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Introduction. The theory of low gravity waves deals with the oscillations of a fluid
under constant pressure when the inertia, viscous and capillary forces of the motion
are small compared with gravitational forces. The study derives its interest particularly
from problems of the propagation of waves, oscillations of ships in waves, and the
design of harbors and breakwaters. The characteristics of gravity waves mentioned
above are more or less satisfied in these problems, at any rate, if we consider regions
sufficiently far from the breaker zone and the storm area where the waves are generated.

In the present paper we are concerned with two dimensional motion, that is, a motion
where the crests of the waves are straight and parallel. Such motion may be expected
to occur in regions whose distance from the storm area is large compared with the
diameter of the storm area and with the diameter of the region considered.

In the text books, e.g. H. Lamb, Hydrodynamics, only wave motions in a canal of
uniform depth are studied, and it is further supposed that the pressure is constant
over the whole upper surface of the fluid. Now, in fact, not only do waves travel over
uneven bottoms, but in some of the problems mentioned above we are interested just
in what happens when there are obstacles in the bottom or on the surface, e.g. in the

Fig. 1.

reflection1 set up by reefs, moored ships, or breakwaters. Recently, reflection of waves
has been studied by Dean, Lewy, Stoker, Ursell and others2. The work concentrated
on motion in water very deep or very shallow compared with the wave length. These
conditions are appropriate for studying ships in waves or the behavior of waves very
near the coast. But while such investigations may give important information on how
the reflection depends on the cross sectional shape of the obstacles (in deep or shallow
water), naturally they say nothing about the effect of depth, and such information is

*Received Jan. 30, 1948.
1Another practically important problem is to determine the effect of the waves on the obstacle,

the mean pressures set up by the waves. This does not seem to come out of the linear theory or simple
modifications of it.

2Cf. e.g. J. J. Stoker, Surface waves in water of variable depth, Quart. Appl. Math. 5, 1-54, 1947,
P. Ursell, The effect of a fixed vertical barrier on surface waves in deep water, Proc. Camb. Phil. Soc. 43, 3
1947; and references given there
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necessary to decide, for example, where breakwaters are most effective (for waves of
given period). We therefore try to marshal the reflection of obstacles in arbitrary depth,
that is, we want to determine the reflected and transmitted waves system for a wave
train coming up against (cylindrical) obstacles which lie in the bottom of a canal or
are fixed in the surface.

Throughout the paper we consider simply harmonic oscillations; for, from such
work the reflection of arbitrary incoming motion can be calculated, provided the re-
flection of incoming waves of short wave lengths is sufficiently small;3 and if the re-
flection varies slowly with the wave length, the reflected wave at a point P at one time
is determined by the incoming motion at P during a short interval. Among our results
there will be only one where the reflection is sensitive to the wave length, that is, it
is not well-defined by the incoming waves (if viscous and inertia forces are neglected).

Also we suppose that the depth of the canal is constant sufficiently far to either
side of the obstacles.

Summary. In Sec. 1 we consider the asymptotic behavior of wave motions and the
definition of the reflection coefficient. It was implicitly assumed above (where we spoke
of incoming and reflected wave systems) that the wave motion is asymptotically a
superposition of simple wave trains. More precisely we assume: if is the potential
of a wave motion of period 2x/o- defined in the domain of the fluid, whose normal
derivative vanishes on the bottom and on the cylinders, and whose pressure is nearly
constant on the free surface {<r2<j> — g d<j>/dy = 0 on the mean free surface, where y is
measured along the vertical), then cj> is asymptotically of the form (ae,kx + be~'kx) cosh
k(y + h) (at the right hand infinity, say) where a2 = gk tanh kh, and h is the right
hand asymptotic depth of water. Further, in asking for the reflection we assume that a
unique transmitted and reflected wave is consistent with a prescribed incoming wave.
These assumptions are correct if and only if <f> is restricted to be bounded.

We show in Th. I, using an expansion theorem of A. Weinstem, that at a few depths
from the obstacle the potential is very nearly a superposition of simple wave trains,
the error falling off exponentially with distance. Further, if for a given domain of fluid
there is a potential which is not asymptotically zero, a right hand and a left hand
reflection coefficient can be defined; they are unique, and equal to one another. (We
calculate generally the left hand reflection coefficient.)

It can be shown that these results hold even if the depth is not constant, but only
nearly so (differs exponentially little from a constant).

Section 2 provides a general reduction of the problem. To calculate the reflection co-
efficient for given obstacles a mixed boundary value problem for a potential in the
domain of the fluid has to be solved and its asymptotic form determined. Since the
solution of linear boundary value problems in a rectangular strip is relatively simple
we transform the domain of the fluid into a strip whose width is equal to the asymptotic
depth which from now on is assumed to be the same at either infinity. In Lemma I
the problem is reduced to a linear integral equation for the potential on one boundary
of the strip, and in Lemma II a solution by iteration is given (which converges for
suitable obstacles).

In Sec. 3 we apply the results of Sec. 2 to determine the reflection from obstacles
in the bottom where the surface remains free. We show in Th. I that if 2(f) is a conformal

sFor a discussion of the conditions see a forthcoming paper, Some remarks on integral equations
with kernels L{x 1 — x» — £»), particularly Sec. 4.
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transformation of the strip 0 > > —h into the domain of the fluid where the infinities
correspond and

2 k r*1 — o

dz df + max
i? = 0 rj = 0

dz
dt ~1 + 2M/sinh 2kh

<j> can be computed by iteration, and the reflection coefficient R is given by

Ro - «72(1 - a) R0 + q2/2(l - a)
(l + [Ro~ a2/2(1 - a)]2}1/2 < K < {1 + [R0 + a2/2(1 - a)]2|

where
k

1 — 2M/sinh 2kh
1 + 2/c/i/sinh 2kh '

Ro — 1 + 2&/i/sinh 2kh /:(i-1),. exp (2i'/c|*) cif

In general, the a of the obstacle in which we are interested will not be easily calcu-
lated. It is therefore desirable to show how a varies with the shape of the obstacle.
This is done in two (simple) general theorems.

Theorem II: If the domains D, , D2 both lie in the strip 0 > y > —h, and Dx is
included in D2 , we have

«i > a2 •

Fig. 2.

