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ASYMPTOTIC EXPANSIONS OF COULOMB WAVE FUNCTIONS*
BY

MILTON ABRAMOWITZ
Computation Laboratory, New York

Introduction. Coulomb wave functions are used in nuclear physics in problems
involving collisions of charged particles. The general picture in nuclear phenomena
was clarified considerably by the analysis of the process of alpha particle emission by
naturally radioactive elements which was initiated by the work of Gamow and of Condon
and Gurney. In the discussions of this problem the large decrease of the Coulomb wave
functions which takes place between the nuclear boundary and the high distance edge
of the Coulomb barrier is of primary importance. This large decrease is very sensitive
to both the height and width of the Coulomb barrier. The main feature of Coulomb
wave functions which was important in the early work just mentioned is the critical
dependence of the wave function on barrier properties. It was possible to be sure of
the qualitative correctness of the explanation and its adequacy in accounting for the
Geiger-Nuttall relation without having exact values of Coulomb wave functions. Their
approximate representations by the Jeft'ries-Wentzel- Kramers-Brillouin method showed
that alpha particles escape as though they were leaking through the Coulomb barrier
in accordance with the Schroedinger equation. In later work it became unsatisfactory
to rely on these approximations because the interest in nuclear physics grew and in-
cluded a new range of experimental facts concerned with light nuclei and new reactions
for heavy nuclei and also because the effect of changing the values of the angular mo-
mentum assumed for the escape of alpha particles in the uranium, thorium, and actinium
families became of importance. For reactions involving light particles it is desirable to
have reasonably accurate values of Coulomb wave functions. This is because the decrease
of the wave function on passing through the barrier is not an especially dominating
effect and has to be considered pretty much on a par with other factors, such as forma-
tion of semi-stable states by the bombarded and bombarding particles or the energy
dependence of escape probabilities of fragments, which has sometimes no marked relation
to Coulomb repulsion. It has also proved possible to draw some reasonably accurate
conclusions concerning the magnitude of nuclear forces and the range of distances
within which they are effective by the analysis of experiments on the scattering of pro-
tons by protons. In this connection, experiments on the scattering of protons by deuterons
can be used to give additional information. In the analysis of proton-proton scattering
experiments it is necessary to use exact rather than approximate values of Coulomb wave
functions. The experiments are being extended in many laboratories to include a wider
range of energies, and the tabulations which have been made in the past no longer
suffice for the analysis. It is very valuable therefore to have more formulas and ex-
pansions of a suitable character for the computation of Coulomb wave functions for
new ranges of parameters. Although it would be doubtless possible to obtain all the
necessary values by purely computational means, it is also very helpful to have analytic
representations which enable a physicist to think about what one might expect without
the examination of voluminous tabulations of numbers.

*Received May 27, 1948. The introductory material has been furnished by Professor Gregory
Breit of Yale University.
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1. Statement of Problem. The Computation Laboratory of the National Applied
Mathematics Laboratories, National Bureau of Standards is now engaged in the tabu-
lation of the regular solution of the differential equation

y" + {1 - 2np-1 - L(L + 1)p-2}y = 0 (1.1)

for L = 0 and for p and ri in the range from 0 to 10. For physical applications, a solution
is desired such that y = FL(p, t]) —> sin [p — r? In 2p + L%/2 + <rL] where <rT, = arg
r(L + 1 + irj) as p —> co. If we define

Fo(p, v) = C0p<t>o(,p, v) = C0p X) an{ri)pn~l, (1.2)
n= 1

where C0 is a noi-malization factor independent of p, it may be shown that the coefficients
o„ satisfy the following recurrence relations

ch = 1, a2 = ■>?, n(n — 1 )an = 2r]an^ — a„_2 (n = 3, 4, •••)-

The power series (1.2) is satisfactory for computational purposes when p and 77 are small-
However, for large values of p and the convergence is slow and a large number of
terms are needed. It is the purpose of this article to obtain a number of expansions which
may be used for large values of p and ??.

