THE DIFFRACTION OF A PLANE WAVE THROUGH A GRATING*

BY
JOHN W. MILES
Unaversity of California at Los Angeles

Summary. The problem of diffraction and scattering of a normally incident plane
wave of sound by an infinite plane grating consisting of infinitely thin, coplanar, equally
spaced (b apart) strips with parallel edges is solved. The potentials on the two sides of
the screen are written as Fourier expansions in terms of the velocity in the aperture, and
an integral equation for this velocity is determined. An impedance parameter Z whose
real part is the transmission coefficient, is defined, and it is shown that the real and imagi-
nary parts of the reciprocal of this parameter may both be specified by variational ex-
pressions, which are absolute minima for the solution to the aforementioned integral
equation. An alternative formulation, in terms of the pressure discontinuity across the
screen, is given, leading to an integral equation and to variational expressions for the real
and imaginary parts of (1 — Z)™*. A solution to the integral equation is given which
reduces the problem to the solution of an infinite number of simultaneous equations. It
is shown that solving only one of these equations gives a solution which is essentially a
solution to Laplace’s equation, while if N equations are solved the terms neglected are
of the order N™'[(1 — 4b®/N®\*)"'? — 1] or less, where ) is the wave length. The solution
is extended to the case of a vertically polarized electromagnetic incident wave by direct
analogy and to the case of a horizontally polarized electromagnetic wave by a transforma-
tion which is a special case of Babinet’s principle. The integral equations for an aperture
of finite thickness are set up, and an approximate solution including only first order terms
in thickness/wavelength is given. Results are given in the form of curves for the trans-
mission coefficient vs. aperture opening for several ratios of grating spacing to wave
length less than unity. For the special case of a half open grating the transmission coeffi-
cient is plotted out to that value of spacing/wavelength at which the results agree with
Kirchhoff’s theory.

Introduction. The problem to be solved is the scattering and diffraction of a plane
wave of sound which is (essentially) normally incident upon a plane grating consisting of .
an infinite number of infinitely thin parallel ribbons of width b — d whose centers are
spaced a distance b apart, as shown in Fig. 1. Since, by symmetry, the normal velocity
must vanish at the planes which form the perpendicular bisectors of the ribbons, shown
by dashed lines in Fig. 1, the problem is the same as the calculation of the transmission
of sound through a symmetrical window of opening b — d placed perpendicular to two,
infinite, parallel plates, a distance b apart. This problem, subject to certain restrictions
on the frequency, has been treated by the present author.' For the sake of completeness
and in order to investigate further the limitations on the frequency, the analysis will be
carried out independently of earlier papers.

The solution will be formulated in terms of the normal velocity in the plane of the
grating, which, by virtue of Huygen’s principle, may be regarded as a source distribution.

*Received March 18, 1948.

John W. Miles, The analysis of plane discontinuities in cylindrical tubes, J. Acoust. Soc. Am. 17,

Part I: 259-272, Part II: 272-285 (1946). The variational methods used therein were due to
J. 8. Schwinger.
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The potentials on the two sides of the screen may then be regarded as composed of the
solution corresponding to no aperture in the screen (i.e., complete reflection) plus radia-
tion from the unknown source distribution over the aperture. The normal derivatives of
the potentials on the two sides of the screen will then automatically satisfy appropriate
boundary conditions, while the requirement that the potentials themselves be continuous
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Fic. 1. Three views of infinite grating.

across the aperture yields an integral equation for the determination of the source dis-
tribution (or aperture velocity). An alternative formulation in terms of the pressure
discontinuity across the screen will also be given.

In many cases, it is sufficient to know the transmission coeflicient for the grating, i.e.,
the ratio of the energy density transmitted through the grating to that in the incident
wave. It is convenient to introduce a complex impedance parameter, whose real part is
the transmission coefficient, and this leads to a variational formulation of the problem.
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Velocity potentials. Is is known® that if the velocity vector q is specified as the
gradient of a potential ¢ and a harmonic time variation exp (jwt) is assumed, the potential
satisfies the scalar Helmholtz equation

Vo, y, ) + K@, y,2) =0, (D) k=of, @
4z, ¥, 2, 1) = exp (ju) Ve, y, 2), ®3)
while the pressure is given by
P(, Y, 2, t) = —jwpo exp (Jui)o(x, y, 2). (4)
If the incident wave from z = — « has its wave normal in the zz plane, it may be
designated by
Dine(, y, 2) = B, exp [—jk(x sin 6 + 2 cos 6)], (5)

where the axes are as shown in Fig. 1. It is evident (since there is no discontinuity in the
x direction) that the dependence on the = coordinate, together with the amplitude &, ,
may be removed by writing

$(@, y,2) = @, exp (—jka sin O)e(y, 2), (6)
V2¢(y7 2) + "Zﬂo(yy z) = 0) (7)

where
k = k cos 6. (8)

It follows that the solution for 8 > 0 may be obtained from the solution for § = 0 simply
by replacing % in the latter by &k cos 6 and multiplying the result by exp (—jkz sin 6).
Accordingly, only the case § = 0 will be discussed in the following sections.

