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ON THE PLASTIC BENDING OF CIRCULAR PLATES UNDER UNIFORM
TRANSVERSE LOADS*

BY

D. TRIFAN
Brown University

1. Introduction. The primary purpose of this paper is to investigate the mechanical
behaviour of thin plates subjected to distributed transverse loads which produce plastic
deformations. Throughout this discussion the plates will be considered as being homo-
geneous and composed of isotropic materials exhibiting a gradual transition from the
elastic to the plastic state. Two alternative theories of plasticity, namely a theory of
plastic flow and a theory of plastic deformation,1 will be used, and their predictions
will be compared with each other. In particular, the case of a circular plate subjected
to a uniformly distributed transverse load will be considered in detail.

As applied to strain-hardening materials, the theory of plastic flow is based on the
assumption that the rate of change of strain is uniquely determined by the existing
stress and the rate of change of stress. Stress-strain relations of this type have been
considered by Prager [2, 3] and, more recently, by Handelman, Lin, and Prager [4];
they may be considered as a natural generalization of the stress-strain relations proposed
for perfectly plastic materials by Prandtl [5] and Reuss [6]. On the other hand the theory
of plastic deformation developed by Hencky [7] for perfectly plastic materials and
applied by Nadai [8, p. 75] to materials with continuous transition from the elastic to
the plastic state is based on the assumption that in the plastic state as in the elastic
state, the state of strain is uniquely determined by the state of stress. These stress-
strain relations [9] are simpler than those of the flow theory, and thus have received
more consideration in mathematical studies concerning permanent deformations in
structural elements.

Until recently, comparatively little attention had been given to the plastic bending
of plates; however, some notable contributions in this field have recently been made by
Russian investigators, in particular, Ilyushin [10] and Sokolovsky [11]. Most of their
results, however, do not apply to materials which exhibit gradual transition from the
elastic to the plastic state.

2. Stress-strain relations. Investigation of the bending of plates made of a strain-
hardening material by means of the theory of plastic flow is extremely difficult if the
customary form of the stress-strain relations for such materials is adopted [4, Eq. 27].
Indeed, from this form of the stress-strain relations, the rate of change of the stress
tensor can not be obtained explicitly in terms of the rate of change of the strain tensor,
the strain tensor itself, and the strain invariants, as is necessary in the study of the
bending of plates. This difficulty is avoided if slightly modified stress-strain relations
for loading are adopted. Let the tensors of stress and strain be denoted by p», and e,, ,
their deviations by

*Received Jan. 30, 1948. The conclusions presented in this paper were obtained in the course of
research conducted under Contract N7onr-358 sponsored jointly by the Office of Naval Research and the
Bureau of Ships.

xThis terminology is due to A. A. Ilyushin [1] (numbers in square brackets refer to the bibliography
at the end of the paper).
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(8ti = Kronecker delta), and the elastic shear modulus and the tangent shear modulus
by G0 and G, respectively, the latter being assumed as a function of the strain intensity

v 2E g e i / (' i / .

The stress-strain relation of the flow theory used in this paper then has the form

rf, = 26V* - (Go - G) e„ . (2.1)

Throughout the following discussion, the Latin subscripts run from 1 through 3, and
rates of change of variables with respect to time will be indicated by asterisks. Stress-
strain relations of the type (2.1) may be termed stress theories of plastic flow, while
relations such as are treated in [4] may be called strain theories of plastic flow.

The expression (2.1) constitutes five linearly independent stress-strain relations
which take into account only the change of shape of a deformed body. To these, a sixth
expression dealing with the change in volume must be added. For the purpose of simpli-
fication, we shall assume the material to be incompressible:

«« = 0. (2.2)

(Here, repeated indices indicate summation in accordance with the customary summa-
tion convention of tensor calculus.) Accordingly, Poisson's ratio v = 1/2, = en ,
and Young's modulus equals three times the shear modulus G0 .

