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REMARKS ON THE MOTION OF ANCHOR CHAINS*
By R. GRAN OLSSON (Institute of Technology, Trondheim, Norway)

1. Introduction. The problem of the motion along a smooth, inclined plane of an
anchor to which the end of a chain is attached (Fig. 1) has been treated in the book of
S. Timoshenko and D. H. Young [l].f The equation of motion is, however, given in

Fig. 1.

such a form that only a relation between the velocity and the displacement is obtained.
In this paper it will be shown that very simple relations between the time and the
kinematic quantities (displacement, velocity and acceleration) can be stated by intro-
ducing the elliptic functions of K. Weierstrass. Very simple expressions for the kinetic
quantities (momentum, kinetic and potential energy) can also be established. The
motion is assumed to be frictionless, but it is not difficult to take into account a dissipa-
tive force, which is either constant or proportional to the moving mass.

2. Nomenclature. In this paper the same notations as those of Timoshenko and Young
will be used: a = acceleration of the weight W0 [cm sec-2]; B = rectilinear momentum
[g sec]; C = constant of integration; g — acceleration of gravity [cm sec-2]; m = mass
of the system in motion [g cm-1 sec2]; P = force [g]; q = weight per unit length of the
chain [g cm-1]; Q = loss of energy by percussion [g cm]; t = time [sec]; T = kinetic
energy [g cm]; u = parameter of the elliptic functions; v = velocity [cm sec-1]; V =

*Received May 2, 1949.
tNumbers in square brackets refer to the bibliography at the end of this note.
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potential energy [g cm]; W0 = weight of the anchor [g]; W = (W0 + qx) — weight of
the anchor and a length x of the chain [g]; x = displacement [cm]; x0 = W0/q = length
of the chain, corresponding to the weight W0 [cm]; a = angle of the inclined plane.

Further the following abbreviations are used: s = (W0 + qx)/Wa 41/3; £ = s 41/3 =
(W0 + qx)/W0 ; p. = (q/g) dx = mass of the chain element dx [g cm-1 sec2]; p(w) = the
elliptic p-function of Weierstrass; f (u) = the elliptic f-function of Weierstrass.

3. Equation of motion and its integration. By using the second law of Newton in
its original form,

| (nw)=P,

and introducing the quantities

m = \ (W0 + qx), (1)

P = W sin a = {Wo + qx) sin a,

we obtain

I lL (Wv) = W sin a. (2)gdt

After multiplying by g dt, we find that

d(Wv) = Wg sin a dt, (2a)

corresponding to Eq. (82c) of Timoshenko and Young [1, p. 114].
To integrate Eq. (2a), we multiply both sides by Wv and substitute on the right-

hand side, W0 + qx for W and dx/dt for v. In this way, we obtain:

Wv d(Wv) = (W0 + qx)2g sin a dx. (2b)

Integrating Eq. (2b), we find that

1{Wv)2 = 3q (TFo + qx)3 Sin a + C' (3)

Let us assume now that when t = 0, the body is at rest at the top of the incline.
For this initial condition, the constant of integration C in Eq. (3) becomes

C = — W% sin a,3 q
and we obtain

, — a, or . + ,»)■-(4)
3g (Wo + qx)

From this equation we can find the velocity v for any position, provided W0 and q are
known. Taking qx as small compared with W0, we find that the expression (4) reduces to

v2 ~ 2gx sin a,

as for a body of constant mass [1, p. 115].
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4. Introduction of the elliptic functions of Weierstrass. Substituting

£ = (W0 + qx)/W0 , (5)

_ dx _ Wo dji
V dt q dt'

we obtain from Eq. (4) that

(dZY 2 gq . £* - 1 ,
U =3WoSma~^- (4a)

Integration of this equation gives

W2 _ r* i# (4b)
<-(2ggsinar (4b}

where £0 = 1, corresponding to x = 0.
A further substitution,

f = 41/3s, (6)

transforms Eq. (4b) into the following integral:

_ (6Wr0)1/241/3 f sds .
_ (ff? sin a)1/2 i,„ (4s3 — 1)1/2 (4C)

Following Weierstrass, we introduce the elliptic integral [2]

f ds
u ~~ I rA„3 „■> „ \i/2 > \'J•la (4s gs2 ga)

where g2 and g3 are called the invariants of the doubly periodic function (the so-called
p-function)

s = p(u), (7a)

p(u) being the inverse function of the elliptic integral (7). By means of (7a) we can
express the time t in the following way:

*={L km) du -1p(u) du}> (4d)
further, by introducing the f-function of Weierstrass defined by [2, p. 183]

f(w) = — J p(u) du, (7b)

we obtain (x0 = W0/q)

' - ^ {fT™ -fWl' (4e)
>n between t

(6) and (7a):

(sin a)1

The connection between the parameter u and the displacement x is given by Eqs. (5),

x = — [41/3p(u) - 1] = xo [41/3p(u) - 1]. (5a)
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Thus we have a description of the time t and the displacement x given by the same
parameter u.

