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COMPLEMENTARY MINIMUM PRINCIPLES FOR AN
ELASTIC-PLASTIC MATERIAL1

BY

H. J. GREENBERG
Brown University

1. Introduction. This paper is concerned with the mechanical behavior of bodies
-consisting of an isotropic elastic-plastic material which obeys the stress-strain law
of Prandtl and Reuss.2 This inviscid material has a sharply defined yield point and does
not exhibit work hardening. To simplify mathematical work, we shall moreover assume
it to be incompressible in the elastic as well as the plastic range.

For the elastic range, Hooke's law is adopted in the form which applies to an in-
compressible elastic solid. In the plastic range, it is assumed that (i) the stress com-
ponents satisfy the flow conditions, and (ii) the components of the plastic strain rates
have to each other the same ratios as the components of the stress deviation. The stress-
strain law derived from these assumptions furnishes a unique rate of change of the
stress deviation when the stress and the strain rates are given.

Since the stress-strain law of Prandtl and Reuss is differential in form and is not
equivalent to any finite relation between stress and strain, it is of the flow type and
not the deformation type.3 As Prager4 has pointed out, the typical boundary value
problems of a plastic flow theory suppose that the state of stress is known throughout
the body under consideration and prescribe either the velocities on the surface or the
rates of change of the surface stresses, asking in both cases for the rates of change of
ihe stress components in the interior. This paper is concerned with the derivation of
two minimum principles relating to the mixed boundary value problem where the
velocities are given on part of the surface and the rates of change of the surface stresses
on the rest. For the Prandtl-Reuss theory these principles play a role analogous to that
played in the theory of elasticity by the principle of Castigliano and the principle of
minimum potential energy.

2. Preliminary definitions and relations. We let <ri(- and e,,- (i, j = 1, 2, 3) denote
the components of the tensors of stress and strain and define the stress deviation as

S.'j = CTii g Okkbii , (2.1)

where the usual summation convention of the tensor calculus is used, and 5,-,- is the
Kronecker delta. On account of the assumed incompressibility of the material

  = 0. (2.2)
'Received May 27, 1948. The results presented in this paper were obtained in the course of research

conducted under a contract sponsored jointly by the Office of Naval Research and the Bureau of Ships.
2L. Prandtl, Spannungsverteilung in plastischen Korpern, Proc. 1st Internat. Congr. Appl. Mech.,

Delft, 1924, pp. 43-54; E. Reuss, Beriicksichtigung der elastischen Formanderungen in der Plastizitats-
theorie, Z. angew. Math. Mech. 10, 266-274 (1930).

'This terminology was introduced by A. A. Ilyushin in his paper Relation between the theory of Saint
Venant-Levy-Mises and the theory of small elastic plastic deformations, (Russian with English summary),
Prikl. Mat. Mekh. 9, 207-218 (1946).

4W. Prager, Fundamental theorems of a new mathematical theory of plasticity, Duke Math. Journal 9,
228-233 (1942).
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In working with the equations of any flow theory, it is convenient to replace differ-
entials by the corresponding derivatives (denoted by primes) with respect to a parameter
t. For convenience, we speak of these derivatives as rates, although the parameter t with
respect to which these rates are taken need not be time. Since all equations which we
write are homogeneous in these derivatives, there is no viscosity effect, and replacing
the "time" t by any function which increases monotonically with t, e. g. by an angle of
twist, a torque, or a load, which increases monotonically with t, leaves the equations
unchanged.

In the Prandtl-Reuss theory the condition for the occurrence of plastic flow is

J2 = k2, (2.3)

where

J2 — i SiiSii (2.4)

denotes the second invariant of the stress deviation, and k denotes the yield stress in
pure shear. The sign of the quantity

Ji = siiS'u (2.5)

is used as the criterion for loading. Thus, J2 > 0 indicates loading, and J2 < 0 un-
loading. The stress-strain relations for this theory are

J (2*6)

where G0 is the elastic shear modulus, and

0, wherever J2 < k2, or J2 = k2 but J2 < 0,

M = 1
wherever J2 = k2 and J2 = 0.

