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VARIATIONAL PRINCIPLES IN THE THEORY OF FINITE
PLASTIC DEFORMATIONS*

BY

ARIS PHILLIPS
Stanford University

1. Introduction. In the present paper we give the variational principles of the theory
of finite plastic deformations taking into account strain-hardening. Throughout the
paper only Lagrangian coordinates will be used. This work is based on a paper of R.
Kappus,1 where a very clear exposition of the theory of finite elastic deformations is
given.

The strain components are

Qpq ^q,p "I" ̂ p,a "i- j (1)

where uv is the displacement and a subscript after a comma denotes differentiation with
respect to the corresponding coordinate. The geometrical significance of these strain
components is the following. Let us consider the system (0, ej1', e-2), e-3)) of the particle
0 of the body and the three unit vectors e,-1', ef\ e<3) which are parallel to the axes
of the fixed coordinate system. The deformation brings 0 to Oj , and e"', e™, e,(3) to

9i2\ g?\ respectively.
The strain components gva are given by the formulas

9™ = ~ Ki , (2)
where Spt is the Kronecker delta. They are components of a tensor.

Let us consider now the cubic element built on the vectors e-1}, e-2), et-3). After
deformation has taken place it became a parallelopiped built on the three vectors
(jr,-1', gf\ The forces on the faces of this parallelopiped are r,-1', r,-2), rj3).

Let us resolve them as follows:
(p>   _ (**\PQ Q i • \*^/

The components tvq are called the stress components. They are the components of a
tensor and they fulfill the conditions

r = t (4)' PQ QV ) \ '

The equations of equilibrium are

(Tj,, + TyaW.-.p),, + Fi — 0 (5)

and the boundary conditions are

(t,-,, + TpaUi,p)vQ = F'i , (6)

where vQ are the direction cosines of the exterior normal.
The stress-strain relations of the theory of finite elastic deformations are taken in

the form
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Tpq G^CJpq ^ (Ji ~f" K ^ Qii^pq • (7)

By putting

Tpq Tpq g Tii 8pq , Qpq (J Vq ^ 01 J ̂ Vl )

(8)
T* = (T * r*)1/2, D* = {g*qg*q)U2,

we get the two equations

Tu/gu = k (9) T* = GD*. (10)
The theory of finite plastic deformations assumes that Eq. (9) is valid again but

that Eq. (10) will be replaced by

T* = /(£>*) (11)
i.e. T* is a function of D*.

Thus Eq. (7) becomes

T" = 9*q + K±gitS„ . (12)

Solving Eq. (11) for D* we get

D* = 0(T*)
and

y* 3 4 * ^

2. The variational principle for the virtual displacements. Let us consider the
function

A° = J° f(D*) dD* + | Kg2, (14)
where g = g,;</3. We find

= /(#*) + 3Kg j3-dgvq dgpa dgPQ

(15)
f(D*)

D*
Q-pq "I" Kgbpq Tpq .

We consider now a body in equilibrium under the action of external forces. We
denote by tpq the actual stress components, by u{ the components of the actual dis-
placements and by gva the actual strain components, due to the loads.

We compare the actual value of the expression

P = f A0 dV - 2 f FtUi dV - 2 [ Ffa dS (16)
J y J y J s

with the value which this expression would have if m* and gpa were submitted to small
variations 5«,- , 8gpa while the stress components and the external forces remained un-
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changed. These variations are not entirely free; the new strain components gvq + Sg„Q
and displacements u< + 8ut must fulfill the following conditions:

a) the condition of continuity,
b) the geometrical boundary condition,
c) the equations of equilibrium

+ Tva(ui + fcij.pj,,, + F i = 0, (17)

d) the statical boundary conditions

{t,„ + Tva(ui + dUi),V}v„ = F'i . (18)

We shall prove that the actual value of P is a minimum. Let us write A = fv A0dV.
We get

SA = [ 8AndV= [ SgvadV= [ rPa8gPa dV (19)
Jy J y Ogpq Jy

Using the Eqs. (1) we obtain

8A = [Tva(8uv,Q + 8ua,v + ui,p8uita + uiia8ui,v)] dV. (20)Jy

Integrating by parts and noting Eq. (4), we find that Eq. (20) becomes

5^4.' I [8%lpTpqtq 8llqTpqiP [ 8ll {( Tpqllj f p) f q
Jy

U{(^TVq8Uita)iP -f~ 8ui(^TpqUitq)tp -j- w*i(.Tpq8U{,p)itj\ dV

+ / [bUpTpqVq + SUqTpqVp + 8U {( TpjW,' , p)^ q (21)
J s

+ Ui(Tpq8Ui,q)Vp + 8Ui(TpaUi,q)Vp

+ u^TpqbUi^v^ dS.