A solution to the foregoing equations which is periodic in y, corresponding to the
periodicity of the grating, which corresponds to the incident wave (5), and which satisfies
the boundary conditions

% = % -
ay (Oy Z) - ay (by Z) - 0) (ga')
a_‘f’( 0)=0 i 9b
3z Y, = ) ymr, ( )
= —jkfy), yingo, (9c)
is given by

2<0:0.(y,2) =2coskz — k Y bk, exp (jx.2) cos (nwy/b), (10a)

n=0
2> 0:¢(y,2) = kD b exp (—jik.2) cos (nwy/b), (10b)

n=0

?P. M. Morse, Vibration and sound, McGraw-Hill, New York, 1936.
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b= (252 [ 500 cos (urn/t) a1
K, = (k* — n’n?/b%)"? if k> (nr/b), " (12a)
= —j@’ 7/ — ) if k< (nw/b). : (12b)

The aperture region is denoted by ¢, while the obstacle is denoted by 7. The leading term
2 cos kz in ¢, represents the solution corresponding to total reflection and would be the
complete solution (i.e., b, = 0) if the grating were replaced by an unperforated screen.
The remaining terms represent the waves which are radiated due to the presence of the
aperture o, their Fourier amplitudes being chosen to correspond to a normal velocity
—jkf(y), as specified by Eq. (9¢), in the aperture ¢. The vanishing of this latter velocity
on the obstacle 7, as required by Eq. (9b), is ensured by integrating, cf. Eq. (11), only
over ¢. The boundary conditions of Eq. (9a) specify the periodicity of the solution and
are satisfied by the choice of the expansion functions cos (nry/b). The behavior of the
propagation constants «, at their branch points, ¢f. Eq. (12), is chosen to ensure attenua-
tion of the non-propagated waves.

The only remaining boundary condition to be satisfied is that of continuity of pressure
across the aperture, i.e.,

ﬁ’l(yy 0) = ¢2(y: 0)’ Yy in g. (13)
Substituting Egs. (10) and (11) in Eq. (13) yields the integral equation
[ K@ iman=1, yine (14)
(2 — 6
K@, ) = K, 9) = 3 (252)7, cos (ury/b) cos rn/t), (15)
Y, = (k/x) = [1 — (n\/2b)"]7"%, (26/X) > n, (16a)
= jl(nA/2b)" — 117%,  (2b/A) < . (16b)

Before discussing the solution of Eq. (14) it will be convenient to discuss alternative
formulations of the problem and to introduce an impedance parameter.
Aperture impedance. The energy flow per unit z width through the grating is given by

P = %Rl f i)(x’ ¥, 0, t)Q:(x; v, 0, t) dy~ (17)

Substituting p from Eq. (4), ¢. from Eq. (9¢) and observing from Eqgs. (10) and (13) that
¢ = 1in the aperture, Eq. (17) reduces to

p= %pockqu'g cos o[Rl f @) dy:l. @18)
The aperture impedance will therefore be defined by
. 1
Z=R+iX =3 [ f&)dy = b, (19)

where R and X are the real (resistive) and imaginary (reactive) parts of Z.
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Now in Kirchhoff’s theory® of diffraction it is assumed that the fields in the aperture
are the same as they would be in the absence of 7, i.e., ¢,(z, y, 0) = ¢.(z, y, 0) =
¢:inc (2, y, 0), ip which case f(y) = 1. The ratio of actual tramsmitted energy to that pre-
dicted by Kirchhoff’s theory is therefore given by

o= (O T8 L] - (O

The reactance term X is a measure of the non-propagated energy stored in the vicinity
of the aperture, i.e. of the standing waves.

It may be remarked that the impedance defined by Eq. (19) is closely analogous in
the quantity utilized by Rayleigh in his studies of apertures in cavities." On the other
hand, the impedance differs from that defined in the paper quoted in Footnote 1 in
including the “radiation resistance” R, and, as will be shown subsequently, also in the
definition of the imaginary component.

‘Variational formulation. Multiplying both sides of Eq. (14) by f (y) dy, integrating
over the aperture, and dividing through by Eq. (19) yields

Z'=Y=G+iB= b[ [Fw ay [ s dn]_l [Fw ay [ sE@, an (21

Equation (21) is a variational equation of a type first studied by Schwinger®, although
in the present case both the kernel K and the unknown function f are complex. In order
to further study the properties of Eq. (21), it is expedient to reduce it to two real expres-
sions. Thus, write

) = fy) + jf:(y), (22)

K(y; 77) = Kl(y7 7’) + ]K2(y: 77) (23)

where f, and f, are both real functions, and K, and K, are the real and imaginary parts
of the kernel, corresponding to the ¥, of Egs. (16a,b).