(2.7)

The strain rates are given in terms of the velocities u\ by the equations

el,- = Ku'i.i + u'.i)
where we have assumed that the displacements and their derivatives with respect
to space and t are small. Physically we note that the quantity 2k2n represents the rate
at which plastic work is being done. Since plastic work cannot be reclaimed, i.e. since
the process of plastic deformation is irreversible, we have

M > 0. (2.8)
This interpretation of ju follows from (2.6), (2.7), the assumption of incompressibility
and the fact that (2.6) represents a decomposition of ej, into elastic strain rate and
plastic strain rate.

In the following we shall consider a body consisting of an incompressible Prandtl-
Reuss material which occupies a volume V in space bounded by a surface S. We shall
not be concerned with the specific character of V and S and hence shall assume only
that they are sufficiently regular so that (1) solutions exist to the problems posed and
(2) the divergence theorem for the transformation of volume into surface integrals
remains valid.
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We shall assume for a fixed "instant" t that (1) the state of stress <tu is known
throughout the body, (2) the rate of change T[ of the surface stress vector T, is pre-
scribed at each point of a portion Si of the surface S, (3) the velocity u\ is prescribed
at each point of the remaining portion S2 of S. The minimum principles we shall formulate
will be for the instantaneous stress rates and strain rates throughout the interior of the
body.

3. Minimum principle for the stress rates. We consider first the restrictions im-
posed on the stress rates a'a by the conditions of equilibrium. Assuming for simplicity
that there are no body forces acting, the equation5

*U-.i = 0 (3.1)

must be everywhere satisfied except at most at the points of a surface 2 separating
an elastic region, J2 < k2, from a plastic region, J2 = k2. Across such a surface we may
encounter discontinuities in individual components of o'u , but the stress rate vector
acting across each element dX of the surface must be continuous for equilibrium. Thus,
if rij denotes the normal to d2, and if we denote quantities evaluated on one side of
rfS by the superscript (1), and quantities on the other side by the superscript (2), it
is not necessary that

rr'a) — rr'm 7 1 — 1 2 3Gi"J ) t'j J &

but

a'^n,- = .

must be satisfied.
As an example we note the case of torsion of a circular cylinder. Let r denote the

circumferential shearing stress and consider the boundary r = p between the elastic
and plastic portions. Then, assuming 6' > 0, where d is the angle of twist, we have
t' = 0 for r > p, since t = k in the plastic region, whereas in the elastic portion, r < p.
Now, / is a linear function of r, increasing from 0 at r = 0 to a maximum as r approaches
p. Thus, t' is discontinuous as we cross the surface r = p. However, the stress trans-
mitted across an element of r = p is zero computed from either side, and hence con-
tinuous.

In the following, a set of stress rates a',,- defined throughout the body will be called a
solution if it satisfies (1) the conditions of equilibrium, (2) the boundary conditions on Si,
(3) the condition that

J2 = Sus'a < 0 (3.2)

throughout the plastic region J2 = k2, where s',- denotes the deviation of the a',,- , and
(4) the condition that there exists a set of strain rates (not necessarily unique) satisfy-
ing compatibility, incompressibility and the boundary conditions on S2, which together
with the s'j and the s{j satisfy the stress-strain law of Prandtl and Reuss, Eq. (2.6).

It should be noted that a-,-,- and hence S;,- is known only as a function of position at
the instant t and so cannot, of course, simply be differentiated with respect to t to yield
cr'tj and s'j . However, knowledge of su as a function of position is sufficient to determine

5A subscript following a comma denotes differentiation with respect to the corresponding variable,
e.g. a'ij,j = da'ij/dXj .
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the region J2 = k2 and to verify in this region for any test solution a'u whether or not
Si,-s'ij < 0, i.e. whether (3.2) is satisfied.

