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A PROBLEM CONCERNING ORTHOGONAL TRAJECTORIES*
By F. HERZOG and C. P. WELLS (Michigan Stale College)

1. Introduction. The purpose of this note is to discuss a class of conjugate harmonic
functions u, v which possess a unique geometric property. This property will be defined
precisely in Sec. 2. For the present we shall describe it in terms relative to a two-di-
mensional steady state heat flow problem.

Let S be a given region in a plane which we choose to call the ww-plane, and let C
be the boundary of the region. Consider a family of heat flow lines/(w, v) = Cj together
with the isothermal lines g(u, v) = c2 in the region S. Suppose we desire to make a plot
of a set of curves fi , f2 , fs , from the family f(u, v) — cx and a set gx , g2, g3 ,
from the family g(u, v) = c2 . For this purpose it is often convenient to choose one of
the heat flow lines (or isothermal lines), whose position can be determined in advance
from some symmetry property of the boundary C, as a reference line for construction
of the remaining curves. This heat flow reference line is divided into segments and
the end points of the segments taken as origins for the isothermal lines. Then by a process
of numerical integration the isothermal lines and the remaining heat flow lines are plotted
for the entire region.1

The following problem then arises: Let be the reference heat flow line and suppose
three isothermal lines gi , g2 , (Is are chosen to intersect fi at segments of equal arc length
measured along fx . Under what conditions will the isothermal lines gx , g2 , g3 intersect
all remaining heat flow lines in S at segments of equal arc length?

In the following sections we shall determine necessary and sufficient conditions for
a family of isothermals to have this property and, moreover, determine all such iso-
thermals.

2. Notations and definitions. We shall assume throughout this paper that we deal
with functions having continuous derivatives of the second order; whenever a function
occurs as a denominator we exclude points at which this function vanishes. A function
w(x, y) will be called separable if u(x, y) = h(x)k(y). It is easily shown that u(x, y) is
separable if and only if ucaxy — coxoiu = 0, where here, and in the following, subscripts
x and y denote partial derivatives.

It seems advantageous to replace the letters Ci and c2 of Sec. 1 by a; and y, respectively,
and to deal with the inverse functions of f(u, v) — x and g(u, v) = y. Thus let

u — u(x, y), v = v(x, y) (1)

be defined in a region R of the x(/-plane. The relations (1) represent a mapping of R
on a region S of the uv-plane. We shall denote the curves in S obtained by putting y =
const in (1) as the family X, and the curves obtained by putting x = const as the family
§). In other words, (1) maps the lines parallel to the x-axis into the family X and the lines
parallel to the y-axis into the family g).

We shall use the usual notation for the three fundamental coefficients E = u2x +
vI , F — uxuv + vxvy , G = ul -f- v\ . It is obvious that the families X and §) remain in-
variant under any substitution x — <£(a;,), y — ■J'ilh) in (1); moreover, in this manner

*Recieved July 14, 1948.
'See, for example, W. H. McAdams, Heat transmission, 2nd ed., McGraw-Hill, New York, 1942,

pp. 16-17.
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all possible representations of the form (1) of the families X and g) are obtained. If E1 ,
Fx , (?i are the three fundamental coefficients in terms of the new variables x, , yx then

E, = [d>'(xO]2E, F! = <t>'(xW(yi)F, G, = W{y,)fG. (2)
The necessary and sufficient condition for orthogonality of H and g) is F = 0. Two

families of orthogonal trajectories £ and are called isothermic trajectories or isothermals
if it is possible to make substitutions x = <j>(x0 and y = in (1) such that u and v
become conjugate harmonic functions in xx and yx , i.e., such that w = u + iv becomes
an analytic function of 2l = x, + i'Ui ■ As is well-known, two families of orthogonal
trajectories £ and §), given by (1), are isothermic if and only if E/G is separable.2

We shall now define for orthogonal trajectories the property which is described in
Sec. 1 and which is the fundamental concept of this paper. Let X and §) be two families
of orthogonal trajectories. We shall say that one of them, say X, is of proportional arc
length if the following condition is satisfied: Let Yx , Y2 , Y3 be any three curves of f),
and let s, be the arc length of any curve of X between F, and Y2 and s2 be the arc length
of the same curve between Y2 and Ys . Then the ratio s!/s2 is to be constant for all
curves of 36, i.e., dependent only on the choice of Y, , Y2 , Y? . It is obvious that we
might express this property of X also in the following way: Any three trajectories of
f) which cut out segments of equal arc length from one curve of 36 do the same for any
other curve of X. In an analogous manner we define what is meant for ?) to be of propor-
tional arc length.