In order to determine the quantity G which is a function of the strain intensity E
only and thus independent of the specific type of loading, it is sufficient to consider a
simple state of stress, e.g., simple tension. Indicating the tensile stress by p and the
corresponding unit extension by e, Eq. (2.1) reduces to the single equation

I"3e- <2-3>
and the strain intensity becomes E = t. Hence the tangent shear modulus G for any
material obeying (2.1) can be determined if the stress-strain diagram for simple tension
is known. For the material being considered here, the function p = p(e) can be repre-
sented with sufficient accuracy by the power series,

p — t + a3t> + a5e' + • ■ • , (2.4)

where , a3 , a5 , etc. are constants. Thus the tangent shear modulus is given by

3G = (i\ ~t~ 3a3E -|- 5a^E2 • ■ • , (2.5)

where aj equals Young's modulus, i.e., at = 3G0 .
It is more convenient from this point on to work with non-dimensional quantities.

Accordingly, the following non-dimensional components of stress and stress deviation
will be introduced: an = p,■,•/(?<, , = r^/Go . By substituting these quantities and
the series expansion (2.5) into Eq. (2.1), we obtain a stress-strain relation for the stress
theory of plastic flow for a material with a stress-strain curve in simple tension which
is represented by the series (2.4), or by the equivalent general stress-strain relation
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s* = 2ef, — [&! + b2E + b3E2 + • • ■]E*eij , (2.6)

where
bn = (2n -)- l)ffl2n+i/3(?o, n — 1, 2, 3, • • •

The stress-strain relation of the theory of plastic deformation is of the form

ru = 2(?e„ , (2.7)

where Gy = Gy(E) is the secant shear modulus. For simple tension Eq. (2.7) reduces to
the single expression

P/t = 3G\

Using the same series expansion (2.4) as in the plastic flow theory, we obtain

3Gy == Gti -f- a3E a$E2 • • • (2.8)

Substituting this into Eq. (2.7) and using the non-dimensional form, we find

Sti = 2e,, — [c! + c2E + c3E2 + • • ■]Ee, (2.9)
where

c„ — 2a2„+i/3G0 .

3. Basic differential equations. We consider a thin plate subjected to distributed
transverse loads, and assume that the resulting deflections are small in comparison to
the thickness of the plate. We introduce the rectangular coordinates X{ , the X, , X2
plane coinciding with the plane horizontal middle surface of the undeformed plate, and
the axis of X3 being directed vertically downward. As is usual in the theory of thin
plates, the stress components <r13 , a23 . cr33 will be treated as small in comparison with
the stresses parallel to the middle surface of the plate (<ru , a-22 and <r12). Restricting
Greek subscripts to values 1 and 2, we may, therefore, write Eq. (2.6) in the form

cS/s = 2{eJjs + bap?*y} — {e„0 + } [&! + b2E + • • -]E*, (3.1)

where E = 2/3{eaSeaS + e«„ew).
We now adopt the following notations:

xa — Xa/Ro , x3 = <2X3/h1

w = Wh/2Rl , Map = m^/h2G0 , (3.2)

I = 4qRl/h2G0 ,
where R0 is a fixed suitably chosen length, h the constant thickness of the plate, W =
IF(X„) the deflection, q the intensity of the load, and 9)1 are the flexural and twisting
moments (9JL/j = J-v2 X3pafi dX3).

It is a fundamental hypothesis in the theory of elastic plates that points on a normal
to the middle surface of the plate before deformation remain on a normal to the deformed
middle surface. It is assumed that this hypothesis remains valid for the plastic materials
considered here. Accordingly, the relation between the strains eap and the deflection
W of the middle surface is [12, p. 323]

~~"X3TViaff j

where W,ap = d2W/dXadXe .
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In non-dimensional form this expression becomes

fa? • (3.3)

In terms of the deflection w, Eq. (3.1) then becomes

a*, = -2x^0*, + | blXlE%0o/} + | b2xlE0E*0QaS + ■■■ , (3.4)

where the quantity E0 , related to E by means of E = 2/3 x\Ea , is written as

E0 = ^ojSW, a/3 ,

(3.5)
Ml, a(J ^ap'U), 77 •

The time rate of change of the non-dimensional bending moments

Mitj = J x3<T*t dx3

can now be easily calculated. We obtain

M*, = - | £n*„ - | 6^0., - b2E*nEoila0 - • • • J. (3.6)