Substituting Egs. (22) and (23) in Eq. (21), remembering the symmetry of the kernel
in (y, 7), yields

e = ol ([ 5o +([sa)]"

([ fomions [ s [ 1,n)
s=of ([ o) + ([ sa)]

[ 5o [+ [ o [ ssan]

3J. A. Stratton, Electromagnetic theory, McGraw-Hill, New York, 1941. Since the Kirchhoff calcula-
tion is generally carried out by integrating the flux through a hemisphere, the results designated as
Kirchhoff herein might more precisely be labelled geometric.

‘Lord Rayleigh, Theory of sound, Dover Press, New York, 1946.

8At the M. I. T. Radiation Laboratory (1941-1945); see also the paper quoted in Footnote 1.

(24a)

(24D)
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Similarly the integral equation (14) may be rewritten:

[ K@, min) = Kaly, f ) dn (25a)

It
—

Il
e

[, 50 + Koy, Do) dn (25b)

Now by varying G and B as given by Eqs. (24), with respect to both f; and f, , it is found
that the functions f; and f, which satisfy Eqs. (25) make both G and B stationary.
Moreover, from the symmetry of K, and K, , both G and B are positive definite forms
(since they will be sums of squares), and it follows that they are absolute minima with
respect to variations about the true functions f; and f,. The formal proof is analogous to
that given in Appendix C of the paper quoted in Footnote 1 for the variational expression
obtained by assuming that f; and f, differ only by a constant in Eq. (24b).

A closer analogy to the cases treated in the author’s earlier paper' is obtained by
assuming A > b, as assumed therein, in which case it follows from Eq. (15) that K, = 1,
and Eq. (24a) reduces to

G=1 if A>bcos b (26)
In this case, it may be assumed that f, = 0, and it is found that the susceptance B is
half that for the symmetrical window mentioned in the Introduction to the present paper.

Alternative formulation. The problem can also be formulated in terms of the pressure
discontinuity across the screen, defined by

1 _ y -
1) = 5 ey, 07) — ealy, 07)]. (27)
In terms of y(y), the potentials may be written

2 § 0 : ey, 2) = exp (—jkz) = 2 d, exp (£jk2) cos (nmy/b), (28)

n=0

0. = (252) [+ cos Gurn/t) (20)

The potentials given by Eq. (28) evidently satisfy Eq. (13) implicitly, since the
Fourier coefficients are so defined. Moreover, differentiation shows that the normal
velocity is continuous at z = 0, so that Eq. (9¢) is satisfied. It remains to satisfy Eq. (9b)
by demanding the integral equation.

[H@, vdn =1, yinr, (30)
> (2 — &
a1, ) = 3 (2522, cos ory/) cos (amn), 31)

Z,= Y = kK — (nr/b)"]". (32)
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From Egs. (9b) and (27) it is evident that v(y) and f(y) are related by.

@) =1 = [ H, yvin) dn, (339)
V@) =1 [ K@, nitn) dn, (33)
so that the Fourier coefficients of f and v are related by
b, + d, = 6. - (34)
For n = 0, Egs. (34) and (19) yield
1
Z=1-73 [+wadn (35)

Multiplying both sides of Eq. (30) by ¥(y) dy, integrating over the obstacle, and divid-
ing through by 1 — Z from Eq. (35) yields the variational expression

1—-2" = b[ Jaw ay [+ dn]—‘[ [7w ay [+, o dn]- (36)

Now Eq. (36) is exactly analogous to Eq. (21), and it may be shown that its real and
imaginary parts are absolute minima with respect to variations of v(y) about the true
value of v(y) satisfying the integral equation (30). In order to compare the results so
obtained, it may be observed that

1-27"=[1-&*+ BJ'(l —G) + jBl (37)

For the special case where Eq. (26) holds, it is seen that Eq. (36) makes 1/B a minimum,
and the results of Eqs. (24b) and (36) therefore bound B from above and below. This case
was treated before." For the case where the wavelength is less than b Eq. (24) bounds
@ and B from above, while Eq. (36) bounds [(1 — @) + (1 — G)"'B*] and [B + B™'(1 —
@)?] from below.

Solution to the integral equation. In the problem at hand, the most appropriate
attack appears to be an approximate solution to the integral equation (14). The accuracy
of the solution can then be checked by substituting the solution so obtained in the varia-
tional expression (21) and by calculating v from Eqgs. (33) and (34) and substituting in
Eq. (36).

In order to solve Eq. (14), the first step is to rewrite the kernel K(y, 9) as

K, m) = b7 + j(@h/r) 5™ cos (ory/b) cos (urn/b)
(38)

+ (2k/m) Z_: A, cos (nwy/b) cos (nwn/b),
A= @ — 107 =G}, @Y >, (398)

= jn ({1 — (2b/nN)"]7"? — 1}, (2b/7) < n. (39b)
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The second term in Eq. (32) may be written in closed form, since

2 i n~! cos (nz) cos (n) = —In[2 | cosz — cos ¢ |], (40)

n=1

whence

K(y, n) = b — j(k/m) In [2 | cos (my/b) — cos (m1/b) |]

® (41)
+ (2k/x) > A, cos (nwy/b) cos (nwy/b).