Theorem III: If Dx , D2 are the intersection and join of a striplike domain D with
the strip 0 > y > — h, we have

a ^ «i + «2 ■

d2

Fig. 3.

In Sec. 4 obstacles in the surface are considered. If the draught of an obstacle in the
surface is small compared with the depth and the wave length, and the beam is mod-
erately short compared with the wave length, the reflection from the obstacle tends to
the reflection by a "plate" of the same beam in the surface, and

 2fc[(sin 2k)/2k — «2/(l — «)]/(! + 2A;Vsinh 2kh) 
{1 + 4fc2[(sin 2k)/2k - a2/(l - a)]2/(l + 2kh/smh 2kh)2}1/2

< R <  2fc[(sin 2k)/2k + a /{1 — «)]/(! + 2fc/t/sinh 2kh)
[ 1 + 4/c2[(sin 2k)/2k + a2/(l - a)]2/(l + 2kh/smh 2kh)2)1/2
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where

a < 4 sin2 k/( 1 + 2kh/sink 2kh) + (1 — 2kh/smh 2kh) / (1 + 2/c/i/sinh 2kh) < 1

or

a < 4 sin2 fc/(l + 2/c/i/sinh 2/c/i) + 2[2~1/2 exp (~21/2kh) + 1 /kh + 2a-~1/2k1/2] < 1

and k = tt beam Iwave length. The former bound for a is useful in shallow water, the
latter in deep water.

Discussion. Throughout, explicit bounds for the error in our calculations are given,
and the iterative method is expected to be of use in numerical work, particularly in
the problem of Sec. 4 where we get an integral equation over a finite range. The bounds
are good in shallow water since then the term (1 — 2kh/smh 2kh) / (1 + 2/c/i/sinh 2kh)
in a is small. But it seems worthwhile to collect some results which are easily obtained
from the algebra without further calculations.

The reflection coefficient for obstacles in the bottom takes a particularly simple
form if the wave length is large compared with the depth and with the dimensions of
the obstacle. Then

R" 1 + 2/b/i/sinh 2kh \ Lm (df 1 ̂  exp (2lk'°17 = 0

and if the waves are long, 2/sf is nearly constant over the range where (dzf— l),-o is
noticeable, so that

R0
/: (:

dz
dt

I

i.e., the reflection coefficient is k/2 times the contraction constant of the transformation
which maps the strip 0 > 77 > —h into the domain of the fluid.

We compare the reflection by a vertical barrier and a long low reef.
In Sec. 3, we determine the transformation function z(f) for a strip of width h with

a cut of length r in the bottom (a barrier of height r). Then a becomes

 8kh , » . jri 1 — 2fcfo/sinh 2kh
ir(l + 2M,/sinh 2kh) S SCC 2h + 11 4/i 1 + 2A:A/smh 2kh'

and if kh -—> 0 we have

R0 —> - kh log sec
7r

To get the reflection by a low gently sloping reef of the form y — —h-\- tf(x) we
use an approximate expression for z(f) in terms of fix) to show that

„ e 2 kh
/to h sinh 2kh(l + 2/c/i/sinh 2kh)

For a horizontal reef of width a and height e

e 2kh | sin 2ka

k | J fix) exp (2ikx) dx .

Ro h sinh 2kh{l + 2/c/)./sinh 2kh)'
(No details are given in the paper.)
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If the width of the reef is large compared with the wave length, R0 varies rapidly
with the wave length. To calculate the reflection at a point P at one time we have to
know the incoming motion at P over an interval of order a(gh)~1/2, for fixed e/h.

In practical problems it is often important to understand how the reflection of a
given obstacle in the incoming waves varies when it is placed in different depths. The
period of the waves remains constant so that it is necessary to plot the reflection against
the depth. Since however kh is a monotone function of h for any a1, we get the general
shape of the curve by plotting the reflection against kh.

We observe that the reflection by a horizontal reef of width a decreases rapidly
as the depth increases, provided ka < ir/2.

(, a1 , „ eg-2 sin(2or2g/g tanh kh) \
\ <7 tanh kh alU 0 g sinh2 kh(l + 2fc/(/sinh 2kh))'

Lastly consider the variation of the reflection of waves of given period by a plate
of given beam in the surface of water,

„ k X beam . _ <r2 X beam
~ i—;—nl, , ■ , ,, i.e., K1 + 2M/sinh 2kh' ' '' gr(tanh kh + kh sech 2kh)'

We find that the reflection first decreases and then increases as we go from shallow into deep
water (or vice versa):

oj
-C

<D
10

JZ

+
JZ

c
■K

0 2t S 12 16 20 24 28 3'2
Kh ,Fig. 4

But more tedious algebra would be needed to give information on the effect of
draught in different depths of water (Th. II of Sec. 4). Also, what happens when the
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dimensions of the obstacle are nearly equal to the wave length is undecided by the
present work.

1. Asymptotic behavior and definition of the reflection coefficient. To discuss two
dimensional wave motion in a domain sketched in Fig. I4 we choose a system of co-
ordinates so that the z-axis is parallel to the axes of the cylinders, the mean free surface
lies in y = 0, and y is measured vertically upwards.

By the theory of small oscillations the potential <t>(x, y)e" must satisfy the following
conditions:

(A) (j> is bounded and harmonic in the domain of the fluid,
d(j>/dn = 0 on the lower boundary and on the fixed cylinders, where d/dn

is the derivative along the normal to the boundary,
d<j>/dy is bounded in the neighborhood of the mean free surface,
c2<jf> — g d<[>/dy = 0 on the mean free surface, where g denotes the acceleration due

to gravity.

In analyzing possible motions satisfying (A) it is convenient to use the following
lemmas:

Lemma I (A. Weinstein, C. R., 1927). The functions

{cosh k(y + h), cos kn(y + h)}

are a complete set of orthogonal functions which satisfy

a2fn - g dfjdy = 0 for y = 0,

dfjdy = 0 for y = —h,

/„ t L{—h, 0)
if a2 = gk tanh kh, a2 = —gkn tan knh, in — 1/2) r < knh < nir.

Lemma II (ibid.). A harmonic function <j>(x, y), bounded in the strip ()>?/> —h,
which satisfies

a2<j> — g d<{>/dy = 0 for y — 0

d(j>/dy bounded in the strip and zero on y — —h,

is of the form
(ae'tx + be-ikx) cosh Mjy + h).