For transversely loaded plates with small deflections, the equation of equilibrium2
[13, p. 87] becomes

+ I* = 0 (3.7)
which, together with Eq. (3.6), furnishes

g bi{E*,ap b2{E*Eo£la0},ag — • • • = — I*. (3.8)

Finally, referring to definitions (3.5) and carrying out the necessary steps, we arrive
at the basic non-linear partial differential equation in w for the flow theory, namely

Wfaa/IJ - -g {w.afi W.yS W*a/Iy J + 2w,aa U),yS W%yS + W.aa W W*yyS5

+ 2w,afi w,ayS w*pyS + 2w,aa w,$yS w*pyj + 2w,a0 w,ayy w%ss

+ 6W,aa W.f,77 w*m + 4w.afi w, 77S w*af)5 + w.afl W,aflys w*yS

(3.9)
+ w,aa w,fpyi w*yS + w,af w,af>yy w*ss + 3w,aa 77 w*ss

+ 4w, a/S/9 tf,«7a ^*75 + 4w„w. W.„77 W*{J + W.77JS

- \ [E%EM,aft   | I*.

The corresponding basic partial differential equation for the plastic deformation
theory can be obtained in a similar manner. We note merely the final equation,

2See Eq. (g): Tin = M, , = My , 2JL = ~Mzy , 2JL = M„ .
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w.aaw — j W,yI w,a„yl + 2w,aa w,pysi + 2w,aa w,et w,yySS

(3.10)
~i~ W.*f> W t a/j Wtyyl& ~|~ W,a/9 ~4~ Wt0yy

+ 4 W,ap W,at,y W,ySS + W,aa W,f,yS W,0yt 4" 5 ID, „ W , „ y y W,/,S j)

- g- {EtEM.a, = |z.

4. Example. We are now in a position to consider a specific problem in detail, namely
the case where

a) the thin plate is made of 24 S-T aluminum alloy,
b) the contour of the plate is circular,
c) the plate is built-in along its entire boundary, and
d) the lateral load is uniformly distributed.
In Fig. 1 the graph (full curve) of the stress p and the corresponding unit extension

e is given for a tension test with a specimen of 24 S-T aluminum. The analytic approxi-
mation for this curve most suitable for our purposes is

p = 3Go{€ ~ lS *')' (4'1}
where

3G0 = 10.667 X 106 lbs./sq. in.

This relation is represented by the dashed curve in Fig. 1. Referring to the expansion
(2.4), we find that the values of the coefficients for this material become

_ _ 3 106 _ _ _ _ nai — ovjtq , a3 — 128 1 — * * * —

From this it follows (see Eqs. (2.6) and (2.9)) that

and

Q. 1 o6
bi — > b-2 = b3 = • • • = 0 (4.2)

_ 2^0! _ _ ft~ 128 ' — — "'' —

With these values, the basic equations (3.9) and (3.10) are greatly simplified.
Since the load intensity is assumed to be constant, i.e., I = l0 , the deflection w is

independent of the polar angle d. The transformation of Eq. (3.9) with the values (4.2)
into the more suitable polar coordinate system gives a differential equation in w, now
a function of the single non-dimensional radial coordinate r = R/R0 , where R is the
dimensional radial coordinate and R0 the outer radius. The actual transformation is quite
laborious but straightforward, and for that reason it will be omitted here. Expressing
the differentiation with respect to r by primes, we find

w*" + 2 w*„, _ w*„ + \W*,_\F = \ i* j (4.3)
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where F = F(r, t, w', w", w'", w'v, w*', w*", w*"', w*,v) represents 24 terms and l0 =
WO-

The complete representation of Eq. (4.3) shows that this expression is homogeneous
in the time rates of change, and therefore the time variable t can be changed to any

10,000

.002. .004 .006

Fig. 1. Stress-strain diagrams: (1) 24S-T Aluminum Alloy (full curve); (2) Approximation a3 given by
Eq. (4.1) (dashed curve).

other monotonically increasing variable. Since we assume the load to increase with time,
t can be replaced by l0 , thus, w* = lt{dw/dl0).