Before substituting Eq. (41) in Eq. (14), it is expedient to introduce the change of
variable

cos (ry/b) = a cos 0, (42a) a = sin (rd/2b), (42h)

u(0) = a(l — o cos® 6)7*f[(b/x) cos™! (a cos 6)] sin 6. (43)
Substituting Eqs. (42) and (43) in Eq. (14) yields

L ok, wuwyav =1, 0<o<n, (44)

bK(6, ¢) = 1 — j(kb/m) In [2a | cos 6 — cos ¢ |]

+ (2kb/x) Zm: A, cos (nwy/b) cos (nwy/b)

® (45)

= [1 — j(kb/) In o] + j(2kb/x) >_ n~" cosnf cosny
+ (2kb/7) i A, cos (nmy/b) cos (nwn/b),

where y, n and 6, ¥ in the last term are understood to be related by Eq. (42). Now expand
u(0) in the Fourier series

u() = i a, cos (n). (46)

n=0

Substituting Eq. (46) in Eq. (44) yields

[1 — j(kb/x) In a)a, + j(kb/x) i a.n”' cos (nf)
(47)
+ (kb/m) 2 A, cos (rmy/b) 2 ad,, =1,

I, = 2 f ) cos [r cos™" (a cos ¥)] cos (sy) dy. (48)
™ Jo
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Moreover, since I,,, are the Fourier expansion coefficients of cos (nry/b), Eq. (47) may
be rewritten

[1 — j(eb/m) n alas + j(eb/m) 3 am™ cos (n6)

. (49)
+ (kb/m) A, A + 897, cos ) 3 a.l,, = 1.
r=1 n=0 =0
Now, since Eq. (49) must be valid for all 8 between 0 and =, it follows that
oLl — j(kb/x) In ala, + (kb/m){j(1 — sun 'a,
(50)

+ E(l'l'a?z)‘l ArlrnEIraaa} = 6:, n=0y 172’
r=1 8=0
which is an infinite set of simultaneous equations for the determination of the d,, .
While it would have been simpler to solve the integral equation (12) by a direct Fourier
expansion in cos (nwy/b), leading to a set of simultaneous equations for the Fourier coeffi-
cients, the transformation to the 8 coordinate allows the separation of the In « term, which
is essentially the susceptance in the limit of zero frequency.
The Irs integrals may be easily evaluated by an identity due to Jacobi’

f' ¢(cos 6) cos (n6) dé = [1-3- --- 2n — 1)]™! /' '¢(cos 6) (sin 6)** d8. (51)

d(cos 0)"
Now
cos (rrn/b) = Y cloP(cos 6, (52a)
»=0
¢, = coeff. of (cos x)” in expansion of cos (nx), (52b)

whence it follows that

d’ cos (rmn/b)

ﬁ) plp — 1) --- (p — s + eca’(cos 6)°", s<r

. d(cos 6)° p=a (53)
=( , r<s
Using the result
fo (cos 6)"(sin 6" dO = B(’”—g'—l, ’il;—l> (54)

where B is the Beta function, it follows that

213 @ — ) X

p=2

.p(p—1)...(p_s+1)c;avB(p_82+1’23‘2|'1)’ r>s (55)

IN =

™

=0, r <Ss.

SH. Bateman, Partial differential equations, Dover Press, New York, 1944, p. 463. (Note that the
first integral given by Bateman on the top of p. 464 is incorrect and is not used here.)
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In the present case, due to symmetry, only even values of 7 and s need be considered,
so that p — s and 2s will be even, in which case

2pe=stl BEI)_ [2"*"1(1’—;—8)!<Z’TH>!3!]_1(17 — 912! (56)

In an approximate solution, only a finite number, say N, of Eqs. (50) will be solved.
The error in solving N equations will evidently be of order Ay at worst. While the A,
(cf. Eq. 39) generally decrease with increasing n, each possesses a singularity at b/A = n/2,
so that it will generally be necessary to satisfy the inequality

N > (2b/)). (57)

It should also be remembered that, due to symmetry, the odd 4, vanish identically,
and the number of equations to be solved for a given N is actually only (N + 1)/2.

Electromagnetic problem. The case of a plane electromagnetic wave normally in-
cident on a grating (assumed perfectly conducting at radio frequencies or perfectly
reflecting at optical frequencies) is analogous to the above acoustical problem since, due
to the normal incidence, it is possible to derive all six components of the electromagnetic
field from a single component of the incident field, provided that the cases of vertical
(electric field) and horizontal polarization of the incident wave are treated separately.

Vertically polarized wave. Consider first the vertically polarized incident wave
consisting of the fields :

H, = iH; exp (—jkz), (58a)
‘ E, = —jH; exp (—jkz), (58b)
which satisfy Maxwell’s equations (MKS units)
V X E = —jkH, (59a)
V X H = jkE, (59Db)
V-E =0, (60a)
V-H = 0. (60b)
The boundary conditions to be satisfied in the screen are
E.=E,=H,=0, (61)

only two of which are independent, according to Eqs. (59). Finally, each of the field
components satisfies the scalar Helmholtz equation (1), which follows directly from
Maxwell’s equations (59) and (60).