Lemma III. A harmonic function 4>{x, y), bounded in the half strip 0 > y > —h,
x < X0 , which satisfies

d(j)/dy bounded in the half strip and zero on y = —h,r<X0,
a2<t> — g d<f>/dy prescribed on y = 0, x < X0 ,
(j> prescribed on x = X0, 0 > y > —h,

is defined uniquely except for a term

a sin k(x — X0) cosh k(y + h).

4The (striplike) domains considered below are (1) bounded by y = 0 for | x | > Xo ; y = —h for
x < — Xo ; y = —h' for x > Xi, ; a Jordan arc joining (±Xo, 0); a Jordan arc joining (—Xo, —h)
to (Xo, —h'); (2) the boundary is a simple curve.
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For, the difference $ between two expressions satisfying these conditions is bounded
in the half strip; also

d$/dy is bounded and zero on y = —h,x<X0,
a2$ — g d$/dy = 0 on y = 0, x < X0 ,
$ = 0 on x = X0 , 0 > y > —h.

Since $ is bounded5 near the line x = X0 , 0 > y > — h, and zero on it, $ can be con-
tinued across it, and <E>(X0 + x, y) = — $(X0 — x, y). Thus $ satisfies the conditions
of Lemma II in the whole strip 0 > y > —h, and is zero on x = X0 . Hence the lemma.
The result also holds if X0 = °°.

Theorem I. If a potential satisfies (A), then over the flat portion at either infinity it
is of the form

oo

(ae'kx + be~'kx) cosh k(y + h) + an exp ( — kn \ x |) cos k„(y + h), (1.1)
1

where h is the asymptotic depth at the infinity considered. Also

X) I an I exp ( — kn I X |) = 0(exp {—x \x \/2h}).
1

Consider the flat portion at the left hand infinity.
Along any vertical x = — X0 , 0 > y > —h, by Lemma I, </> can be expanded in

the form

4>{—X0 , y) = a cosh k(y + h) + X <*» c°s K{y + h), (1.2)
1

h(l + sinh knh/2knh)an = <j>(—X0,y) cos k„{y + h) dy. (1.3)
J-h

By analytic continuation across y = 0 and y = —h,4> is analytic on x = —X0 , 0 >
y > — h, so that repeated integration by parts of

/ <t>(—Xo , y) cos kn(y + h) dy
J-h

is allowed, and an = 0(n~4). Thus (1.2) is uniformly convergent, and the series

{a0eikx + b0e~ikx) cosh k(y + h) + E <*neh"xek"x' cos kn(y + h),

with 1 (L4)
ikX o I r -ikXo

CLq6 -J" C>o6 — OL

is bounded and harmonic in x < —X0, 0 > y > —h, and equal to (1.2) on x = —X0 .
By Lemma III, (1.4) is the potential in the half strip 0 > y > —h, x < — X0. Similarly
for the right hand infinity.

Since (n — 1/2) t < knh < nir. the infinite series is less than

exp (tt | x |/2h) 2 | «„ | exp (—ir \ x + X„ \/h).

6The symmetry principle for harmonic functions does not require the function to be continuous
near the arc across which it is continued, but it is sufficient that it is bounded.
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If | <t>(—Xo , y) I(»„>-„ < M, | an | < 2M/(1 — 1/ir) by (1.3), and the series is less
than 2M(1 — 1/x)-1 exp [ — 1/2 tt(| a; | — X0)//i]{l — exp [ —x(| x \ — X0)//i]}-1.

Theorem II. Suppose at the two infinities the asymptotic forms of a potential satis-
fying (A) are

(aeikx + be~ikx) cosh k(y + h), (a!eik'x + b'e~ik'x) cosh k'(y + h').

Then
(| a |2 - | b \2)kh(l + sinh 2kh/2kh) = (| a' |2 - | b' \2)k'h'(l + sinh 2k'h'/2k'h').

This is the principle of the constancy of transmission of energy.
Let X_0 be so large that the bottom is flat for \x \ > X0 . If </> is the complex conjugate
of (/), <t> also satisfies (A). Consider

I (<£V$ — <£V(/>) ■ dS,
J c

where C is the contour of the domain of fluid between x = ±X0 , and dS is a surface
element of the boundary. Since and 4> are harmonic and bounded in the interior of C,
the integral is zero by Green's theorem. The integrand is zero on the lower boundary
and on the fixed cylinders since V<?WiS = 0, and on the mean free surface since

2

V<£-dS = ^ dx = —<t>dx.dy g

Therefore the integrals along the vertical portions x = X0, 0 > y > —h, and x = — X0,
0 > y > —h' are equal and opposite. By the orthogonality of the expansion of Lemma
1 only the asymptotic waves contribute to the integral, and

[ _ ^ fa:) dy = 2^' b _ ' a- / '■COsh ^ dy'

Hence the theorem.
Notation: {a, b; a', b'} denotes a potential whose asymptotic form on y = 0 is
(ae'hx + bc",kx) as x —* — 00, and (a'e'k'x + b'e~'k x) as x —> + °°.

Theorem III. (1) If b = 0 and a ^ 0, then a'/a, b'/a are unique.
(2) If b = 0 and » ^ 0, there is also a solution with b' = 0, a' ^ 0.

To prove (1):
Since the problem is linear we may take a = 1 without loss of generality.

Suppose {1, 0; a', b' }(=<£) and {1, 0; a[ , &{}(=<£0 are two solutions. By linear super-
position a'<j>i — a[<l), i.e. {a' — , 0; 0; b[a' — b'a[} is also a solution. By Th. II

| a' — a[ \2kh(l + sinh 2kh/2kh)(cosh k'h')2

= -| b[a' - b'a'i \2k'h'(l + sinh 2k'h'/2k'h')(cosh kh)2

so that a' = a[ , and, since a' ^ 0, b[ = b'.
To prove (2): _ _

Recall that if <K={1, 0; a'> &'}) is a solution of (A), so is <f>(={0, 1; b', a'}) By
Th. II the determinant

' a' b'
= I a' I2 - I b' I2
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is not zero, so that a'4> — b'<j>( = {a1, —bc, 0}) has a non-zero c. (If there is a progressive
potential at — », there is also one at + oo).