2. Asymptotic expansion valid for p»i|. When L = 0, equation (1.1) becomes

y" + (1 - 2„p-1)2/ = 0. (2.1)

This equation has been studied in considerable detail by T. Sexl1 and M. Frenkel.2
The results obtained by Sexl will serve as a starting point for our discussion. Particular
solutions of (2.1) may be expressed as contour integrals, namely

yl = ~ Jc e"(z - iy*-\z + iT'-1 dz,

(2.2)

2/2 = 2\{\c dz,

where the paths of integration are shown in the accompanying diagram. It can be
shown that

M>o(p, v) = er"yi + 2/2 • (2.3)

In order to obtain an expansion in reciprocal powers of p Sexl employs the Mellin-
Barnes integral representation of a solution of (2.1). We shall obtain this expansion
directly from (2.2) and then show how C0 must be chosen so that the solution F0(p, ri)
should have the desired asymptotic behavior as p —»<».

If we set (z + i)p = v in the integral for ?/, we obtain

(2.4)

'T. Sexl, Zur Theorie der bei der wellenmechanischen Behandlung des radioaktiven Zerfalls auftretenden
Differentialgleichung, Zeit. fur Phys. 56, (1929).

2M. Frenkel, Die asymptotischer Losungen der in der Theorie der radioaktiven a-Emission auftretenden
Differentialgleichung, Zeit fiir Phys. 95, (May 1935).
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the path of integration being a circuit from — ® around v — 0 and then back to — °°.
Making use of the relation3

'-sT-g;
+ t

— oo

CZ

Fig. 1.

where

(2.4) becomes

e-"(2tp)"
Vi =

where

Rs =

B- - y I'S<1" "'"t1" 0"'"

.(—2ip)8s!r(i?j —

^f eV-i,_1+* dv f s(l - 0'_1(l - * * d«.
;v _ s) Jx, Jo \ 2tp/(-2tp)'s!r(t'ij

If in the above relation we invert the order of integration and summation and employ
the relation4

—. f e'v " dv = l/r(n),« J2 iri

we get finally

= fe^pTir (-l)T(iq)  p ]
I (-2t) JL h> (2ip)rr\v(ir, - r)r(iij + 1 - r) *J

The series (2.6) considered as an infinite series is divergent. However, if we truncate
the series with the s-th term, it may be shown that | R, \ is of the order of | p " | and

3T. M. MacRobert, Functions of a complex variable, Macmillan and Co., London, 1947, p. 271.
4R. Courant and D. Hilbert, Methoden der mathematischen Physik, Interscience Publishers, New

York, 1943, vol. 1, p. 417.
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may be made as small as we please by taking p sufficiently large. The proof is entirely
similar to that for the Hankel function expansion5

The series (2.6) may be rewritten in the form

Vl = (-2r)r(lP+ iy) C'(p' v)' (2-7)

where

rrt \ ~ i) , in(iv — i)2(^ - 2)U(p> v) = 1 2ip + 2 W " (2"8)

It is clear that to obtain the equivalent result for y2 we need only change -\-i to —i
in (2.7). We then find

"■" "> (2-9)

where U(p, y) is the complex conjugate of U(p, y).
Now, let r(l + iy) = | r(l + iy) \ e'"° so that (2.7) may be written

Vl = (-2i)P\l\l + iy) [ exp ' ~i(~p ~ 7>]n2P + ° °)l (2-10)

To transform (2.9) in a similar manner we make use of the relation6

o-o = arg T(1 + iy) = -yy + S (~ — arc tan ~) = ~ arS r(! ~ *l), (2.11)
n= 1 \Tl 71/

where y = .577215665 • • • is Euler's constant, and the relation7

| r(i + iy) I = I r(i - iy) I = (■„2*""_„y/a (2.12)

and obtain

y2 = (2^^r(f- iy) | GXp ~ ^ 111 2p + <r0)}. (2.13)