3. A condition for proportional arc length. We shall prove the following theorem,
which gives a necessary and sufficient condition for proportional arc length.

THEOREM 1. If % and 2), defined by (1), are orthogonal trajectories, then £ is of pro-
portional arc length if and only if E = ul + vl is separableSimilarly, g) is of proportional
arc length if and only if G — uv + v\ is separable.

Let three trajectories of §), corresponding to the values x = x0 , x = xx , x = x2
be given and consider any two trajectories of X, corresponding to the values y — yx
and y = y2 ■ The element of arc length along any curve of X is given by ds = q(x, y) dx,
where we write q(x, y) = \E(x, y)\1/2 = (ul + vl)1/2. If H is of proportional arc length
we have, by the definition given above (see Sec. 2):

/»Ii fX* [*x i r*X a

/ q(x, yx) dx : / q(x, yx) dx = / q(x, y2) dx : / q(x, y2) dx; (3)
Xq " Xo " Xo •'lo

this has to hold for all values of x0 , xx , x2 and yi , y2 , restricted only by the region of
definition R. We conclude that the function

/ q(x, y) dx / / q(x, y) dx (4)
Xo f "lo

is independent of y. If we consider x0 and x2 as fixed, then (4) becomes a function of
xi alone, which we shall call //(.'c,). The denominator of (4) is a function of y alone, say
k(y). Hence we have

2See G. Schaffers, Anwendung der Differential- und Integralrechnung auf Geometrie, Walter de
Gruyter, Berlin und Leipzig, 1923, vol. 1, 3rd ed., p. 170.

3The separability of E is independent of the particular representation (1) of J and 2). This can be
seen directly from (2).
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q(x, y) dx = h{x^)k{y). (5)

Differentiating with respect to xx and replacing Xi by x, we obtain q(x, y) = h'(x)k(y).
Thus E = q2 is separable and the necessity of the condition is proved. To prove its
sufficiency we note that (5) follows at once from the separability of E and that (5)
immediately implies the proportion (3). This completes the proof of Th. 1.

The question at once arises as to whether there are families of orthogonal trajectories
in which H is of proportional arc length but §) is not. We shall see below (Th. 2) that
this can only occur if £ and f) are non-isothermic. In this case the conditions

E separable, F — 0, G non-separable, (6)

are compatible. We shall give two examples of such trajectories.
I. Let u = y + ex~", v = e<I_">/2(l — e'[~")1/2 -|- sin-1 eix'v)/2. The region R is taken

as the half-plane above the line y = x, so that 0 < e ~" < 1 for (x, y) in R. It is easily
verified that E = ex~", F = 0, G = 1 — ex'y, and hence (6) is satisfied.

II. Let p{x), q{y) and r(y), defined for a < x < b and c < y < d, respectively, be
such that neither p(x) nor q(y) nor r(y)/q'(y) is constant. Let

u = p{x) cos q(y) - f r(y) sin q{y) dy,

v = p(x) sin q(y) + f r(y) cos q(y) dy.

The region R is the rectangle a < x < b, c < y < d. We obtain E = [p'{x)f, F = 0,
and G = [p(x)q'(y) + r(y))2. In order to show that (6) is satisfied, we only have to
convince ourselves that G is not separable. We apply the separability test (see Sec. 2)
to u(x, y) = p{x)q'{y) + r(y) and obtain auxy - = -p'{x)[q'{y)f {d/dy)[r{y)/q'{y)],
which is different from zero by the conditions mentioned at the.beginning of this example.