Definition. We define the right hand reflection coefficient (Rr) to be the ratio of the
amplitudes | b' |/| a' |, when in the potential at — °o b = 0, a ^ 0 (the potential at
— «> is progressive). By Th. III(l) this ratio is unique.

We define a left hand reflection coefficient (Rl) in an analogous manner. By Th.
111(2) Rl exists if, and only if, Rlt exists. Now RL and Rr are equal since
Rl — | ~b' |/| a' |. Note that this is true generally, i.e. also if the asymptotic depths
are different.

2. Two lemmas in the theory of surface waves. In the general reduction of wave
problems to an (one dimensional) integral equation we need

Lemma I. (a) If $ is bounded and harmonic in 0 > r/ > — h, — °° <£<<»,

d<t>/dti = 0 on t] = — h,
<j> —> 0 as £ —> + m,
a'4> ~ g d(j>/dy is L-integrable on ij = 0, and 0(e~cl {l), for some c > 0,

1 r+,> cosh k(y + h) eikx dk
X' y 2x i_oo+ip cosh kh <f — gk tanh kh '

0 < p < min (ir/2h, c),

then

^' V) = II [^(r' 0) ~ 9 ̂  (r' 0)]/ft ~ V) dr-
(If <t> —> 0 as £ —» — oo} p must lie between 0 and — x/2h in the de-
finition of /).

(b) Define f(x, 0) = f(x). If x > 0, —f(x) > 0 and

f° | | fjT L 1 ~ 2/fcft/sinh 2kh
Jo R ) 1 2cr2 1 + 2/tVsinh 2kh '

f(x) I < 4 exp(W2fo) log ^ _ exp{ -rx/h\).
■wg

If x < 0, }{x) = f(-x) + i e,k' e'tX
g tanh kh( 1 + 2/c/i/sinh 2kh)

(c) The asymptotic form of $(£, 0) as £ —* — oo is

i 0)g tanh kh{ 1 + 2/c/i/sin h 2kh)

~ g (r, 0)}-<tf' df' - eik( [<r2<Kr, 0) - g ̂  ft', 0)]
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(a) Observe that by Lemma III, Sec. 1, there is at most one potential satisfying conditions
(a). We construct its Fourier integral expression.

Since <r2$ — g dcjj/drj is Lx and 0(e_cl11) for large | £ |, its Fourier transform G(Jc)
exists in c — e > > — c + «, is bounded there, and

,(t = (o,^-172 r+i" (?(fc) cosh k{t? + h) m
' o-2 — gk tanh kh cosh kh

c > p > 0, 7r/2h > p,

satisfies (a).
We convert the Fourier integral into a linear transform of

aW, 0) - firmer, 0).
We apply the Faltung theorem to

G(k) cosh k{t] + h)[cosh kh(a2 — gk tanh kh]'1

which is permissible since G(k) is bounded on 3(k) = p and the transform is L2 in
0 > v > - h.
(b) Consider x > 0.
(i) By the theory of residues

oo —fcrX

f(x) = - V ® 
i g tan krh( 1 + 2krh/sin 2krh)

where ikr are the imaginary roots of a2 = gk tanh kh, and (r — 1/2) x < krh < rir (cf.
Lemma I of Sec. 1). Now

g tan krh{l + 2krh/sm 2krh) = (g/krh)[k2rh2 + (<r2h/g)(<r2h/g — 1)]

> (s/kTh)[(r ~ 1/2)V - 1/4]

since {c2h/g){a2h/g — 1) attain its minimum at <r2h/g = 1/2.
Thus all the terms of the series are positive and f(x) < 0.
Since, further, krh > 1,

g[klh + (a2/g)(<r2h/g - 1 )]/kr > | gir(2r — 1) > | grr, and

| J{x) | < ^ ^ exp {—(2r — l)irx/2h}/r = ~ exp {irx/2h) log (1 — exp {—irx/h}).

(ii) Observe that
r00 r00 r°° / 1 rco+iP

/ I f(x) \dx = - f(x) dx = / cfal — / -5-3
«/0 ^0 0 \^7T «/ —co + tp O"

ikx

dk

^ «<*>+» p
liri J-a+ip k(a2 —

gktanh kh

dk
2iri J-co+ip k(a — <?fttanh kh)

where we may invert the order of integration since | ek" | = e~"x.
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We evaluate the integral by contour integration round a large upper and lower
semi-circle with centre ip. The only singularities in the upper semi-circle are at
ikn and the integral is equal to

00

— g~1 [&r tan krh(l + 2krh/sin 2krh)]~1.
1

The singularities in the lower semi-circle are at 0, ±/c and —ikn , and the inte-
gration is clockwise. We get

— \ — a"2 + 2[gk tanh kh( 1 + 2M/sinh 2kh)] 1

— ^ [gkr tan krh( 1 + 2krh/sin 2krh)] j.

Equating the two we find

-f'tlKim M(1 + 2W>in 2 «,)]-' - - J, f"+ 2tt/™h 2tt'
(iii) Consider x < 0. Integrating clockwise round the lower semi-circle we find

00 —hr\x\ i&z —ikx
fM = _ y i  i .•. e ~ e
J W ^ _ +__. I. j,/-, I oj. I, Of. M ~ 6V <J tan krh( 1 + 2krh/sm 2krh) g tanh M(1 + 2M/sinh 2kh)'

(c) follows immediately from the fact that in the integral

/_" (/<*> - g B)/(* - r, o) drdrj

the contribution from the infinite series part of /(J — £') is small when | £ | is large: if
| £ — £' | is small, <r2cf> — g d<j>/di)' is small since | £' | is large, and 0) — 0d/di/[</>(£', 0)]
is 0 (e~" 1 £'1); if | £ — £' | is large, the infinite series in / is exponentially small by (b). This
proves the lemma.

If the asymptotic depths of the domain of fluid in Fig. 1 are equal, and we transform
it conformally into the strip 0 > r) > —h, the resulting boundary value problem for
the potential $(£, v)<'"1 is essentially of the following form:
(B) <j> bounded and harmonic in ()>??> —h,

d<f>/dii = 0 on jj = —h
ct24> — g d<f>/dri = g(£)4> + h(£) on tj = 0
4>—> 0 as £ —>+oo(0 > rj > —h.

By the function f(x, y) of Lemma I the two dimensional problem (B) is reduced to
the integral equation

o») = / _ 0)M - r) d? + J*" h(¥)M - I') dp.