Making use of (2.3), (2.10), and (2.13) we finally get

ff7el> _ TJe~iv\
pUp, v) = + V, = {— 2T^—f (2-14)

where <p = p — y In 2p + <r0 . Thus, if U = u + iv, we get

F0(p, y) = C0p<t>o(p, y) = u sin <p — v cos <p (2.15)

where C0 = e~x,/2 | T(1 + iy) | and where

JL , 5??2 — y* . — y , 4r?3 — 2y
2p ^ 2!(2p)2 2p 2!(2p)2

&Ibid, p. 453.
6E. Jahnke and F. Emde, Tables of functions, Dover Publications, New York, 1945, p. 10.
7T. J. I'A. Bromwich, An introduction to the theory of infinite series, Macmillan and Co., London,

1926, p. 474.
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It is interesting to note that the expression for F0(p, rj) can be obtained from (2.1)
by elementary methods. Since (2.1) reduces to y" + y = 0 as p —, this suggests the
substitution

V = e^'VVp, v)- (2.16)
The differential equation for the function u is

u" + (±2i =F 2fcp"V + {(T2ik - 2r,)p-1 + k(k ± 1)p~2}w = 0. (2.17)

If we assume the expansion

u = 1 + - + -2 + • • • (2.18)
P P

and substitute in (2.17), we obtain

(~F2ik 277)p \o,x\z^-2ik -F 2?'] -{- k(k i 1)}p

-f- {a,2[-F2ik — 2r? -F 2i\ -(- a1[jfc(fc ± 1) ± 2k]}p 3 • • • =0.

Thus, if we set k = ±it], the coefficients ax , a2, as , • • • can be determined successively.
The function F0(p, j;) is then obtained by taking the proper linear combination of the
solutions thus found.

The relation (2.15) provides a convenient method of calculating the zeros of the
function p<£0(p, v)- Setting (2.15) equal to zero, we get

tan <p = v(p, rj)/u(p, v) (2.19)

and therefore <p = p — ri In 2p +. aQ = arc tan v/u + mr(n, an integer). This relation
can be formulated iteratively as a formula for calculating the zeros, namely

p[n) — t? In 2pln_,1 — <t0 + nir + arc tan {«(pi-i , 7/)/tt(pi-i , jj)} (2.20)

Thus, if p»"'i represents an approximation to p(n>, a better approximation can be ob-
tained from (2.20). A short table of these zeros is given below.

y n = 1 n = 2 n = 3

0.0 3.1416 6.2832 9.4248
0.5 4.4578 7.8928 11.214
1.0 5.8140 9.4746 12.942
1.5 7.1262 10.974 14.567
2.0 8.3957 12.403 16.110
2.5 9.6330 13.786 17.596
3.0 10.846 15.130 19.033

3. Further expansions for large values of p or 17. Examination of the expansions
(2.7) and (2.15) shows that for suitable convergence it is necessary that p shall be large
with respect to »?. In the following development we shall obtain other expansions valid
for p < 2ij as well as expansions for p > 2??.

Sexl obtained approximations to the contour integrals yx and y2 given in (2.2) by
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the method of saddle points. Taking the appropriate linear combination defined in
(2.3) we obtain

^o(p' v) ~ (8^(27^) 6XP {[p(27J ~ p)]V2

1 (3.1)
-J- 2tj arc sin (p/2ij)1/2f for p < 2ij

_e
('2Tn))1/2\2ri — pt>0(p, 1?) = /0 xi/il o J sin [fe(p, t?)] for p > 2V (3.2)

where

fc(p, 1) = \ + 2if In QO - + [p(p ~ 2ij)],/2
The approximations (3.1) and (3.2) can be obtained directly from the differential equa-
tion (2.1) except for the normalizing constants. The method to be described is such that
improved approximations can be obtained by elementary methods.

4. Derivation of (3.1). To obtain (3.1) we first put p = 2tj£ in (2.1). The resulting
equation is

y" + 4„2(1 - t~l)y = 0. (4.1)

If we now let y = exp <p the differential equation for the function <p is

<p'2 + <p" + 4ij2(1 - r1) = 0. (4.2)

This equation can be solved if we take for <p(p, r7) an expansion of the form

<p(t, rj) = (2T\)gQ{t) + gx(t) + (2V)2 + • • * . (4.3)