Now in the case of the incident wave (58), it is evident that the entire problem may be
formulated in terms of field components H, , E, , and E, . Moreover, from Egs. (59), it is
seen that

oH,
9z (yy z); (62&)

jkEv(yy Z) =

9H,
oy @2 (62b)

jkEz(y’ Z) = -
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which satisfy Eqgs. (59) and (60). Therefore, it is evident from comparing Eqs. (5) and
(58a), (9b) and (61b), and (9¢) and (61b) that

Hg ~ ®0 ) (633’)
H.(y, 2) ~ ®op(y, 2), | (63b)
E.,(y, 0) ~ ®of(y). (63c)

It follows that the foregoing acoustical problem yields a direct solution to the electro-
magnetic problem when the incident wave is plane and vertically polarized. (It may also
be shown that the pressure discontinuity v is analogous to the current induced in the
screen by the magnetic field.) '

Horizontally polarized wave. A horizontally polarized incident field consists of the
components

E,

iE? exp (—jkz), (64a)

H, = jE) exp (—jkz). (64b)

Consider now the solution

2 § 0: E)(y, 2 = Eg{exp (—jkz) — k D bk, exp (:i:jx,,é) cos (nwy/b)}, (65a)
n=0

P § 0:H (@, 2 = Eﬁ{exp (—jkz) + ;J b, exp (=jk,2) cos (mry/b)}. (65b)

It is evident, that Eq. (65) corresponds to Eq. (64) and satisfies Eqgs. (59) and (60).
Moreover, if f(y) is a solution to Eq. (14) in the plane z = 0, the following conditions are
satisfied:

E.(y, 0) = Ei(y, 0) , T 0<y<D, (66a)
Ey,0) = EXy,00) =0 , ying, (66b)
Hy(y,0) = Hy(y,0) = E;, yinr, (66¢)
Hi(y,07) — Hy(y, 0") = 2E:f(y) ,  yino. (664d)

Hence, it follows that Eq. (65) represents a solution to Maxwell’s equations which
satisfies boundary conditions appropriate to the complementary grating, i.e., that grating
obtained by interchanging aperture ¢ and obstacle 7 of the original grating. This result
is a special case of Babinet’s principle, which, in its rigorous form, has been discussed by
Copson’, following Booker, by Watson®, and by Schwinger®.

From Eq. (66d) it is evident that f(y) in the present case represents the current flowing
in the screen, whereas in the case of the vertically polarized incident wave f(y) represented
the tangential electric field in the aperture. Conversely, it may be observed that an alter-
native solution for the present case is given by

"E. T. Copson, An integral equation method of solving plane diffraction problems. Proc. Roy. Soc.
London (A) 186, 100-118 (1946).

8W. H. Watson, Physical principles of waveguide transmission, Clarendon Press, Oxford, 1947.

%J. Schwinger, M. I. T. Radiation Lab. Reports, Cambridge, Mass., 1941-1945.
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2<0:E\(y, 2 = EZ{—2j sin (k2) + D d, exp (j.2) cos (nwy/b)}, (67a)
n=0
2>0:EXy,2) = EX Y. d, exp (—jx.2) cos (nwy/b), (67b)
n=0 -

2<0:H(y 2 = E',’{Z cos (kz2) — k™" Y d, k, exp (jk,2) cos (mry/b)}, (67¢)
n=0

2> 0:Hiy,2) = E%" Y. d, «, exp (—jk.z2) cos (nwy/b). 67d)
*n=0
The boundary conditions (66a) and (66b) are automatically satisfied by Eqs. (67a,b),
since

E.(y, 0) = E(y, 0) = Ex(y) (68)

The boundary condition (66¢) is satisfied if y(y) is a solution to the integral equation
(30). Hence, the aperture field in the horizontally polarized problem is equivalent to the
screen current in the complementary problem (vertically polarized incident wave and
complementary grating). This result is another aspect of Babinet’s principle.

Transmission and reflection coefficients. If the transmission coefficient is defined
as the ratio of the energy flow to the right of the screen to the energy flow in the undis-
turbed incident wave, it follows from Eqgs. (18) and (19) that

T = RUZ) = Rl(ao) : (69)

for the acoustic problem.

In the electromagnetic problem the transmission coefficient is given by integrating
Poynting’s vector over the aperture and dividing by the energy flow (between y = 0, b)
in the incident wave to obtain

T, = H)RL [ B, 0) X B, 0) dy, (70a)

Il

bRl f () dy = RU(Z) = Ri(as) (70b)

for the vertically polarized case. For the case of horizontal polarization

T, = 57 (E)RI | E@, 0) x Hy, 0) dy, (71a)
= b 'RI f () dy, (71b)
_ Rz[l‘— b f @) dy], | (71c)

—1-T,. (714d)
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The relation T, + T, = 1 where T, and T, are the transmission coefficients for comple-
mentary gratings and complementary polarization, i; predicted by Babinet’s principle.®

From conservation of energy, it is evident that the reflection coefficients are given by
1 — T. In the case where A > b, only a plane wave will be reflected, and there will be a
simple standing wave pattern to the left of the screen. In this case, as may be seen from
Eq. (10), it is convenient to define the complex reflection coefficient 1 — b,, which will
then give the phase of the standing waves.