This equation is solved for suitable g(£) (suitable obstacles) and integrable h(Q by
Lemma II. If g(J~) = 0(e~cUI) and
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*!'£
a = [gtanh kh( 1 + 2kh/sinh 2kh)] 1 max [ | gr(£') | | e'*(S £ > — e ,<:<f { > | d£'

t *' —'CO

max | <?(£') | /1 — 2fcfc/sinh 2kh\
+ a2 \1 + 2fcVsinh 2kh)

the integral equation above can be solved for all £ by iteration and

max f h(£')f(t ~ SO d£'
UK * ' , 1 — a

Also its solution is unique.
Proof. Write

0° = /" >»(?)/« - r) df, *«+i = II <t>n(k', o)g(?)m - r) w.
It is readily seen that

4>n(£, 0) I < a max / ^ wm -1') dr
By dominated convergence it follows that ^r? <£»(£) 0) converges to a solution of the
integral equation. Further, the solution is unique if <f> is to be bounded, for the difference
<£ between any two solutions satisfies

* = /. VoWtt ~
and therefore

| $ | < max | $ | J | g<£')/(£ - £') | d£' < a max | $ |.

If a < 1 this means that $ = 0.
Thus, if a < 1, not only the asymptotic potentials but also the potential in the whole

domain of the fluid is defined by the asymptotic potential at one infinity.
3. Reflection of waves by submerged obstacles. In the present section we apply

the results of Sec. 2 to calculate how the reflection coefficient depends on the cross
sectional shape of the submerged obstacle.

By the usual theory, a potential 4>e'"' which is progressive at + ® must satisfy
the following conditions:
'(C) 4> bounded and harmonic in the domain of the fluid,

o2<t> — g d<t>/dy = 0 on y = 0,
3$/dn = 0 on the lower boundary,
<t> —■» aekI cosh k(y + 7i)/cosh kh as x —»+ °°.

We map the strip 0 > jj > —h on the domain of the fluid (so that the infinities
correspond) by the conformal transformation z(f)(f = £ + iti) which is unique except
for a linear shift in £. The boundary conditions then become
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(C') <p bounded and harmonic in 0 > i? > — h,
a?<f> — g d(j>/dri + <r2(dz/d? — l)<f> = 0 on t] = 0,
d<t>/di] = 0 on i) = — h,
4> —» ae'ki cosh k(ij + /i)/cosh kh as £ —» + °°.

Theorem I. There is a unique <f> satisfying C' provided (e.g.)

2k
1 + 2fc/i/sinh 2khrv — a

— _ i

*? = 0

+ max
7,-0

dz
(3.1)

1 — 2fc/t/sinh 2kh
1 + 2kh/awh 2kh

<t> can then be computed by iteration, and the reflection coefficient R is given by

Rq ~ a2/2(1 — a)   ,? Rp + a /2(1 — a)
{! + [«„- a2/2(1 - a)]2}1/2 < K < {1 + [Bo + a2/2(1 - a)]

where

k
Rn — 1 + 2/c/i/sinh 2kh [ J_„ Vdf

Proof. Write

4> — <l>i + ae'kl cosh k(t) + /i)/cosh M.

Then the conditions for <t>1 are of the form (B) of Sec. 2, if —a2(dz/d{ — 1) is substituted
for g(Q, and —<r2(dz/dt; — 1 )ae'kl for h(tj). By Lemma II of Sec. 2 <£x can be calculated
by iteration if
| dz/d£ — 1 | = 0(e_clfl), and the a of Lemma II, Sec. 2 is less than 1.
These conditions are checked in (i) and (ii).
To get bounds for the reflection coefficient we get in (iii) bounds in terms of a for the
reflected wave.

(i)
dz_
dt = 0(exp {-it | £ \/h}).

Consider the inverse f(z) of z(£), for definiteness in a; < — X0 . The imaginary part
of f(z) is harmonic and bounded in 0 > y > —h,x< —X0. Also (z) — z] = 0 on
y = 0 and y = —h for x < — X0. Thus by the reflection principle f can be continued
across y = 0 and y — —h, and is therefore analytic on 0 > y > — h, x = xx if x, <
— X0 . We can therefore expand

3[f(z) - 2] = S /»(*) sin (niry/h)
1

for a: < — X0 where

fn(x) = 2/(7rh) [ [t)(x, y) — y] sin (niry/h) dy.
J-h

By repeated integration by parts

d2fjdx2 = (nir/h)2f„
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and hence

/„ = anen*x/h + bne~nr"\

Since i)(x, y) — y is bounded, bn — 0 and ane n"x°/h is bounded. Thus

H _ i
dz < (mr/h)an exp {nirx/h} = 0(exp {—x(| x | — X0)/h}), and f(g) ~ z.

Similarly for x > +X0 .
(ii) It is readily verified that (3.1) is a bound for a of Sec. 2.
(iii) By Lemma I of Sec. 2 the reflected wave is asymptotically

e~iH[g tanh kh{ 1 + 2fcft/sinh 2kh)]'1 f (a2<t> - g ̂ yjeiH' d?

= e~lk(c2[g tanh kh(l + 2/c/i/sinh 2kh)]~1 j" ~~ d%'.

If

<t>, =
1

| | < act" and | <£] | < aa/(l — a),

and the amplitude of the reflected wave differs from

ak{ 1 + 2/c/i/sinh 2kh)~l f {% - l)e2<H'd£

by less than

Since

w

aka( 1 — <*)_1(1 + 2M/sinh 2kK)~1 f dz
df da'.

dk' <\oc,k{ 1 + 2M/sinh 2/b/i)"1 J - 1

by Th. II of Sec. 1 the incoming wave lies between a{l + [Ha ± a2/2(l — a)]2}1/2 and

Ro - a2/2(1 - a) R0 + a2/2(l - a)
{1 + [R0 - a2/2(l - a)f}1/2< K < {1 + [R0 + a2/2(1 - a)]2}1/5> .