We remark that in the second example E is actually a function of x alone. The
geometric interpretation of this special situation is that the family X is not only of pro-
portional arc length but, as we might say, of equal arc length, i.e., any two fixed curves
of g) cut out a segment of the same arc length from all curves of X.

4. Isothermals. Before taking up the main problem of this paper (see Sec. 1), we
prove the following theorem.

THEOREM 2. If two families of orthogonal trajectories are both of proportional arc
length then they are isothermals. Conversely, if one of two families of isothermals is of pro-
portional arc length so is the other.

If two of the three functions E, G, and E/G are separable, so is the third. Hence
Th. 2 follows at once from Th. 1 and from the fact (see Sec. 2) that the separability of
E/G is a sufficient and necessary condition for isothermals.

The second part of Th. 2 allows us to speak of "isothermals of proportional arc
length", without our having to mention the families X or 2) specifically. Our aim is to
find the totality of all isothermals of proportional arc length. In preparation of the
solution of this problem we shall first make the following remarks.

In the first place, we may assume right from the start that the functions u and v
in (I), which define our isothermals, are real and imaginary parts, respectively, of an
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analytic function w = F(z), where z — x + iy (see Sec. 2). Secondly, it is obvious that
a substitution of the form z — azx + /?, a 5^ 0, will leave the two families of isothermals
invariant if a is real, and that it will merely interchange the two families with one an-
other if a is purely imaginary. Thirdly, we shall say that one pair of families of isother-
mals is of the same type as another pair if the second pair can be obtained from the first
one by a rotation, expansion (contraction) and translation of the w-plane, i.e., by a
transformation w = om\ + b, where a is any complex number different from zero. To
summarize, we shall consider two pairs of families of isothermals to be of the same type
if the analytic functions w = F(z) and w, = G(zx) defining them are related to one
another in the following manner:

w — awi + b, a 7^ 0,
(7)

z = azx + /3, a 0, a real or purely imaginary.

We are now ready to state the principle result of our paper.
THEOREM 3. The totality of different types of isothermals of proportional arc length

are those obtained from one of the following functions', (i) w = z, (ii) w = ez, (iii) w —
exp (ze%y), where 0 < 7 < x/2, and (iv)

w = f exp (-f2)df.

Let w = F(z) — u(x, y) + iv(x, y) be such that the isothermals defined by F{z) are of
proportional arc length. Since E = G = \ F'(z) |2 we conclude from Th. 1 that | F'{z) \ is
separable and hence log | F'(z) \ = M(x) + N(y). Now log | F'(z) | is a harmonic function
and, therefore, M"(x) + N"{y) = 0 so that M"(x) = —N"(y) = 2A, where A is a real
constant. We thus obtain M(x) = Ax2 + Bxx + Cl and N(y) = —Ay' + B2y + C2 with
real Bx , B2 , Cx , C2 ■ Thus log | F'(z) | = A{x — y2) + Bxx + B2y + C3 , where
C3 = Ci + C2, and hence log F'{z) = Az2 + Bz + C, where B = Bx — iB2 and C is any
complex number whose real part equals C3. We thus obtain F'(z) = exp (Az + Bz + C)
with real A and distinguish between the following cases.

(i) A = 0, B = 0. We obtain w = F(z) = mz + p with m = ec. The substitutions
(7) with w = mwx + p, z — z, give wx = zt . Thus all isothermals of Case (i) are of
the same type, namely, w — z. The families X and §) consist of lines parallel to the real
and imaginary axes, respectively. Obviously, both families are trajectories of equal arc
length, in the sense defined above at the end of Sec. 3.

(ii) A = 0, B 7^ 0, B real or purely imaginary. We obtain w = F(z) — me"' + p,
where m = B~1ec. The substitutions (7) with w = mwx + p, zt = Bz give Wi = exp
(2j). Thus all isothermals of Case (ii) are of the same type, namely, w = e". The family
H consists of rays from the origin to the point at infinity, the family £) of circles about
the origin. The family 36 is again of equal arc length but the family g) is not.

