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SUPERSONIC FLOW OVER BODIES OF REVOLUTION*

BY
MARK LOTKIN
Ballistic Research Laboratories

1. Introduction. The purpose of this paper is to present a method of determination
of the flow of a compressible fluid about the head of a pointed body of revolution.
This method is based on the assumption that the actual flow may be approximated by
a perturbation of the conical flow about the tip of the body, an assumption that will
hold for contours of small curvature. The flow is furthermore supposed to be steady
and axially symmetrie; viscosity, heat conduction and external forces are considered to
be negligible. Since the entropy perturbation is of the same order as the velocity per-
turbation, it must be taken into account.

2. Differential equations of the flow. Let us suppose that the velocity q of the flow
and the local speed a of sound are measured in units of the speed ¢ of efflux into a vacuum,
that density p, pressure p, and absolute temperature 7' are measured in units of their
respective stagnation values p, , po , To in the free stream, and that the entropy S is
measured in units of ¢, ; further we put S, = 0. Then we have, in view of our basic
assumptions,’

Bernoulli’s equation:

1—q2=7_1a2=T, (1

isentropy along streamlines:
p/e" = g(S) = ¢, (2

the equation of continuity:
V(@) =0, (3)

and the vorticity equation:

2

a
VXqXq=-—7""—+
( 9 X4q vy — 1)
Introducing spherical coordinates r, 6, ¢, so that the tip of the body lies at the
origin r = 0, and its axis coincides with the line § = 0, and denoting the velocity com-
ponents in the direction of increasing r, 6, ¢ by X, Y, Z, respectively, (see Fig. 1), we

have for axially symmetric flow, since Z = 0, 3/9¢ = 0,

vS. 4)

V_(qTI/('r—l)) — (%.(XTV(‘Y-I)) + %(XTI/H—I))

li i/ (y=1) cot 6 1/(y=1)y __
g (YTVO) o S22y ) = g,

*Reccived April 28, 1948.
1Sce, ecg., R. Sauer, Theoretische Einfiihrung in die Gasdynamik, Springer, Berlin, 1943, p. 132.
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Now
O pve-n _ _ XX, + ) +2 Yy, VD,

ar - a

X, = X /or, ete.,

Fic. 1.

so that (3) becomes, after multiplication by ra*T~""~",

rX,(@® — X?) — XY(X, +7rY,) 4+ Yoa® — Y?) + a®(2X + Y cot 6) = 0. (5)
The components of ¥V X q in the 7, 6, ¢ directions, respectively, are 0, O,
(1/r)(Xy — rY, — Y). Therefore,
(VX @ Xq=—3X —r¥, - V)(Vk — Xk),

where k; and k, are unit vectors in the r and 6 directions. By Eq. (4) then,

a’ rS, a’ Se

ootV =¥V = - Y " - DX ©

In case of a conical axially symmetric field, X = U(6) and ¥ = V() are functions
of 6 only, and the flow is necessarily irrotational, so that Egs. (5) and (6) become®

—UV*>+ (a5 — VAV’ + a3(2U + V cot 6) = 0, )

U —-V=0, ®

with ai = (1/2)(y — D1 — U — V?), U’ = dU/ds.
It will in the following be assumed that U, V are the velocity components in the

2These equations are identical with those first derived by Taylor and Maccoll, Proc. Roy. Soc. (A)
139, 278 (1939).
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conical field of the nose of the body of revolution, and that they have already been
determined as functions of . We now assume that

X=U+u Y=V+o (9)

and that the velocity perturbations u, v are small compared with U, V, making second
order terms such as u°, uu, , etc., negligible. Under these conditions Eqs. (5) and (6)
become, after some simplifications,

ArU, + By + m,) + Cvy +.Du + Ev = 0, (10
ug — 1, + Fu 4+ Gv + H = 0, (11)
with
A =a5 — U B=-UYV, C =a;— V7

D=2 —V—(y—1DUQRU+ Vecotd) —(— DUV,
E =a3cot§ —(y—1D)VQU + Veotd —(y+ DHVV,

&( a ) Sy V Sy @
F=—\——"""5+1) G=—= -1, H=—— —"—-—.
v \oa = no° T v U y 0 — DU

3. System of characteristic differential equations. Since v = u(r, 8), v = o(r, 6),
whence du = u, dr + u, d, dv = v, dr + v, df, the characteristic equations® of the

system (10) and (11) may be obtained from the condition that the matrix

Ar B Br C Du + Ev

0 1 —r 0 Fu+ Gv+ H
dr deé 0 0 —du

0 0 dr de —dv

has the rank 3.
" The vanishing of the determinant of the first four columns leads to

Ar* d6* — 2Br dr do + Cdr® = 0,

whence*
m—Berw=o, (12)
with
R=(B— AQ) = [ai(¢ — &))"*, )= U+ V°.
Putting

m(0) = (B + R)/C,  n(6) = (B — R)/C,

3For the theory of characteristics see R. Courant and D. Hilbert, Methoden der mathematischen
Physik, J. Springer, Berlin, 1937, vol. 2, ch. V.
“Note that for supersonic flow always C > 0.