Example. Consider a vertical barrier of height r in the bottom of a canal of depth
h. Let rir/h = e. Then

a = 8kh[ir(l + 2fc/i/sinh 2kh)]~1 log sec (nr/2/i) + 2 sec2 (rx/4/i) | 2M/sinh 2kh

= 0(r/h)2,

and, as kh —> 0

R = (2/ir)kh log sec (nr/2/i) + 0(r//i)4.
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Proof. Without loss of generality we take h = x so that the height of the reef is e.
(i) The transformation function is obtained by Schwarz-Christoffel:

dz ef + 1
dt {(ef + p)(ef + p"1)}1

(ii) p is determined from the height of the reef:
since log p — iir is the image of the foot, — iir of the tip of the barrier

rir dz f° 1 — e{ ,, ,ol .,1-p
= / J-f = / 771 77^ fTTTTJ dZ = l2 tanlog p—tv as log p I(e — p)(p — *0} P

' (iii) Since 0 < dz/di <1, on ij = 0, | 1 — dz/d( |,_0 = 1 — dz/df

£ '-Iso that

(iv) By (ii) 4 log = 4 log sec | e.

(v) It is easily verified that dz/df attains its minimum at f = 0 so that

max
1 = 0

dz
df = 2 sin2 7 e.4

Thus we get a, and i? as in the discussion of the paper given above.

To compare the a for various domains of fluid we use the following lemma.
Lemma. Suppose f(z) maps a domain D, which is bounded above by y = 0 and is

contained in the strip 0 > y > — h, into the strip 0 > -q > — h so that the infinities
correspond. Then

1 *(£)„-!<-■
For, 3[f(z) — z] is bounded and harmonic in D, zero on y = 0 and not positive on the
lower boundary of D. Thus 3;[f(z) — z] < 0 in D.

Since 0)] = 0, ^X' ~y) ~_^x> 0)] + y > 0,

and therefore lim ^X' — 1 > 0 i.e. ~ 3[f(z)]„_0 > 1.
a-o -y - 0 _

By Cauchy's relation (d/dy)$ = (d/dx)^R so that d^/dx > L on y = 0, dz/dl; ^ 0 since
the transformation can be continued across y = 0 and is conformal.

Theorem II (cf. Fig. 2). If two domains D and Dl are both bounded above by y = 0
and are contained in the strip 0 > y > —h, and if T)l C D

then a < «i .

Let fj(z) map Dl on 0 > rj > —h, and without loss of generality we may take f(0) =
fi(0) = 0.
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It is sufficient to show that

max
7?=o

1 dz .
1 rr < maxdf 1J = 0

1 _ d?I
df and /ii-im/:1 _

Suppose f(Z>i) = D'. Since Z), C D, D' is contained in the strip 0 > y > —h. If f !1> (w)
maps D' on the strip, f,(z) = f(1)[f(z)] and by the lemma d$w/du > 1 when 3(w) = 0.
Therefore

rffi _ dt(1} /df\
dz d$ \dz)y.0

> d£
~ dz

and

dz\
i) = 0 \ d£/ r/ = o \ d^J

So far we have used the condition that D1 is contained in I), but not that D is contained
in 0 > y > —h. Then 1 — (<fe/df),_0 > 0 and

max (1 — ) < max (1 — '-A. (3.2)

max
1-0

dz
df < max 1 _ dZl

Next consider the integrals

- r\f-i <t< r f-i rdz — dz J-a
_ dzi

dt df.

Hence the theorem.
Theorem III (cf. Fig. 3). Suppose a domain D is bounded above by y = 0. Denote

its intersection with the strip 0 > y > — h by Di , its join with the strip by D2 . Then

max
1 = 0

_ d?
dr < max ^1 — ^ — 1) < maxdz2

tj=o \ d£* d£ / ^=0
1 _

df + max
77 = 0

dz2   ..
dt

and
dz2Hi _ 1
df df.r L dz . r , dzj . rLl1"^ '-iff "f + L

(i) By (3.2) max,_0 (1 — dz/dif) < max,=0 (1 — dzjd£), since Di C D and max,=f)
(dz/d{ — 1) < max,,0 (cfe2/df — 1) since D C. D2 . Because on 17 = 0 dzjrff < 1,
dz2/d<$ > 1 the first result follows.
(iii) Since A C D C D2 , by (3.2) d{2(x, 0)/dz < d?(x, 0)/dz < dffo , 0>)/df.

Thus

and

df _ 1
dz

df _ 1
dz

<
v=0

<
y — 0

dfi _ 1
dz

d£g _ 1
dz

when 3^- > 1dz

when 3^- < 1 so thatdz

d£ _ 1
dz

<
v = 0

dfi
dz +

d^2   1

dz
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Hence

/: b-i *-r If-- **£ £-> -+/:is- dz,

and the second result follows.
4. Reflection from obstacles in the surface. In the study of the reflection of waves

by obstacles in the surface we consider first a special case: reflection by a flat plate
lying in the surface. By change of scale we make the half width of the plate unity.

Theorem I. Provided

4 sin2 k/a + 2Wsinh 2kh) + } ~ ^/sSh fkh < 1 °r

4 sin2 fc/( 1 + 2/c/t/sinh 2kh) + 2[2"1/2 exp (-2U2kh) + (kh)'1 + 2^1/2k1/2) < 1,

there is a unique potential 4>, bounded in 0 > y > —h which satisfies:

(D) <j24> — g d(t>/dy = 0 y = 0 | re | > 1,

d(j>/dy = 0 y = 0 | as J < 1, and on y = —h,

<j> —» ae'kx cosh k{y + /i)/cosh kh as x —>+ °°, 0 > y > —h.

Also

R ~ 1 + 2/c/i/sinh 2kh +

and for 0 < a / (1 — a) < sin 2k/2k we get precise bounds

 2fc[sin 2k/2k — a2/(l — «)]/(! + 2/c/t/sinh 2kh) 
{1 + 4fc2[sin 2k/2k - a2/(l - «)]2/(l + 2fc^/sinh 2kh)2}1/2

„  2fc[sin 2k/2k -)- a2/(l — <*)]/( 1 + 2/bfo/sinh 2kh)  ^
< < {1 + 4fc2[sin 2k/2k + a2/( 1 - a)]2/(l + 2fc/i/sinh 2khfxU2' { '

(i) Observe first that if /(a?) is the function of Lemma I, Sec. 2, and
a = c2 JLi | f(x — x') | dx' < 1 in — 1 < x < 1, </> is unique.
By that lemma the difference $ of any two potentials satisfying (D) also satisfies

$(x, 0) = J — g f^)f(x ~ x') dx' = o"2 J ~ *0 dx',
so that

$(x, 0) ||.,<i < a max | $(x', 0)
Is'Kl

Thus $(x', 0) = 0 in | x' \ < ], also d$/dy' = 0

so that <£ = 0.
(ii) To construct a <£ we use the method of Lemma II, Sec. 2.
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If <£ = <£i + ae'kx cosh My + h) /cosh kh, then <t>x satisfies conditions of form (B):

g(x) = 0, | x | > 1; g(x) = -a2, \x \ <1;

h(x) = 0, | x | > 1, h(x) = — acr2e'kx, \ x | <1.