It is found that if Eq. (4.3) is multiplied by the factor r then the differential equation
can be integrated to a lower order expression, namely

" — i id*' — — \ (Arm"in" -1- 4m'm" 4- — w'm'rw*'" + w*" — — w*' — -jr |^4rw"w" + 4iw'w" + — w'w'Jw*"'

+ rw"w"' + 8w"w" + iw'w\ w'w" — ~2 w'w'^Jw*" (4.4)r

4- [4w"w"' + - w"w" + - w'w'" — ^2 w'w"— ^ w'w')\ r r r r 1w'w' jw*'} = ^ r
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which serves as the basic differential equation of a circular plate under uniform load
for the plastic flow theory.

The corresponding basic differential equation for the plastic deformation theory of a
circular plate under uniform load can be derived in a similar manner; one obtains

rrw"' + w" — - w'~ \(Srw"w"w"' + 6w'w"w"' - w'w'w'"

^ 3 4. 3
+ 4w"w"w" + - w'w"w" 2 w'w'w" 3 w'w'w') —r r r J 16

(4.5)

The problem of solving the non-linear differential equations (4.4) and (4.5) for
w(r, l„) presents great mathematical difficulties, and there is little hope for obtaining
solutions in closed form. We therefore will attempt to approximate the solutions by
means of series of the following type

w(r, la) = Wi(r)Z0 + w3(r)l30 + w5(r)l50 + • • • , (4.6)

where the coefficients , w3 , w5 , etc. of the odd powers of the parameter l0 depend
on r alone. Substituting this expansion into Eq. (4.4), and collecting terms involving
like powers in l0, we obtain a sequence of differential equations in the unknown functions
Wi , w3 , w5 , — . The first of these is

tn I „,// A  JL „2rw[" + w',' wi = — rr 16

0r V dr I r dr V dr
|"l d_
Lr dr

d 1 d ( dw i
(4.7)

= A 216 r '

the next contains Wi and w3 ; only w3 is unknown, however, since Wi can be determined
from Eq. (4.7). This procedure can be continued until the desired number of coefficients
in (4.6) are found.

In view of the boundary c^ditions for a built-in circular plate,

w(l, l0) = 0, w'( 1, l0) = 0, (4.8)

and the requirement that w(0, /„) be finite, the solution of Eq. (4.7) is found to be

Wl = 512 ^ ~~ 1')2; ^4-9)

this is nothing but the elastic solution. The differential equation for w3(r) then becomes

d
r dr

1 d_( =
r dr\ dr J J 7261 {143r6 - 129r4 + 30r2}, (4.10)5(128)s

and that for w5

d [Id / dw,
Lr dr V' dr I r dr V dr

q . q5 .1 n11
= " {350,493r10 - 622,668r8

25(128)
(4.11)

+ 419,112r6 - 128,067/ + 15,270r2}.

Integrating these equations and substituting the results into the series (4.6), we obtain
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w(r, l0) = ^ (r2 - 1)\ + 4(i2^)I {143/ - 344/ + 360r4

324
- 260r2 + 101}/? + . {584,155/2 - 1,868,004/°

(12.8)' (.4.12)

+ 2,619,450/ - 2,134,450/ + l,145,250r4

- 529,860/ + 183,459}l50 + ■■■ .

This equation is the series development up to terms of the 5th order in l0 of the solution
w(r, l„) to the differential equation (4.4) of the plastic flow theory.

Beginning with the differential Eq. (4.5), a similar expansion can be obtained for
the deformation theory. The functions w, (r) and w3(r) in the series solution as given
by the deformation theory are found to be identical with the corresponding functions
obtained for the flow theory. This property can be shown to exist even under more
general conditions; however, this fact will not be proved here. The first difference be-
tween the two theories occurs for the function w5 . Up to terms of this order, the series
representation of the deflection furnished by the deformation theory is found to be:

w(r, /„) = ^ (r2 - 1)X + {143r8 - 344/ + 360/

k40
- 260r2 + 101}^ + 7 {352,495/2 - 1,130,796/°(12.8) (1.1 o)

+ l,591,650rs - 1,300,750/ + 697,500r4

- 320,340r2 + 110,241} Zg + • • • .