Let <r'f be an artificial system of stress rates, defined throughout the body, which
satisfy (1) the conditions of equilibrium, (2) the boundary conditions on Si and (3)
the condition that

StMf < 0 (3.3)
throughout the plastic region J2 = k2, where S;* denotes the deviation of the c'f . The
condition (3.3) eliminates from consideration stress rates which would act to increase
J2 in the plastic region. A system of stress rates a'f satisfying the above conditions will
be called an admissible state of stress rates or simply an admissible state.

minimum principle. If a',- is a solution and a'* is an arbitrary admissible state, then

/(*{,) < IWf), (3.4)
where I is defined by

ZWJ0 = ^ J s'ifs'if dv - J T'i*u'i dS2 . (3.5)

Equality holds in (3.4) if and only if sif = s'u .
From this principle which states that I is rendered an absolute minimum by a

solution, it follows that if a solution a'u exists, it is unique in the sense that its deviatoric
part s'u is unique. This solution may be spoken of as the natural state of stress fates.

We note that this principle is not restricted in any way to loading. Indeed, under
the general boundary conditions considered, unloading may conceivably occur anywhere
in the body including the already plastic as well as the still elastic portions.

Proof. We first note that

[ a-'ife'ij dv = [ T'i*u'i dS. (3.6)
J V J s

where T'* = a'ifrij and n, are the components of the unit normal to S. This is proved
in the usual manner using the equations a,'*,, = 0 and ej, = 1/2 (u'i,+ u'jfi) and the
divergence theorem to accomplish the transformation from a volume to a surface
integral. Care must be taken, however, since the <r-f are not necessarily continuous
across a surface within the body which separates a subregion J2 < k2 from a subregion
J2 = k2. However, the result may be proved for each subregion (assuming each is
sufficiently regular) and the results added. On account of the continuity of the stress
rate vector across surfaces common to two such subregions the contributions over these
surfaces add to zero and we are left with the integral over S.

In view of the assumed incompressibility we may replace (3.6) by

f stfe'i, dv = [ T'i*u'i dS. (3.7)
J v J S

Similarly, for the solution o-',

f s'ijt'i,- dv = f TWi dS. (3.8)
Jv J S
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Subtracting, and substituting for «from (2.6), we obtain

/ (s>* - «« + m»«) dv = J {T'* - T[)u'i dS2 ,

since over Si we have T'* = T' . Thus,

[ (s'if - s'i^s'u dv = - f usuis'tf - s'ij) dv
£\J§ Jy Jy

(3.9)
+ [ (T[* - T'M dS2 .

" S a

From the definition of n in (2.7), it follows that

fiSijSij = tiJ'2 — 0 (3.10)

throughout the body. Accordingly, (3.9) becomes

[ s'ijAs'n dv = — [ nSijS'if dv + f dS2 , (3.11)
£\jro J y J y J g a

where
As'n = s^f - s'n ,

AT'{ = T'S - T'{ .
Substituting from (3.12) for s'f and T'* into (3.5) we find that

IiAf) = 77T f s'ijS'n dv - [ T'M dS2 + stt [ s'nAs'n
lljo J V J Si, 41*0 J V

(3.12)

dv

— [ u'iAT'i dS2 + 77r f As'ijAs'n dv.
Jsa 4Cr0

(3.13)

The first two terms on the right-hand side of (3.13) constitute /(a--,) and the third term
can be eliminated by means of (3.11); thus,

IWif) - Ky'ij) = - J iusus'it dv + -J AsJ.AsJ,- dv. (3.14)
The last term in (3.14) is always positive, vanishing if, and only if, s-f = s'u . Since
H > 0 and, by (3.13), sj,s'f < 0 wherever ^ > 0, it follows that the first term on the
right-hand side of (3.14) is also positive or zero; this term vanishes for s'* = s',- since
SijSjj = J2 = 0 for jx > 0. The minimum principle is thereby proved.

We remark that in the case where the stress rate vector is everywhere prescribed
on the boundary, this principle reduces to the statement that the quantity

7T [ s'ifs'if dv (3.15)
(jTn Jy4Gc

is an absolute minimum for the natural state. The integral (3.15), in effect, measures
the total intensity of s'if , the non-hydrostatic and hence "plastically active" part of
the stress rates <i'* . Thus, the principle given may be termed one of minimum stress
rate intensity.
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It is interesting to compare this principle of minimum stress rate intensity with the
Castigliano principle of elasticity which is one of minimum stress intensity or stress
"energy". Roughly speaking, the former principle deals with minimizing the second
invariant

T-^2 — 2 " * j" i i

of the stress rate deviation, while the latter principle for an incompressible elastic solid
deals with minimizing the second invariant

J 2 ~ h Sifiij

of the stress deviation. The Castigliano principle, however, can be easily transformed
into an "incremental" principle for the increments of loads and the increments of stress
they produce. This incremental principle is the counterpart of the principle discussed
here for plastic bodies. We note that in the elastic case the increments of stress are
independent of the already existing stress, while in the plastic case they are not.