Substituting (4.3) into (4.2) and equating coefficients of the successive powers of (2i?)
to zero, we obtain the following systems of equations

g'o2 + (1 — t *) = 0,

g'a' + 2g'0g[ = 0,

g[' + g;2 + 2 g'0g'2 = 0, (4"4)

g 2 + 2g[g't + 2 g'0g'3 = 0,

Solving these systems successively for g0 , gi , g2 , we find

9o = ^ ^2r< ~ P^1/2 + arcsin

*" I(s^)- <4'5)V2ti — p
( p \1/aj2p2 - 6r1P + V

92 ~ \2n - p)K2r) - p) ( 12ij(2ij — p)

Further approximations can be obtained by solving (4.4) for g?l , gt ,
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Comparison of (3.1) with exp <p where ip is defined by (4.3) in conjunction with (4.5)
shows that if in (4.3) the terms beyond gx are neglected the approximation agrees with
(3.1) except for an arbitrary normalizing constant. This suggests using the constant
in (3.1) for the approximation just obtained. Thus for p < 2rj

1 ( Y/4
W>°(p, v) = (8x^i/2 [2rj _ J exp {^(p, v)\ (4.6)

where

<p(p, v) = 2i? arc sin (j-) + [p(- p)]1/2

_ i_ ( P Y/2JV - 6qp + ,
2tj \2r? — p) \ 12ij(2r; — p) J

5. A second approximation to p<t>0(p, v) for p < 2ij. Let

y = N exp {p(p, tj) } (5.1)

where N is a constant to be determined subsequently. Substituting (5.1) into (2.1) we
obtain

<p'~ + <p" + 1 2?ip = 0. (5.2)

Assume for <p(p, y) an expansion of the form

<p(p> v) — (2r?)1/!Vo(p) + gi(p) + (2ji) 1/2g2(p) + ••• . (5.3)

Substituting in (5.2) and equating powers of (2-q)in to zero, we get

g'o P — 0)

2<7o<7i + g'o' = o,
(5.4)

These equations may be solved successively, and we obtain

* -'-{( - &

ffi = 1111 P> Q* = ~P ' (2Q + 32 + 1024)* ^5"5^

_1/2/P2 3 \
g2--P ^ ^

The expression for p4>a(p, v) is thus determined except for the arbitrary normalizing
factor. To determine this factor we note that if p <3C 2r/, the relation (3.1) becomes

p4>o(p, n) = (fj* exP [2(2"P)1/2] • (5.6)
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Furthermore, if we neglect the terms beyond gi{p) in (5.5) the resulting approximation
for p$o(p,i?) is the same as (5.6). This suggests choosing N = (8xi7)~i/2(2t?)~1/4 in (5.1).
The expression for p4>0(p, v) now becomes

1 ( p V/4
p4>o{p, v) = exp ^p' ^ (5-7)

where

<p(p, v) = 2(2„Pr - (f- + ~ (f- - |)

 I (V , L , _?n ,
(297p)3/2 V20 32 "+" 1024/ ~l~

6. A third approximation to p^>0(p, v) for p < 2jj. The expression (5.7) suggests still
another possible form of solution. We assume that

1 (jL)Ui
\2t]/f«t>o(p, v) = 7i—072 (s-J exp [2(2ijp)1/2]m(p, rj) (6.1)

so that «(p, n) must be a solution of the differential equation

\ 1/2 . l| i i I, 3u" + (2(2r;/p) + + ^1 - = 0. (6.2)

If we now assume that u may be expressed in the form

v - v _i_ Ul _l y*. _l_ _1_u -u« + (2lJ)^ + 2, + (2,)3/2 +

we get the following system of equations

u'n+1 + mJ' + - u'n + ^1 — YQ^)un = 0, n = 1, 2, 3, • • • (6.3)

with M0 = 1 determined by the form of (6.1). Solving (6.3) successively we get

{I + A)\3 + 16/'
Mi = -p 1/2'

W2 P (18 + 16 512), (6.4)

, = _ -3/2/V ,89/ 17V , 13 \
3 p V162 480 ~1~ 512 ~l~ 8192/*

7. Approximation to p<f>0(p, v) for p > 2-q. We now proceed to obtain an approximation
to p4>0{p, v)> valid for p > 2jj. If in (2.1) we make the substitution t = (p — 2?j)/2r? the
resulting differential equation becomes