Thick grating. Experimental measurements (electromagnetic) in wave guides'® have
shown that the principal errors in theoretically calculated diffractions through thin
windows, ete. are due to the assumption of zero thickness and that a thickness of as little
as 0.005 wavelength may cause a deviation of several per cent between theory and
experiment, although the experimental results approach those predicted by theory as
thickness is decreased. Lord Rayleigh* predicted that thickness would also be quite
important in the acoustical problem, although he does not offer any direct reason or cite
any supporting experimental evidence. Moreover, the deviations from an ideal fluid in
acoustical experiments are such as to make precision measurements more difficult than
in analogous electromagnetic problems.

Consider the window of finite thickness ¢ and symmetrically located opening d between
two parallel plates a distance b apart, as shown in Fig. 2. The faces of the window will be

N
NN

|~

F1c. 2. Section of thick grating.

assumed to lie in the planesz = +¢/2. The poteﬁtia,ls in the three z regions, corresponding
to the incident wave (5) are given by

2 < —t/2 :0,(y, 2) = 2 exp (jkt/2) cos [k(z + t/2)]

© (72a)
—k > by &' exp [jraz + t/2)] cos (nwy/b),

n=0

YWaveguide handbook. M. I. T. Radiation Laboratory Report, 41—1/23/45 to be published by
MecGraw-Hill, New York.



58 JOHN W. MILES [Vol. VII, No. 1

2 <2< 2 oy A = —ik 3 (25 53);;‘{(sin [tz + 1/2)]

+ cot (£.8) cos [az + t/2)]) _/, fi(m)

X cos I:(mr/d)<7l - b_;g)] dn
(72b)

+ (sin [{.(z — 1/2)] — cot (§.t) cos [z — £/2)])

X /Uf2(17) cos |:(n7r/d)<77 - b—;d‘)] d"}

ooty 259

2> +1/2 0.y, 2) = k i b2 «;' exp [—jkaz — t/2)] cos (nwy/b), (72¢)

¢ = [K° — (nw/d)*)'". (72d)

The b,'? are given by substituting f;,, in Eq. (11).

The expansion functions and coefficients in Eq. (72) have been chosen so as to satisfy
the boundary condition that the normal velocity vanish at all walls, and reduce to the
normal velocities in the two apertures, —jkf,(y) and —jkf.(y) at z = Fi/2 respectively.
These velocities are then determined by the requirement that ¢, , ¢;. , and ¢, be continu-
ous across the two apertures, which yields the simultaneous integral equations

bm@wm+mmmmmw=mhwm yino  (73a)

[ By, D7) + Kty 0] dn = 0, (73b)

Ku(y, n) = Ky, n) = 21 i; {(‘2—7&’)(70/ k) cos (nwy/b) cos (nwn/b)

n=

(BN are cot ) cos [ umrafy — 252 ] (740)

X cos [(mr/d)( - b%dﬂ}

Koy, 1 = Ko, » = (§) 5 (255)a/0) ese ()

n=

X cos [(nvr/d)( — b%d)] cos I:(mr/d)( — L;—d):l

(74b)
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The integral equations (73) can be solved systematically by expanding f, and f, in the
functions cos [(n7/d) {n — (b — d)/2}], multiplying the integral equations by cos [(m=/d)
-{y — (b — d)/2}] dy, and integrating over the aperture to obtain a doubly infinite set of
simultaneous coefficients for the determination of the expansion coefficients. However,
only a simple approximate solution will be given herein, since the effect contemplated is
presumably small.

It will be assumed that the fields f; , are similar to the solution for ¢ = 0 but differ in
phase by an amount proportional to /X, viz:

Jr.2(y) = [1 + je okt + 51,2(kt)2]f0(?/) + O[(t/)\)a] (75)

where f, is presumed to be a solution of the integral equation (14). The terms in 8, , will
be dropped in the final results, but it is necessary to include them in the intermediate
steps. It will also be assumed that ¢, are constants, although this is not strictly correct
(even up to terms of order t/\), since the nature of the singularity at the edge of the
aperture is quite sensitive to thickness.

The kernel functions of Eq. (74) may be rewritten

Ky, m) = 3 Koly, n) — (k0" Khaly, ) + O/, (762)
Koy, ) = j@xt)"Kialy, m) + OL/N, (76b)
K = 35 (2507 cos | umr(y - 2 52) |

(76¢)

X cos [(nﬂ'/d)<’7 - Q_;_ﬁ):l

where the terms of order ¢/A can be shown to vanish identically. K, is the kernel of Eq.
(14).