4. Minimum principle for the strain rates. We now restrict our attention to the
case where the effect of the prescribed stress rates T[ on Si and the prescribed velocities
u[ on S2 turn out to be such that unloading does not occur in the plastic region, i.e.
J2 = 0 wherever J2 = k2. With this restriction we prove a minimum principle for the
strain rates for the Prandtl-Reuss material.

A set of strain rates will be called a solution provided that it satisfies compatibility,
incompressibility, the boundary conditions on S2 and determines, together with the
an (which are assumed to be known as in Sec. 3), through (2.6), an equilibrium set of
stress rates which satisfy the boundary conditions on Si .6 We assume that such a
solution e',- , not necessarily unique, exists. Let e'f denote any artificial system of strain
rates which satisfy compatibility, incompressibility and whose corresponding velocities
u'i* satisfy the boundary conditions on S2 ; such a system of strain rates will be called
an admissible state.

minimum principle. If e',- is a solution and is an arbitrary admissible state, then

J(e'u) < JW) (4.1)
where J is defined by

JWiT) = Go [ [etfetf - dv - f T'iUi* dSt , (4.2)
J V J S i

"Actually only the stress rate deviations s'a are determined by (2.6). To obtain the condition which
these must satisfy for equilibrium we rewrite (3.1) in the form

s'a.i - VU = 0
where p' = — o-'u/3 is the mean pressure rate. Eliminating p' we find that

Sii.jt Shj.ji 0*

Provided that the s'a satisfy this equation, we may compute the gradient of the mean pressure rate
from the preceding equation. The mean pressure rate, and hence a'a — s'a — p'&a, is thereby determined
to within a constant rate of hydrostatic pressure. It may then be checked whether the boundary condi-
tions on Si are satisfied (to within a constant rate of hydrostatic pressure).
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and

M =1

0, wherever J2 < fc2,

9 f
(4.3)

2fc wherever J2 = fc2.

Equality holds in (4.2) and only if t'* is a solution.
Proof. From (2.6) and (2.7) we have

s'j = 2G0(e'j — Msii)> (4.4)
where

0, wherever «/2 < fc2,

M =
wherever J2 = A;2,

(4.5)

it having been assumed that there is no region for which J2 = k2 while < 0. We
note then, by (4.3) and (4.5), that

H* = (i = 0, wherever J 2 < k2. (4.6)

From (4.4) it follows that

f s'uie'if - «,',) & = 2G0 [ (t'a - MS,-,)(«;* - e'f) <fo. (4.7)«/ y «/ y

At the same time,

[ sUtf ~ <'«) dv — f ~ «5>) = [ T'M* - <) dS, , (4.8)
F •'Si

since both «,'* and e',- satisfy compatibility and correspond to velocities w'* and u[ which
are identical over part S2 of the boundary. Equating the expressions in (4.7) and (4.8)
and introducing the notations

Ae<; = tif ~
(4.9)

Au'i = u'* — u'i
we find that

2G0 [ t'uU'a dv = 2(?0 [ MS,iAe<,. dv + [ TJAwJ dS, . (4.10)
Jv Jv ^s i

Returning to (4.2), we must now substitute for ej* and m'* from (4.9) and expand
the expression obtained. We note first, that by virtue of (4.3), (4.5), and the first equa-
tion in (4.9) we may write

n's(ie'it = uSijt'ij + ^2, (4.11)

where we define

(0, wherever J2 < fc2,
(4.12)

[2(sMe^)(siiAe<I) + (sMA«p5)(Sj,• Ae{,), wherever J2 = fc2.
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Carrying out the expansion of (4.2) now, using (4.9) and (4.12) we obtain