The iteration converges in | re | < 1 if a2 /!_, f(x — x')dx' < 1 for j x \ < 1 to give
<t>i(x, 0), | x | < 1; and since

g ^ (x, 0) = — agk ta,nh khe,kx = —acr2e'kx
dy

on the plate, <r2<t>i — g f>4> i /dy is known on y = 0, and by Lemma I, Sec. 2, we get <j>x
in the whole strip.
(iii) Write

<t>i = ]E with <t>oU = <r2a [ e,kx'f(x — x', y) dx',
0 J-I

<t>n+i = ff2 J <l>n\x', o)f(x — x', y) dx'.

dx' cosh k{y + h)/ cosh kh,

The asymptotic form of <£ol>(x, y), (at - co) is

dkt — ikx f 2 ikx' j / ikx f
1 + 2/c/i/sinh 2kh U i„, 6 6 -L

and the asymptotic form of (frnt'i is

 —  e~ikz f d>meikx' dx'
1 + 2fc/i/sinh 2kh L J-1

- eikx J <t>nve~ikx' dx'J cosh k(y + /i)/cosh kh.

The reflected wave [i.e. coefficient of e~,kx cosh k(y + h)/cosh kh in the asymptotic
form] of

1

is less than

\kh ? /_! ' ' dx' < 1 + 2Wsinh 2kh ̂  a
k

1 + 2fc/i/sinh 2/c/i

2 ka
(1 + 2fcfc/sinh 2kh) (1 — a)'

The reflected wave in ^o1' is a sin 2/c/(l + 2fc/i/sinh 2kh).
The amplitude of the reflected wave of

X>n"
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lies between

2 ka
1 + 2fc/i./sinh 2kh

sin 2k
2fc

-^-1-
1 — Of J

Since the transmitted wave is ae%hx cosh k(y + A)/cosh kh, we get a bound for the in
coming wave, and find (4.1).
Evaluation of a.
(iv) First we get a bound suitable for small kh. Denote the infinite series part of f(x)
by /1 (x). By Lemma I, Sec. 2,

[ | f(x — x') | dx' < 2 f | f1(x') | dx'
J-1 Jo

[g tanh kh( 1 + 2fc/>,/sinh 2M)]_1 [ | | dx'.
J x

+

Now

f1 | , , | , , f" | . / « | 7 , _ 1 1 - 2fcfe/sinh 2kh
| /i(a;) | dx < Jn | /i(:c) | efa - ^ 1 + 2fc/i/sinh 2kK

Also

[ | e»<—'> - ■■> \dx' = 2 f X | sin ku | du < 2 [
J x Jo Jo

1—x

sin ku I du

— 4 sin2 k/k if k < ^ir.

Thus

J I /0& — x') I dx' < 4 sin2 fc/(l + 2/c^/sinh 2kh) 1 — 2fcfe/sinh 2fcfe
1 + 2fc/i/sinh 2kh'

(v) If kh —>co the bound becomes useless since the second summand tends to 1. We
use a refined estimate for /J | /, (x') \ dx'. Recall that

_ f (x\ = y e krX  <1 y   (hk^e krX 
1 i g tan krh{ 1 + 2fcr/i/sin 2krh) g , (2r — l)V2/4 + t

where r = (a2h/g)(<r2h/g — 1).

Thus

(1 - e~*r)
f | f1(x) | dx j>2

Jo ■ (I 1g i (2r - 1) V/4 + r

= ly 1 ^ y^  > o.
2g (2r — l)V/4 + r 0 i (2r - l)V/4 + r
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By contour integration of cot irz[(2z — l)2/4 + t]~1 around a large rectangle it is seen that

1 tanh -1/2T-172-
(2r - l)V/4 + r r1'

kr «> g—rr/h r> <*> ^-rx/h

> ? (2r - l)V/4 + t2 > I (2r - l)V/4 + r2

(fot

V (2r - l)V/4 + T V (2r - l)V/4 + t2 J, (2r - l)V/4 + r:

since krh < irr, and the terms of the series are decreasing.

r  dx--±~r exp(-TU2u/h)du
h (2x - 1) V/4 + T2 dX - irrl/2 }rnru, u2 + 1 dU

r" —tt2 {r + r
ITT J0 U + 1 7TT J o 7TT ^J0 «^iV 14+1

__J__+ ri-exp(-T^Vfe) \
~ 2r1/2 2r ttt1/2 \J„ + iw M2 + 1 ®7 *

Since

1 - exp (-r1/2N/h) < tU2N/h, -4ts f 1 ~ exP (.-*"»/$ du < 1 and
XT Jo "U ~t" J- ^

r 1 - exp(-r1/2MA) , . r du 1 , _1 „ , -! 1 . 1
/   a I , — < / 2 I , = 7i x — tan i\T = tan — < —.Jat m + 1 J, ii + 1 2 N N

Therefore

1 f" 1 - exp (—r1/2uh) , „ 1 , 1 2V
7rr1/2 J„ u2 + l ^ iriVt1/2 2 h'

If we choose

AT - (2W'V"<, /; | /,(z) | & < \ + 1+ (j-)">].
Since (tanh r1/2 — l)/2 = exp ( —2r1/2)/[l + exp ( — 2t1/2)] < exp ( — 21/2kh), and
(1 /hr1/2)1/2 < 21/2/T1Af1/2 we get after some simplification that

2a2 I | f,(x) | dx < 2[2-xn exp (-2l/2kh) + (kh)~l + 2tT 1/2fc1/2j.
Jo

Since at the edges of the plate in Th. I the horizontal velocity gets infinite while
in the derivation of the boundary conditions the velocity is assumed to be everywhere
small, it is not clear that the calculation gives a sensible approximation to the reflection
of waves by shallow obstacles. We shall therefore show separately that the reflection
of an arbitrary (cylindrical) obstacle of beam equal to the width of the plate tends to
the reflection calculated in Th. I provided only that the draught tends to zero.
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Theorem II. We map the domain of the fluid on 0 > r) > — h so that the edges of
the obstacle are at (if = ±1, j; = 0). If
(D') <p is bounded and harmonic in 0 > r? > —h,

d<t>/dri = 0 on 17 = — h, and on rj = 0, | 11 < 1,
a2<j> — g d<t>/dt] + 1T2(dz/d£ — 1)<p = 0 on 17 = 0 | £ | > 1,
<t> —» ae,ki cosh k(r\ + /0/cosh kh as

<t> can be constructed by iteration provided

0 < 8 = -—-— < 1 where
1 — a

* f\ 1 m - r) 1 <

+r dz
df' <i£') < /3 for all £.M - €0

Further if the draught is small, 0 is small.