Using the Eqs. (5), (6) and (17), (18) we get

8A = 2 f Fi&Ui dV + 2 [ 8u{ dS, (22)
Jy J s

and because F,- , F'i remain constant during the variations,

[ A0 dV - 2 f FiUi dV - 2 f Ffa dS = 0
_J y J y J s _l

8

or

(23)

8P = 0. (24)

This means that P is an externum. We have to prove now that P is a minimum. We
have

82P = 82 [ A0dV= [ 82A0 dV. (25)
J y J y
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But

52A0 = d^D*^ (dD*y + f(D*) 52D*. (26)
dD*

The first product of the right member of this equation is positive because for all ma-
terials df(D*)/dD* > 0. Let us examine the second product. We have

l=)2D*fD* = T^~* Sg*'8g* ■ (27)
dg;Qdg*

But

where

Hence

d2D* _ D*C. - gU*
dg*qdg* D*3 (28)

8pqrs

1 for pq — rs,

[0 for pq rs.

S*D* = D*2(Sgfj5g?,) - (g%8g*)2
D*3

[(.g*^g*. - g?.8g*)(g*t8g* - gf.dg*)] > 0.
(29)

Therefore d2A > 0 and d2P > 0.
3. The variational principle for the virtual stress variations. Let us consider the

function

B0 = f <t>{T*) dT* + (30)
where r = t,«/3. We have

= <t>(T*) + | rf-
OTva OTpa K OTvq

\Tpq T Opq) ~t~ Tf *PQ Qva •

(31)

T* ' K
Let us consider again a body in equilibrium under the action of external forces. We

consider the expression

Q = [ B0dV - 2 [ F'iUi dS (32)
J V S0

in which the second integral is extended over the part of the surface of the body where
the boundary conditions are such that the external forces F't are not given. We com-
pare the actual value of Q with the value which Q would have if the stress components
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and the surface forces were submitted to small variations, while the strain components,
the displacements, and the body forces remained unchanged. The only conditions which
the variations must fulfill are that the new stress components and boundary forces
must satisfy the equilibrium equations and the boundary conditions. We shall prove
that the actual value of Q is a minimum.

Let us write

B = f B0 dV. (33)
Jy

We get

SB [ 5B0dV = f^dV- [ g„8r„dV. (34)
Jy Jy OTpq V

Using the Eqs. (1) we find that

SB = / [Stp<i(up,v + u„,9 + Ui,vUi,a)] dV. (35)Jy

Integrating by parts we obtain

foB I \^p^Tpq,q I ^q^Tpq.p I 1^i(^^TpqU/{ f q) fpJy

+ Ui(dTPaUitP)tQ\ dV + / [uvhTVQva
J R

(36)

1 Uq&TpqVp [ ^i( ^ TprP'^i , q)^j> 1 1^j(5TjdS

in which the second integral is valid for the whole boundary. The stress variations have
been selected such that the equations of equilibrium are always satisfied. Hence the
first integral vanishes.

In the part of the boundary where the external forces are given the second integral
vanishes because the stress variations have been selected so that the boundary equa-
tions are satisfied. The second integral is different from zero in those parts of the boundary
only where the external forces are not given. Then we have

SB = 2 f UtSF'i dS, (37)
*'s„

where S0 means the above-mentioned part of the boundary. As remain constant
during the variation, we get

f B0 dV - 2 [ UiF'i dS = 0
Vv ■'s. J (38)

and
SQ = 0. (39)

Hence Q is an extremum. The proof that Q is a minimum is similar to the proof for
the minimum property of P.

The variational principles of the theory of infinitely small plastic deformations are
special cases of the two principles given above. These special cases have been treated
by L. M. Kachanov2 and by the author3 independently.

2L. M. Kachanov, Prikl. Mat. Mekh. 6, 187-196 (1942).
SA. Philippidis, Spannungen und Verformungen im uberelastischen Bereich, Munich, 1944. Un-

published Report.