(iii) A — 0, B neither real nor purely imaginary. As in Case (ii) we obtain w =
F(z) = me"' + p with m = B~1ec. We now write B = \ B \ exp [i(y + xre/2)], where
n is an integer and 0 < 7 < x/2. The substitutions (7) with w = mwi + p, zx = | B 1
z exp (iirn/2) givewx = exp (zt e'7). Therefore, every pair of isothermals of Case (iii) is
of the same type as w — exp (ze,y) for an appropriate value of 7, 0 <7 < x/2. The
families X and §) may be written in polar coordinates r, 6 as follows:
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3£: r = exp (6 cot y — y csc 7), y = const,

§): r = exp (—6 tan 7 + x sec 7), x = const.

Each of these families consists of logarithmic spirals about the origin; the curves of H
intersect the rays through the origin at the angle 7 and those of g) at the angle 7 — ir/2.
Thus for two different values of 7, 0 <7 < ir/2, two different types of isothermals are
obtained.4

(iv) 4^0. We put A = — v2, so that v is real or purely imaginary since A is real.
We write

w = F(z) = [ exp (-?2f2 + Bf + C) df + p.
J B/

The substitutions (7) with w = p + (w1/v) exp (A/4e2), z, = vz — B/2v, where A = P> '~ -\-
4j>2C, give

Wi = [ exp (-f2) df.
J0

Thus all isothermals of Case (iv) are of the same type, namely,

= [ exp (-f2) (if = Erf(2).
J0

W

We shall not attempt here to describe these isothermals in detail. We merely restrict
ourselves to stating that the curves of H approach ±(x)1/2/2 as x —* ±°°, while the
curves of f) approach the point at infinity as y —* ± °o. A brief discussion of the complex
error function is given by Whittaker and Watson;6 a more detailed discussion can be
found in a recent monograph by Rosser.6

5. Physical interpretations. We return to the notation of Sec. 1 and assume that
f(u, v) = Ci are the heat flow lines and g(u, v) = c2 are the isothermal lines of a two-
dimensional steady state heat flow problem. Let F be the flux of heat across any iso-
thermal line <]i . The flux will in general vary from point to point along g< . Let Fl be
the flux across g{ in the direction of /1 , F2 in the direction of f2 , etc. Then for two
neighboring isothermal lines $i and g2 , defined by g(u, v) = c and g(u, v) = c + Ac,
respectively, where Ac is small, the value of the flux is given approximately by

Fi = F2 = ~k^-,
An1 An2

where k is the thermal conductivity and where An,- represents the distance between
the curves gx and g2 , measured along the curves fi , i = 1, 2. Now suppose the iso-
thermals are of proportional arc length. Then the ratio FXIF2 will be the same for all
isothermals g{ .  i

4For an exantple in fluid dynamics involving these isothermals, see G. Hamel, Spiralformige Bewe-
gungen zaher Flussigkeiten, Jber. Deutschen Math. Verein. 25, 34-60 (1917).

6E. T. Whittaker and G. N. Watson, Modern analysis, Macmillan and Co., New York, 1947, p. 341.
6J. B. Rosser, Theory and Application of

/ exp (—x2) dx and / exp (—p2y2) dy / exp (—x2) dx,
J 0 J 0 Jq

Mapleton House, Brooklyn, 1948.
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Obviously, the problem as described above in terms of flux of heat can be restated
in terms of other physical quantities such as potential in an electrostatic field, velocity
potential in fluid flow, gravitational potential, etc.

For example, consider a potential function /(«, v) = c and a vector force function
F(u, v). Let f(u, v) = c and /(«, v) = c + Ac be two neighboring equipotential curves.
Then F(u, v) acts in a direction orthogonal to the equipotential curves and its magnitude
is given by F = Ac/An, where An denotes the distance between the two curves. That
is, the magnitude of F is inversely proportional to the distance between the two curves.
Hence if /x, f2, f3, • • • are a set of equipotential curves, and , r/2 any two lines of force
and if Fi acts along gx , F2 along g-2 the property of proportional arc length leads to
Fi/F2 — const.
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