(i) Let <{>0 be the potential of Th. I. We write then

4> = <t>Q + y, <t>n ,
1

and split up <t>n+1 into + 4>lVi , which satisfy the following conditions:

(D") is bounded and harmonic in .O > r/ > —h,

d<t>i\\/dr) = 0 on 77 = — h,

— a2(dz/d£ — 1 )</>n on 17 = 0, | £ | > 1,

0 on 77 = 0, | f | < 1,

<t>n+i —> 0 as £ —» +00 •

(D'") 4>nVi is bounded and harmonic in 0 > 97 > — h,

d<t>n+i/dr) = 0 on 77 = —h, d<t>l2+i/dr) = —d^W/dr] = — (a2/

on 17 = 0 | £ | < 1,

<r2<t>ll\ — 9 d<t>l2+i/dr) = 0 on 77 = 0 | £ | > 1,

<t>n*1 —>0 as £ -> + 00 .

Let | 4>n\\ | < M?+\ , | | < Ml\\ and | 4>„+1 | < Mn+1 .

aYn+\ - g d^W/dr, =



42 G. KREISEL [Vol. VII, No. 1

(ii) By Lemma II, Sec. 2 (we may take) MiW < j3M„ .

i - r) de' - & J i /ft - f) #

= <x2 /1 *&',/(* - r) <r + <r2 /' - r) <«r •
Therefore

so that
M{„2+\ < aM£\ + oMiV, ,

m<2+>i < and Mn+i < JM^_ _
X — a 1 — a

(iii) If5<l,a<lso that 4>u exists and the iteration converges to a solution of
(D'). If 5 is small compared with a, the solution is nearly equal to <pQ .
(iv) 5 —> 0 if the draught is small, provided at its edges A, B the obstacle has tangents
which make angles greater than e with the mean free surface (Fig. 5). We take A at
(-1,0).

We enclose the obstacle in a trapezoid ABCD, and denote by Dx the domain obtained
by removing the trapezoid from the strip 0 > y > — h. Let ZjQ") map 0 > 17 > —h
on Di , keeping A fixed, and let its inverse be fi(z). Assume for the moment that
(i) I > dt/dz > dtfi/dz > 0 on z < — 1; (ii) inz < 1 — p, p > 0, 1 — d^i/dz tends to 0
uniformly as the distance d between AB and CD —> 0, « fixed;
(iii) d^i/dz decreases monotonically to zero in — < 2 < — 1 as z —» — 1 so that if
z, z', z' + h are less than — 1 and z < z'

| Mz' + h) — fi(z') | < | fx(z + h) - r.(z) | •
Now

fl 1 ̂ ~ r) dz
dr'"

dz
d?

< [g tanh kh( 1 + 2fc/i/sinh 2kh)] 1 j

+ /j Mi - i')

h < 2[gtanh kh( 1 + 2M/sinh 2kh)]~1 J

= 2[grtanh kh(l + 2fc/i,/sinh 2kh)]_1 J

df

ikcz-c) _ |dz
df' ~

d£' = Ii + 72(p.def.)

dz
j? ~ 1df

4L _ 1
dz

di'

dz

< 2[g tanh M(1 + 2M/sinh 2kh)] 1 j" j ^ — 1

A simple calculation shows that Jx —> 0 as d —* 0.

dz, by (i), = /i(p.def.).
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0
Fig. 5.

Let £ = £(z). Then, since | fi(x) \ is decreasing, and, by (i), | £i(z) — tji(z') | < | £(z)
m i

= /J I fMz) - mi I % - 1 dz> < / J /^(z) - M*')]

dfi(-l + P> 0)

dfi _ i
dz dz',

<[ I " I AKi(«) - &(*')] I dz' dz
- 1

+ [ I /iKi(z) - Si(z')] I dz', by (i) and (ii),./_ i+p
-1

4~ P; 0)
< V..1 "-1 - W2')] i <*) & -1

+ 2 I | /i[—1 — £i(z')J | dz', by (iii), independently of z.
J-1 + 1/2 p

Note that both integrals decrease if p is fixed and d decreases, since by (i) £i(z)
decreases with d. Choose p small to make the second integral small. Then choose d
small to make | dfi(l — p, 0)/dz — 1 j small; this makes the first term small since the
integral converges uniformly as d —> 0: at — since /, (x) is exponentially small, and
at —1 since fi(z) + 1 = 0 | z + 1 \1+'/T, and /,[ 1 — £i(z)] has only a logarithmic
singularity. Thus I2 —> 0 as d —> 0.
To estimate the integral

df
map 0 > ri > —h on l)s , keeping B fixed. We find 8 —» 0 as d —> 0.

It remains to prove the assumptions:
(i) follows by an argument essentially similar to that of the Lemma of Sec. 3.
(ii) follows from Th. I(i) of Sec. 3 where it is shown that

df! j ^ 2d1 , < ,dz | h (i _



44 G. KREISEL [Vol. VII, No. 1

(iii) follows from the fact that the boundary of the domain of log d^/dz

B D
r =0
I

A C

Fig. 6

is simple (since the trapezoid is convex) so that log (<2fi/dz) and d^/dz are schlicht in
Di and d2^/dz2 0. It follows that d2f/dx2 ^ 0 on z < - 1, i.e. d2$/dx2 < 0. Since
d^/dz — df/dx on z < —1, d{/dz decreases monotonically in — ® < z < — 1.