Substituting Eqgs. (75) and (76) in Egs. (73), and recalling that f, satisfies Eq. (14),
Egs. (73) reduce to

1 . 1 1.
31+ ghte) + 5 (o — &) [ Ktafo dn — 3 jkt(s, = ) [ Kbofodn

(77a)
+ Ol = 1 + % ki,

1 . i 1.
L+ kte) = S (o = @) [ Kiafydn + 3 kts, — &) [ Kiaf, dn

(77b)
+ Ol(t/N’] = 0.

Equating powers of ¢ in Eq. (77a) yields

(&1 — €) _/;Kfzfo dg =1, (78)
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while adding Eqgs. (77a) and (77b) yields
€ + € = 1. (79)
Multiplying Eq. (78) by dy and integrating over the aperture ¢ yields (cf. Eq. 19):
(6 — e)d f fodn = (e — e)(b/dZ = 1. (80)
Solving Egs. (79) and (80) yields
G2 =5 [1 £ (@d/B)Y] @®1)

where Y is the admittance computed for zero thickness.
The net change in the transmission coefficient is evidently given by

T(t)/T©) = | 1 + jkte, |

| 1+ j(kt/2) — j(kt/2)(d/b) @G + jB) |* (82)

1 + (d/b)(kt)B + O[(t/N)7]

where B is the susceptance calculated at ¢ = 0.

Actually, the correction given by the foregoing approximate analysis is generally too
small. This is probably due to the fact that the nature of the singularity near the edge of
the aperture is extremely sensitive to thickness, whereas the fields in Eq. (75) possess the
same singularity as ip the case of the infinitely thin aperture. In order to take tbis factor
into account, one might solve the static problem & = 0 by conformal mapping and estab-
lish a thickness correction based on the difference between the field so obtained and its
limiting form at zero thickness. Unfortunately, the results obtained are rather too com-
plex to be useful.

Uniqueness of solution. Bouwkamp,' in reviewing a recent paper by Copson,” has
pointed out that solutions to Maxwall’s equations such as Copson’s,” and also Bethe’s,'?
are not uniqu= inasmuch as they neglect the possibility of a free charge on the edge of the
aperture, wiih its resulting scalar potential. The present analysis is open to the same
criticism. Unfortunately, a rigorous discussion is complicated by the singularity at the
edge of the aperture. Moreover, the results predicted by Bethe’s theory'® have been veri-
fied'® with a precision which appears to settle the question from a practical point of
view, at least insofar as the distant fields are concerned. It must be remarked, however,
that the charge distribution suggested by Bouwkamp might well affect the distribution
of the field in the aperture without markedly affecting the field at a distance, since the
latter depends primarily on the mean value of the former and not on its distribution.
Andrews' has recently made some precision measurements on the electromagnetic field
in a circular aperture which might prove to be a valuable confirmation of the theoretically

1uC, J. Bouwkamp, Math. Revs. 8, 180 (1947).

2H. A. Bethe, Theory of diffraction by small holes, Phys. Rev. 66, 163-182 (1944).

BLoc. cit., %, and other M. I. T. Radiation Laboratory reports of groups 41 and 43.

1C, L. Andrews, Diffraction pattern of a circular aperture at short distances, Phys. Rev. 71, 777-781
(1947).
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calculated field in the aperture. Unfortunately, existing solutions for this problem'?
are not sufficiently accurate (for holes whose dimensions are comparable to the wave-
length) to warrant comparison. Moreover, the fields in the immediate vicinity of the
aperture will almost certainly be quite sensitive to thickness.

Numerical results. The I,, computed from Egs. (55) and (56) for use up to r =
s = 6 are given by

r/s 0 2 4 6
0 2 0 0 0
2 207 — 1)] o 0 0
4 2B’ — 1)@ — 1)] [4o’(@® — 1)] ot 0

6 [2(10a* — 8a® + 1)(@® — 1)] [8a*(5e’ — 3)(a® — 1)] [6a*(a® — 1)] o
Choosing N = 6 in Eq. (5), a, , a. , and a4 are given by

@' =14 2j(b/N) In (@) + 4(b/N)1 — &)’ D7'{4A,
(84a)

+ (8a® — 1)°A, — 6ja’(e* — 2a° + 3)A.A.},
D =1 — 2ja'[A;, + 29" — 160° + 8)A,] — 8a°A,A, , (84b)

(as/a0) = 4d°(1 — &)D{jlA, — 4(1 — &*)(8” — 1)A,] + 4a°A,A,}, (84c)

(@s/a;) = 8a*(1 — &®)DALiBo® — 1) + 46°A;]  (B/N) < 3 (84d)

For A > b, the simplest approximation is given by setting A, = A, = 0in Eq. (84a)
to obtain*

Rl(a,) = {1 + 4(b/\)* In® [csc (xd/2b)]} " /N K1 (85)
A more accurate expression is given by retaining A, , as given by Eq. (39b) to obtain

Rl(a,) = {1 + 4(b/N)*(In [esc (xd/2b)] + T)*} 7, /N <1, (86a)

T = {1+ (1 - &N = 1sin* (xd/2b)}™
(86b)
X {[1 = (0/N17* — 1} cos* (wd/2b).