68 MARK LOTKIN [Vol. VII, No. 1
we obtain for the equation of the first’ family n = const. of characteristics

dr —rmdf = 0, (13)
and for the second® family ¢ = const.

dr — rndf = 0. (14)

It is easy to show that Eqs. (13) and (14) are also the equations for the character-
istics of the conical field, as follows. Since (see Fig. 2)

Fia. 2.
w = a — B, w, = —a — B,
and tan a = a,(gh — ag)”'? tan w, = rdf/dr, tan 8 = —V /U, we get
rdo a—V C

70 TFUV falg — o) LB+ R
along a characteristic of the first and second family, respectively. These relationships,
however, are identical with Eqs. (13) and (14).

Integration of these equations leads to

[}
/7 expf m(0) dé,
0,

]
find r/Ty = exp f n(6) de,
02

5Looking in the direction of q, the “first’”’ family is the family running forward to the left of q,
the “second” family is the one running to the right of q.
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fi 1, 2, P are three points located as shown in Fig. 3. These relationships may also be
expressed in the form

P(l’,e, Uy, s)

0
Fia. 3,
r/ry = M(8)/M(6,), ‘ (15)
r/r, = N(6)/N(6,), (16)
where M(6) = exp /o, m(6) de, N(6)= exp f:n(é)) de.

For later use we note here also that

ro/1y = (ro/T)(r/r) = exp (‘/j ndo + ' mdo),

0,
whence

M(6)/N(6) = (ro/r)M(6,)/N(62). 17)

To determine the velocity perturbations u, » at P we make use of the fact that also
necessarily

Ar B C Du + Ev
0 1 0 Fu+ Gv+ H

dr dé 0 —du

0 0 de —dv
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In view of mn = A/C, m 4+ n = 2B/C this results in

dv + ndu + Kdf = 0 along n = const., (18)
dv + mdu + Ldf = 0 along ¢ = const., (19)
with K = C'[(D — RF)u + (E — RG)v — RH],

L =C"'[(D+ RF)u + (E + RG)v + RH].
Finally, since dS = S,dr + S,d#f, and, by Eq. (6), —7XS, = Y8, , we have
dS = Sedb(1 — mY/X) along n = const., (20)
and dS = S,d6(1 — nY/X) along ¢ = const. (21)

It is thus seen that in order to compute K, L, and dS it is necessary to know S, . This
quantity may be found as follows. Since

S = S[g(r, 6), n(r, 6)], we have S, = S + S0 -
But

(Sr Eo 1 ( 07] _T'll

—J

Nr Ne — 0, TzJ

with J = a(r, 6)/3(¢, 7). By Eqgs. (13), (14) r, = rmé; , r, = rnf, , whence

J = (m — n)ré,6, and Sy = " 1 - <m % —n %) (22)
- n £

If, then, the quantities 8 and S are known at the points 1, 2, and P of a characteristic
net (see Fig. 3), then approximately

1 S—8, S—Sl>
S"_m—n<me—02 "o — 9/ (23)

4. Boundary conditions. A. At the body. Let the equation of the contour of the
body of revolution in a meridian plane be

r = f(6). (24)

Since the contour must be a streamline, we have
J(6) =rX/Y.
Introducing the perturbations w, v defined in Eqgs. (9), we obtain
ru — ['(O)v + U — f'(OV = 0. (25)

B. At the shock wave. Here the laws of conservation of mass, of momentum, and
of energy must be satisfied, and, moreover, the change in entropy must be calculated.
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From the three conservation laws it is easy to deduce first the continuity of the tangential
velocity component: ¢, = ¢,, . (Fig. 4) Along the shock, then,

dr _ qsin § + Y
g~ "q cos 0 — X° (26)
where q, is the free stream velocity. This relationship may also be expressed in the form

g — X cos 0+ Ysin 6
Xsin 8+ Y cos @

tan 6, =

(27)

Fic. 4.

The velocity perturbations u, v along the shock wave may be found as follows. Let
-q» and ¢, be the horizontal and vertical components of q; then (see Fig. 4)

' gn = X cos 8 — Y sin 6, g, = X sin 6 4+ Y cos 6. (28)
Along the shock wave ¢, and ¢, satisfy the equation of the shock polar
(@ — @)@ —b) —gi(e —q) =0 (29)
with
=u/t, e=p/a+0—-—wa, w=-D/y+1D.