= Go J' + 2e',AeJ,- + Ae'jAf',- —

r
2kJ dv - f T'u' dS\ - f T'iAu'i dSr ,

or, introducing J (t'u) on the right-hand side of this equation and substituting from
(4.10)

J(ejf) - J(eU) = G0 Jv + Ae^-Ae',- - dv. (4.13)

We now examine the integrand in (4.13). Over the region J2 < k2 it reduces to
Ae'ijAe'ij . Hence, over this region the integral in (4.13) is positive, becoming zero if,
and only if, e'f = e<; . Over the region J2 = k2, we have, upon substituting for n and
r from (4.5) and (4.12), the following expression for the integrand:

Ae'ijAe'ij - (spaAe^)(s,-;Ae<y) = (sMsMAe^-AeJ; - s„Ae^s.-.-AeJ,-) > 0, (4.14)

which is non-negative by Schwartz' inequality for sums. This proves (4.1) and hence-
that ('a renders J a minimum.

It remains to consider the question of uniqueness. If in (4.1) we have equality so>
that

JW<r) = ./(<:,),
then, by what has already been said, it is necessary that

e'if = e'j , in the region J2 < fc2,

i.e. we have uniqueness in the elastic region. Moreover, (4.14) must reduce to an equality,,
which is the case if, and only if, between the qualities s,-,- and Ae-, - e-f — e'j there
holds the relation7

e'if — e'j = fsu , wherever J2 = fc2, (4.15)

where/ is a scalar function of position. To prove that the solution e'n is unique would
be to prove that / = 0 throughout the region J2 — fc2- This, the minimum principle
does not tell us. Indeed, given s,-,- and s',- , the stress-strain relations (4.4) do not by
themselves uniquely determine the strain-rates e'j . Thus, it is by no means clear that
the problem has a unique solution. However, the minimum principle does provide us
with the statement (4.15). From this we shall at once deduce that if / ^ 0, then e'f
must be a solution which is distinct from e'j . Hence, in any event, if for a given set
of e'f , J attains its minimum value, then e'* is a solution. To do this, we need only show
that e-f satisfies (4.4), where s,-,- and s-,- remain unchanged. Adding fs^ to both sides
of (2.6), which is the same equation as (4.4), we have, by (4.15)

e'if = ^ al, + (/ + mKi , (4.1-6)

'The author is indebted to W. Prager for pointing out Eq. (4.15) and calling his attention to the
question of the uniqueness of the strain rates.
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and we need only consider the region ./2 = k2. From (4.15) it follows that

fSiiSa = f2k2 = s,i(e,'f - e'ii)
so that by (4.5)

/ - ~ M- (4-17)

Substituting (4.17) into (4.16) completes the argument. The converse statement that,
if e'f is a solution of the problem which is distinct from , then •/(«'*) = /(«<,), follows
by a reversal of the above reasoning.

In the next section we shall consider the relation between the two minimum principles
which have been given. However, we may notice here that the principle just proved,
may be considered as a principle of minimum complementary (stress-rate) intensity. To
illustrate the meaning of the term complementary we note that from (2.6) we have

~ £Q2 Q SijSii ~l~ M SijSij ,

and, therefore, by (2.7) and (3.10),

s'us'ii = GoWijt'u - usue'ij)- (4-18)

On the left-hand side of (4.18) we have the stress rate intensity, on the right-hand
side, the complementary quantity in the strain rates which is a minimum (under ap-
propriate boundary conditions) by the principle of this section.

5. Relation between the principles. We find the minimum value of I of (3.5) by
evaluating J(<r<f) where <t,', is the natural state, i.e. the solution for the stress rates.
Substituting from (4.4) into (3.5) yields

KO =i f - M»«f) do - f TM dS2 . (5.1)
A J V J

Taking into account (3.8) and (3.10) we obtain

I(*U) =l[js TM dS> - Js T'iU'i dS2] (5.2)
as the minimum value of I.

On the other hand, substituting from (2.6) into /(«<,) as defined by (4.2), where
e'a is any solution for the strain rates, gives

J(*U) = \ [ dv - f T\u\ dS> (5.3)
L Jy JSl

which, by (3.8), yields

J(e'u) =l[js TiU't dS2 - Js TM d&] (5.4)
for the minimum value of the integral J. Comparing (5.2) and (5.4) we have the fol-
lowing result.8

8Here we must restrict ourselves to the case where J\ — 0 for = k2, which is the one covered
by the principle for the strain rates.