The stress distribution throughout the circular plate* can be calculated in the case
of the plastic flow theory by transforming expression (3.4) into polar coordinates,
substituting Eq. (4.12), and then integrating. The resulting non-dimensional expressions
for the radial stress component P and the circumferential stress component Q together
with those similarly obtained for the plastic deformation theory are valid for all values
of k<l'o, where 1'0 represents the maximum load which our assumed stress-strain law
entitles us to consider. In order to calculate this load we return to Eq. (4.1). For uniaxial
stress l'o would correspond to the maximum height of the dashed curve in Fig. 1; for the
combined state of stress we are considering, the stress-strain curve expresses the relation
between the intensities of stress and strain, where the stress intensity

T = 3/2 ruru ,

reduces for simple tension to T = p2. We have already seen that E = 2/3 e^e;, reduces
to e2 for simple tension. Thus, for combined states of stress, the coordinate axes of the
dashed curve of Fig. 1 are labeled TI/2 and E1/2.

The non-dimensional stress intensity S = T/Gl = 3/2 for the example being
considered here is

S = P2 + Q2 - PQ.
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Since the maximum value of S1/2 occurs at the boundary, i.e., x3 = ±1, r = 1, we find
that for l0 = 1'0 = .09 a value Sl/2 = .01312 is reached which takes us to the top of the
stress-strain intensity curve in Fig. 1.

A review of the stress distribution on the upper surface of the plate shows that
for l0 = .02, see Fig. 2, there exists no appreciable difference between the data as given

.016

.012

.008

.004

-.004

-.008

-.012

Fig. 2. Curves for the non-dimensional radial and circumferential stresses in the upper surface of the
circular plate for l0 = .02 and U = .09 as given by the plastic theories (full curves) and the elastic theory

(dashed curves).

by the elastic theory and the two plastic theories; to within five significant decimal
places, the third order terms in Z0 have a negligible influence, and those of the fifth
order have no influence at all. As the load increases to l0 = .04, there is a slight deviation
which becomes more and more pronounced as l0 increases; however, to within five decimal
places there is at no time a difference between the values given by the theories of plastic
flow and of plastic deformation. For l0 = .06 the third order terms have an influence
ranging to 3.46% of the first order terms, while the fifth order terms reach only .53%
of the first order terms. Third order terms range to an influence of 7.8%, and fifth
order to 2.5% for the ultimate load l0 = l'a = .09. From this it is estimated that the
solutions given by (4.12) and (4.13) approximate the real solutions with sufficient
accuracy.
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In order to obtain the work D done on the plate we calculate the following integral:

D = 2t f ° f q0^~dtRdR
J 0 J 0 ot

= 2tt J*° |\0W - j' W ̂  dt R dR.

In non-dimensional form—see (3.2)—the above reduces to

D = irG0hRl J — J w ̂  dt r dr

or by changing the time parameter again to l0 we obtain

-3.00 x I0~6

d/27T

h400xl0~6

200xio"6

1.00 x I0~6

.02 .04 .06 .08 AS.

Fig. 3. Relation between non-dimensional loads lQ versus non-dimensional work d as given by Eq. (4.14).
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D = \ GohRl d,

.. here the non-dimensional work d is given by

l0w — J w dla\r dr. (4.14)

A graph of d/2ir versus l0 is given in Fig. 3. We note that in the purely elastic case,
where w reduces to simply the first term of (4.12) or (4.13), the above formula (4.14)
reduces to the familiar form

J()
l0 wr dr.

In conclusion we can state that though the theories of plastic flow and plastic
deformation are founded on different hypotheses their predictions for circular plates
under uniform loads and for the specific material considered here are identical for all
practical purposes. Both plastic theories however, give a deviation from the elastic
solution ranging to better than 10% depending on the load and the material point
under consideration.
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