Making use of Egs. (28) and introducing the perturbations u, v we find that Eq. (29)
leads to :

Tu+ Av+ A =0, (30)
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where

I = (3U° 4 V? cos 6 — 2UV'sin 6 — 2U[(2¢, + b) cos® 6 + esin® 6]
+ ¢(1 + wVsin 20 + (2u + ¢7) cos 6,
A= —(U"+3V®sin 6 4 20V cos § — 2V[(2¢: + b) sin® § + e cos’ 6]
+ ¢.(1 + WUsin 260 — (2u + ¢)) sin 6,
A=Ulcos§ — V?sin § — UV(Usin 6§ — V cos ) — U’[(2¢q, + b) cos’ 6 + e sin® 6]
— V*[(2q, + b) sin® 8 + e cos® 6] + ¢.(1 + wUV sin 26

+ (2u 4 ¢))(U cos 6 — Vsin 6) — ug, .

To determine the entropy variation along the shock we notice first that

Now from
S = log (p/p") = log (p/ps) + v log (p1/p) + Si, 32)
and the Rankine-Hugoniot equations
P _ 2yMisin® 9, — (y — 1)
P v+ 1 ’
p _ (v — 1)sin’ 6, + 2/M;]
P (v + 1) sin® 6,
it may be shown that
dS _ 2vks (tan® 0, — t)° de, (33)

d0 ~ £ tan 8,(tan’ 0, — k)(tan 8., + 5) df
with ' =Mi -1, K= [2v/(y — DIMT — 1, s =[(y — )/2]M] + 1.

Once 6, is known, Eq. (33) permits the calculation of dS/df, and then Eq. (31)
that of S, . This will be described in more detail in the following section.

5. Computational procedure. Let the value of M; > 1 and the contour of the body
of revolution be given (see Fig. 5). We replace the nose 0'10” of the body by a small
tangential cone 010", and compute the conical flow U, V determined by M, , 8, , thus
obtaining a number of starting points 2, 3, 4, --- on the initial n-characteristic 11’.
We use these points to get a characteristic net as shown in Fig. 5. Each point of this
net belongs to one of these four types: ‘

a. It lies on the initial » — characteristic 11/, e.g. 2;
b. It lies on the contour, e.g. 10;

c. It lies in the “interior’”’, e.g. 5';

d. It lies on the shock wave, e.g. 6'.
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Type a: point 2. Then r = r,M(6,), w = 0, v = 0; S may be found by Eq. (32) and the
Rankine-Hugoniot equations. This value of the entropy prevails in the whole region
bounded by the straight shock 01’, the contour, and the streamline through 1.

Type b: point 10. By Eqgs. (16) and (24) r = f(6) = r,N(6)/N(8,;), which permits the
determination of 6, and then r. Further, by (19) and (25),

@w—v;) + mu—u;) + L.(0 — 0;) =0,

re — [ + U — f/(O)V = 0.

Here r and 0 are to be taken at 10, and the coefficient L, is first computed at w,, = u; ,
Vm = v; . Since Sy = 0, L,, = C'(Du,, + Ev,). The solutions ", »* of the last two
equations may then be improved by computing L, at u, = @ + u;)/2,
vm = (0" 4 v;)/2, getting solutions «®, »®, and then forming L, at u,, = («® + u7)/2,
v, = (0 4+ v,)/2, ete., until the desired accuracy has been achieved.

Type c: point 5. By Eq. (17) M(8)/N(6) = (rs /r5)M(85)/N(64.).

Further, r = r;. M(8)/M (65.). By Eqgs. (18) and (19)

@ —vs) + nlu —uy) + K. (6 — 6;) =0,

(v — o) + mu —uy) + L,(6 — 6,) =0,

with K,, and L,, evaluated at u,, = (us: + u3.)/2, v,, = (V0 + v3.)/2, and Sy, =
(So.a + Ss.5:)/2. Finally, by Eq. (20) S — S;. = Sp..(6 — 6;.)(1 — mY/X). The
value of S, at 5 is obtained by Eq. (23).

Type d: point 6. By Eqgs. (26) and (13), approximately,

P _ <,. g sin 0 + Y> T
6— 6, \ qcosbd— X/, 6 — 0,

If the solutions of these equations are called 7"’ and 8", a better approximation may

be obtained by forming the right sides of the equations above at (r' 4+ 7,.)/2,
0" + 6,)/2 and (r” + 75.)/2, 0V + 65.),/2, respectively.
For the determination of « and v at 6’ we have by Eqs. (18) and (30)

@ —vs) +nle —u;) + K, (6 —65) =0

Tu + Av + A = 0;

here we may again use successive approximations, as follows. Using at first in K,, the
values of u, v, and S, at 5’ we obtain as solutions of the last two equations v = u'”,
v = v, Equation (31) will now give S, if the value of dS/d# is computed by Eq. (33)
by means of (27). For the second approximation we use in K,u, = (' + u;)/2,
v = 0V 4 0:)/2, So.n = (85" + Ss.5.)/2, obtain ©'?, v, S;”, ete., and continue

until the desired accuracy has been achieved.



