr ~l~ dz ~l~ r '

d(T z | drrz . Tri   a

dz ^ dr ^ r~

(1)

The Mises yield condition becomes

(<r, — (76)2 + 0„ — <r2)2 + (<r2 — <rr)2 + 6jrz = 6K2, (2)

where K is the yield stress in pure shear. The problem is evidently not statically de-
terminate, so we must add the stress-strain relations to the foregoing. According to
the Saint Venant-Levy-Mises flow theory3

1,,„ se' = = 3 ~ <Te ~ <r.),

€q ^ (j X(2<Tg 0"z &r) ,

(3)
dw 1 X /o \

^2 ^ (jr cq) ,

1 (du dw\ A
9rz ~ 2 Vdz + dr) ~ " '

where eT , e9 , e, , gr2 are (tensor) strain-rate components (taken with respect to an
arbitrary base, not necessarily time), and X(r, z) is a scalar point function depending
on the material and on the state of stress at a generic point. We then have seven equa-
tions for the seven unknowns (ar , ae , <rz , xr2 , X, u, w).

Further work is facilitated by changing notation as follows

<rr = co + £>

cr„ = co + 77,

<r* = 03 + f = co — (£ + 77),

Trz = T,

(4)

where ai = (<rr ae + <r,)/3, and £, rj, f are the "stress deviation" components. In the
following, all subscripts indicate partial differentiation. The equations become:

3See for the instance William Prager, The stress-strain laws of the mathematical theory of ■plasticity—
a survey of recent progress, J. Appl. Mech. IS, 226-234 (1948).
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Ur + £r + T* — — (r; — £), (a)r

— Vz + Tr = — J T, (b)r
(5)

{£2 + V2 + €* + r2 = K2; (c)

«r = (a)

w = rX?;, (b)

= -X(l + 17), (c)

uz + wr = 2Xr. (d) ,

(6)

The four stress deviation components and X are determined by the five equations
consisting of Eqs. (5) and two equations of compatibility derived from Eqs. (6). The
compatibility equations may be written in the form

= 2(Xt)„ + (X? + \y)rr ,

r&v)™ = 2(Xt)» + (X£ + Xij)r
. (7)

as may be verified by substitution in (6).
3. Investigation of characteristic curves. We now investigate the possibility of the

existence of characteristic curves C, on which

2 = z(r) (8)

such that on C the second derivatives of the unknowns (u, £, n, r, X) are undefined
although the functions themselves and all their first derivatives are defined. We first
eliminate to = (<rr + aB + crz) /3 between Eqs. (5a) and (5b), obtaining

2£rz "I- Vrz Trr "I- Tzz ^ z fcz ~1~ 7"r ^ ' (9a)

We next differentiate Eq. (5c) twice with respect to z, obtaining

(2£ + i)ii + (£ + 2v)vzz + 2 ttzi = — 2(£2 + £«??• + vl + t2). (9b)

The justification for this is that we are investigating possible discontinuities in second
derivatives, hence we are interested only in how Eq. (5c) defines the relations between
second derivatives. Finally, we write out Eqs. (7) and obtain equations on the left
sides of which only second derivatives and the functions themselves appear:

X£rr — + XVrr + 2Xrrs + (£ + i?)Xrr + 2tX„ — £X„
(9c)

= — 2(Xr£r — Xz£z + \rVr + Xrrz + XjTr),

XVzz + V^zz = —2^zVz + ~ [2(Xr)z + (X£ + X77)r]. (9d)
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Noting that a function ip(r, z) given on a curve C [defined as z = z(r)] is a function
of r only, on C we have

ip. dv d
^ - <pr + Pv. , <Pr = ^~ Pv.

where P = dz/dr. In particular if <p = £« or £r we obtain, respectively:

£ = — — Pi

£   -p d%z . p2t.
- rfr ~P dr +Pi" ■

In like manner the second derivatives of all the functions appearing in Eqs. (9) may
be written in terms of the double derivatives with respect to z, and the parameter
P = dz/dr of the curve C. Equations (9) then take the form

+ Bt]zz -f- Ctiz + Z)X„ = K,

A%, + B',„ + V t„ + D'\„ = K',

A'%, + B"v„ + C"tzz + D"K. = K",

A"%, + B'"Vzz + C"'t„ + D"'\„ = K'",

(10)

where A, B, • ■ • , D'" contain only the functions and the parameter P. The "char-
acteristic condition" of the system is thus the equation:

A B C D

A' B' C' D'

A" B" C" D"

A'" B'" C'" D'"

= 0. (11)

= 0.

Determining the coefficients A, B, • ■ ■ , D'" for the system (9), we obtain the result:

— 2 P -P -P2 + 1 0

+ v £ + 2ij 2 r 0

A(P2 - 1) \P2 -2\P ({ + v)P2 -2tP - $

0X0 ri

This is a fourth degree algebraic equation in P, which reduces to

[(P2 - 1)(2£ +V) - 4rP]2 = -3[V(P2 + l)]2.
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The four roots are

p = 1 ,o (12)
dz _ t ± K
dr ~ f + 17(1 ± z31/2)/2

where the ± signs are independent; the yield equation in the original form of Eq. (5c)
has been used in obtaining (12).

4. Conclusion. It is clear that real characteristics do not exist in general, since P
can be real only when 77 = <7-9 — co = 0. But when 77 = 0 and «^0 the stress equations
become identical with the three equations for plane strain, under the Mises yield condi-
tion; the characteristic parameter P then reduces to

P = t±K
£

As may be easily verified, this is the standard result for the slope of the characteristic
curves in problems of plane plastic flow4, which provides a useful check on the present
results.

An analogous but simpler investigation of Eqs. (6) leads to the conclusion that
there are also no curves on which the velocity derivatives are undefined, even though
the values of u, w and the stresses are defined.

4See, for example, William Prager, Plasticity for the aerodynamicist, J. Aero. Sci. IS, 253-262 (1948).

EFFECT OF HYPERBOLIC NOTCHES ON THE STRESS DISTRIBUTION
IN A WOOD PLATE*

By C. BASSEL SMITH, University of Florida

1. Introduction. If from an orthotropic material a flat plate is cut parallel to a
plane of elastic symmetry, it will have two perpendicular axes of symmetry in the
plane of the plate. Such a plate is said to be orthotropic.1 An example of this kind of
plate is a plain-sawn board. In the discussion that follows, an orthotropic plate is
assumed to be bounded on two sides by hyperbolic notches given by the equation
y2/a2 — x2/b2 = 1, and indefinitely extended in the other direction. The x- and y-axes
are taken parallel to the axes of symmetry. The plate is subjected only to forces directed
parallel to the x-axis and applied in the plane of the plate. These forces are assumed to
act at great distances from the y-axis, and in such a way that the traction over any
cross-section perpendicular to the x-axis is statically equivalent to a single force of
magnitude P directed along the .r-axis. The problem will be treated as one of plane
stress.

2. The stress distribution in a wood plate with hyperbolic notches. The components
of stress and strain in the orthotropic plate described are connected by the following
relations2:

*Received June 11, 1948.
'A. T. Price, Phil. Trans. (A) 228, 1-62 (1928). H. W. March, Physics, 7, 32-41 (1936). U. S. Forest

Products Laboratory Reports Nos. 1300, 1301, 1304, 1312, 1316.
*1. 2U. S. Forest Products Laboratory Report No. 1503. Love's notations for the stress and strain
components are used, (A. E. H. Love, The mathematical theory of elasticity, 4th ed., Cambridge University
Press, Cambridge, 1927).