A-n2t

y" + T+ty = °• (7-D
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To derive the solution from this equation, the expression (3.2) suggests that we assume
an expansion of the form y = exp [H(t, 77)] where

H(t, rj) = - + 2yg0(t) + <7i(0 + ^ 6*2(0 + • • • . (7.2)

The solution of (7.1) thus reduces once more to the solution of a system of equations
to be solved successively and we ultimately get

g0 = i In {(« + 1 )1/2 - t1/2 + [t(t + 1)]1/2},

4 I t )' (7.3)

g 2 = -ti
1 + t\3/2j8t2 + 4< + 5

I 48(1 + t)2
The desired approximation to p<t>o(p, rj) corresponds to the imaginary part of exp
[H(t, 17)]. Thus if t = (p — 2tj)/'2t7 using the constant in (3.2) we find

e1' /1 _i_ iV'4
P<MP, rj) = (2tv)1/2 \—f~) sin ^ (7-4)

where

H(t, v) = | + 2, In {(* + 1),/2 - t1/2 + [<(* + 1)]1/2}

J_ /l + As/2/8<2 + 4< + 5\
2r; V t J \ 48(1 + 02 i

8. Development for 2ij < 1. We shall now obtain an expansion valid for 2?j < 1
and for moderate p. Assume that a solution of (2.1) can be expressed in the form

y = V 0 + (277)2/1 + (2ri)2y2 + • • • . (8.1)

Since this function must be identical with p4>0(p, rj), and since p4>0(p, rj) = 0 and
d/dp{p<t>o{p, rj)} = 1 for p = 0 we shall require that y(0) = 0, y'(0) = 1, y„(0) = 0,
y'n{0) = 0 for n > 1. Substituting in (2.1) we then get

y'o +2/o = 0,

x (8-2)
y'n + Vn = - yn-1 for n = 1, 2, 3, • • • .

P

Solving this system of equations, we get
3 5

P , P
!/o = sm p = P~3! 5l_

2 4
P P ,

Vx = fl2 2! ~ °4 4! + " ' '

,a2 =1, a4 = o2 + 1/3, a6 = a4 + 1/5, • • • (8.3)
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3 5

y> = b3 3! - 65 5! + " • • '

63 = 1/2 0,2 y b5 = 63 + 1/4 (X\ f 67 = 6g -f- 1/6 Cl6 > • • •

4 6

2/3 = |j - c6 |i + • • • ,

c4 = 1/3 b3 , c6 = c4 + 1/5 65 , c8 = c„ + 1/7 fr7 , • • • .

The law of formation of the successive y„ is straightforward.
9. Approximation in terms of Bessel functions for large 77. A method similar to

that employed in (8.1) may be used to obtain an expansion valid for large values of v
and for moderate p. We first make the substitution t = 2??p in (2.1) and obtain

y" - \ y = - 4^2 y. (9.1)

Assume an expansion of the form

y = k\y0(t) - 2/i(<) + 3/a(0 ~ ' * •}, (9.2)

where A; is a constant to be chosen so that y'{0) = 1. Substituting (9.2) in (9.1) we then
obtain

y'o' t 2/o = 0, (9.3)

y'n - t~lyn = -yn-i , (n = 1, 2, • ■ •). (9.4)

The solution of (9.3) which is regular at t = 0 is
°o .n + 1

»• " " SSfrT+lji- <9'5>
The equations (9.4) may be solved successively, and we find for yx and y2

" n3 - 3n2 + 2n + 12 f 2<3 , 8<4 , 20<5E n — o7t -r ~r , ot ,
3 (n - 1 )\n\ ~ 2!3! + 3!4! + 4!5! +

_ 24^ 184f6 784f 2864f 6784f"
2/2 ~ 4!5! + 5!6! + 6!7! + 7!8! + 8!9! + *

(9.6)

It is clear from (9.5) that in order that the expansion (9.2) shall have the same slope
as p<t>u{p, v) at p = 0 that we must have k = 1/2)?.

It should be mentioned that several of the above methods may be employed to
derive expansions of (1.1) for integral values of L.