BLord Rayleigh, On the passage of waves through apertures in plane screens and allied problems,
Philos. Mag. 43, 259-272 (1897) and Sci. Papers 4, 283-296; also, On the incidence of aerial and electric
waves upon small obstacles in the form of ellipsoids or electric cylinders, and on the passage of electric waves
through a circular aperture in a conducting screen, Philos. Mag. 44, 28-52 (1897) and Sct. Papers 4, 305-327.

*Since this paper was written the author has found that the result given in equation 85 was first found
by Horace Lamb, On the diffraction in transmission of electric waves by a metallic grating, Proc. London Math.
Society 29, 523-544 (1898). Moreover a bibliography on problems related to this, such as diffraction
through a grating of wires, etec. is given by H. Bateman, Electrical and optical wave motion, Cambridge
University Press, 1915, p. 89.
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For (b/\) > 1, the expression for Rl(a,) became rather too complex to be worth writing
out explicitly, and it is simpler to calculate a, directly from Eq. (84a).

The result given in Eq. (86) for b < A of course reduces to Eq. (85) for small values of
b/X. Now, where b/\ was less than unity, the accuracy of the susceptance, as given by
Eq. (24b) was investigated' by using the variational formulations of Eqs. (29b) and (36),
and the susceptance corresponding to the result given by Eq. (86a) was found to be in
error by about 0.19, for d/b = 1/2 and b/\ = 1/2, while the susceptance corresponding
to the approximation of Eq. (85) was in error by 109, for these figures. For d/b = 1/2
and b/A = 1 the approximation corresponding to Eq. (86a) is in error about 19, while
that corresponding to Eq. (85) is in error by over 74%,.
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Fic. 3. Resistive component of grating impedance (equivalent to transmission coefficient).
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In Figs. 3 and 4 R and X are plotted vs. the aperture ratio d/b for b/x = 0, 0.1, 0.2,
0.4, 0.6, 0.8, 0.9, and 1.0, using, for the most part, data previously calculated'. In Fig. 5,
R is plotted vs b/X from 0 to 1.9, for d/b = 1/2, the calculations having been made for
N = 4.

The result obtained by substituting f(y) = const. in Eq. (21) is

G+jB=1+2 i [1 — (n\/b)*)""*(nwd/b)~* sin® (nwd/b) (87)

and is also plotted in Fig. 5 for values of b/A up to 3.8. The accuracy of the transmission
factor corresponding to Eq. (87) may be estimated by comparing with the results ob-
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tained from the solution (84) which are accurate to better than 19, (estimated) for
b/A < 2. The accuracy of Eq. (87) will, however, improve with increasing values of b/\.

Moreover, for large values of b/, the imaginary part of Eq. (87) may be neglected,
while the real part is given approximately by

G=1+2 i (nwd/b)~* sin® (nwd/b) = 1 + (b/xd)’S(xd/b), (88)
S(z) = i n~ % sin® (nx). (89)
1.0
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F1c. 4. Reactive component of grating impedance.
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Differentiating Eq. (89) with respect to z yields

8 (x) Z n"'sin (2nx) = Im Z n”" exp (j2nz)

n=1

(90)
=Im[h 1 —e*)] = (’5’ - x)

Integrating Eq. (90) with respect to z, and requiring S(0) = 0, yields

S(z) = g(w — 2). (91)
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Substituting Eq. (91) in Eq. (88) yields

QX
I
WIS

(92)
Since B is negligible

T =

(93)

Q=
SR

in agreement with Kirchhoft’s theory, so that Eq. (87) is certainly correct for sufficiently
large values of b/A. Eq. (93) is borne out by Fig. 5.
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| [ |
o R \</F/?0M Fl6. 3
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Fia. 5. Transmission coefficient for half open grating as computed from Egs. (84a), (87), and
Kirchhoff theory.

The value T' = d/b predicted by Kirchhoff’s theory is plotted in Figs. 3 and 5 for
comparison, and it is seen that the agreement is not good, even for values of b/\ approach-
ing 2, but is evidently satisfactory for b/A > 4. Morse and Rubenstein, ' in calculating
the exact results for the diffraction of a normally incident plane wave on a single slit,
obtained agreement for values of d/\ greater than about unity. On the other hand, Morse
apd Rubenstein’s results show that it is necessary to go to quite large values of /X in the
case of oblique incidence before agreement with Kirchhoff’s results is obtained. Unfor-
tunately, the present method cannot be applied to the problem of oblique incidence for
the grating, except perhaps in those special cases where the periodicity of the incident
wave in a plane of constant z is the same as the periodicity of the grating.

It is also of interest to note the sharp resonance at b/A = 1, in contrast to the slight
dip at b/A = 3. There are no resonances at b/A = 2 or 4 due to the additional symmetry
introduced at d/b = 1/2.

18P, M. Morse and P. V. Rubenstein, T'he diffraction of waves by ribbons and slits, Phys. Rev. 54
895-898 (1938). .