94 H. J. GREENBERG [Vol. VII, No. 1

For the natural state of stress rates cr',- and any solution e'a

1
IWu) = = 2 f TM dSl - [ T'u't dS2

-JSi JSa J
(5.5)

In particular, for the case of stress rates everywhere prescribed on the boundary, i.e.
S2 vacuous,

-^r J s'ijSij dv = G0 (e'ije'j — dv = | J T[u[ dS. (5.6)

Both (5.5) and (5.6) could, of course, be deduced directly from (4.18). Relation (5.6),
in the case of elasticity, is equivalent to the familiar theorem that for the natural state,
the stress energy equals the strain energy equals the work done by the external forces.
The present statement, which is the one valid for elastic-plastic behavior, relates the
stress rate intensity to the "work" done over the surface S by the stress rate vector
T[ on the velocity vector u\ . To gain this interpretation it is more satisfactory to speak
in terms of the differentials of stress and displacement, for then the integral becomes

^ [ dTi dUi dS
Z J a

which properly represents the work done by the dTi on the du{ .
Relations (3.4), (4.1) and (5.5) can be combined to yield inequalities which furnish

upper and lower bounds for the integral in (5.5). A direct method based on these in-
equalities of constructing approximate solutions to certain types of elastic-plastic
problems will be considered in a later paper. Such methods have already been discussed
in elasticity by Prager and Synge.9

6. Final remarks. In the history of the theories of plasticity various extremum
principles have been formulated, of which it is relevant to mention a few. We may sub-
divide the various theories into theories of deformation and theories of flow (see foot-
note 3). The present principles appear to be the first which have been given for a theory
of flow pertaining to an elastic-plastic material. Minimum principles for stress rates
and strain rates for a flow theory pertaining to strain hardening materials exhibiting
a continuous transition from the elastic to the plastic state were given in two papers
by W. Prager.10 These are not presented as absolute minima so that strict inequalities
are not given, however, in each case it is verified that the first variation vanishes and
that the second variation is positive. An absolute minimum principle for the stress rates
for a general flow theory of a strain hardening material has recently been given by
P. Hodge and W. Prager.11 A maximum principle for the stresses for a theory of flow
pertaining to a plastic material of the St. Yenant-I.evy-Mises type has been given by
R. Hill12 under the assumption that the body is everywhere in the plastic state.

9W. Prager and J. L. Synge, Approximations in elasticity based on the concept of function space,
Quart. Appl. Math. 5, 241-269, especially 249, (1947).

10See footnote 3 and the more general, Variational principles in the theory of plasticity, to appear
in the Proc. 6th Internat. Congr. Appl. Mech., Paris, 1946.

IlP. Hodge and W. Prager, A variational principle for plastic materials with strain hardening, to
appear in J. Math. Phys.

12R. Hill, A variational principle of maximum plastic work in classical plasticity, to appear in the
Quart. J. Mech. Appl. Math.
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The principle of A. Haar and Th. v. Karman13 bears the same relationship to the
deformation theory of H. Hencky14 as the present principle of minimum stress rate
intensity does to the flow theory of Prandtl and Reuss. Assuming the Haar-Karman
principle, Hencky obtained his stress-strain relations as the Euler-Lagrange equations
for the integral being minimized. The Prandtl-Reuss equations can be similarly derived
from the present minimum principle. Conversely, if one assumes the Hencky relations,
the Haar-Karman principle follows (this will be proved in a later note) just as we have
shown the principle of minimum stress rate intensity to follow from the Prandtl-Reuss
relations.

13A. Haar and Th. v. Karman, Zur Theorie der Spannungszustande in plastischen und sandartigen
Medien, Naohr. Ges. Wiss. Gottingen, 204-218 (1909).

14H. Hencky, Uber einige statische bestimmte Falle des Gleichgewichts in plastischen Korpern, Z.
angew. Math. Mech., 241-251 (1923).