The square of the velocity can now be calculated from Eq. (4):

2 2g _ . 4p(w)3 - 1 4U3gW0 . p'(w)2
«, ^W.sm, 42/3Km)2 (4f)

the velocity itself is

v = |i72 (0Zo sin <*)1/2 = 0.5143 (gx0 sin a)1/2 • (4g)

The acceleration can be calculated from Eq. (2), which after differentiating with respect
to t, yields

™'+wft-gWSin„. (8)
Recognizing that

dW (dxY
V~dt = Alt) =qV'

we obtain the acceleration from Eq. (8):

dv . q f, qx0 41/3 . p'(w)2~] fo_s
a = t = ssma - ^i) = flsma 1 - T„ , -z~ sm a , ,2 •dt y W y L Wo + qx 6 p(w) J

We observe that [see Eqs. (5), (6) and (7a)]

Wo + qx = Wot = TF„41/3s = IF041/3p(w);

ar
A/o..

s

-t

3
Fig. 2.

cf ~s/s?ot
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hence the final expression for the acceleration is

a = g sin a£l - | ^^3] = g sin a[2 + p(u)~3]. (8b)

In the last expression we have used the relation between the p-function and its de-
rivative p'(ii)[2, p. 182], viz.,

p'(w)2 = 4p(u)3 - 1. (9)

Comparing Eqs. (4b) and (7) we see that in the present problem the invariant g2
is equal to zero; for this case the p- and f-functions are tabulated by A. G. Greenhill [3].
Thus we can calculate the diagrams for displacement, velocity and acceleration depending
on time t; they are presented in Figs. 2, 3 and 4, respectively. It can easily be proved

Z.o..

that the curve in Fig. 4 has a horizontal tangent at t = 0 and a point of inflection for
p(w) = (5/14)1/3 = 0.710, corresponding to u = 1.275.

There is an asymptotic value of acceleration equal to g/3, and this is obtained prac-
tically with u approximately equal to 0.5. The constant value of acceleration corre-
sponds to a straight line for velocity and a parabolic curve for displacement.

5. Presentation of the kinetic quantities. Besides the kinematic quantities, it is
interesting to present the kinetic quantities—momentum and energy.
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For the momentum we have:

T1 W W0 + qx dx W0 aU3 41/6, . m/2. ,/ \7""—7~dt=-Jl »<»>-

B = 0.8166IFo(—sin«) ' (10)

and for the kinetic energy:

W , W, + qx . !>'(«)' 2'" Wl . t'iuft~27 = ~~^i 5s m
Introducing p'(ti) expressed by p(w) (Eq. (9)), we obtain

T = 0.210 ^ sin a[4p(w)2 - Km)"1], (11)

and for large values of the parameter u,

T — 0.840TF0x„ sin ap(u)2. (11a)

Finally, the potential energy

V = — [wox + qx sin a = — x sin a[w0 + |

Inserting the expression for the displacement x (Eq. (5a)), we find that

y = _ Ef2sin a[2 21/3p(u)2 - 1]. (12)
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6. The transformation of energy of the system. It can be shown that the theorem
of conservation of energy in the usual form does not hold in the present problem. To
the energy equation we must add a term, involving the loss of energy by percussion of
the links of the chain. The calculation has the following form.

The potential energy is obtained by integration,

V = W0 sin a(x0 — x) + | sin a(xI — x2), (13)

and, as above, the kinetic energy is

T = f v2 = ±(W0 +qx)v\ (14)

Differentiating with respect to time yields

dV ,w . s • dx— = -On+^sma^-,

and after addition,

ft=Yg [2(^° + qx) It +

+ ~ = -(Wo + qx) sin ocv + ^ ^2(W0 + qx) jt + qv2J.dV.dT
dt dt

Equation (2) may be written as

- (Wo + qx) J. + - v2 — (Wo + qx) sin a = 0.
g at g

If we add the term

to Eq. (15), we obtain

dV.dT,
dt + dt +

dQ. = ± a
dt 2g

ft = \}g{Wo + QX) It + ~gV* ~ (TFo + ^)sino!]>

where the terms in the brackets correspond to Eq. (2c). Thus Eq. (15a) may be written
as

dV dT dQ
+ Tt + Tt = ° (15b)

or, after integration,

V + T + Q = const. (17)

The quantity dQ may be written as

dQ = ~v2 dx (16a)



470 NOTES [Vol. VII, No. 4

and interpreted as the loss of energy by non-elastic percussion of the links of the chain.
If we write

a = - dx,
g

where ju indicates the mass of the chain element dx and

dQ = %v2, (16b)

H is also called the reduced mass by percussion of the chain elements (Carnot).
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A NOTE ON SUPERSONIC FLOW IN THE TREFFTZ PLANE*
By JOHN W. MILES (University of California, Los Angeles)

Introduction—The general problem of linearized, supersonic flow has been treated
from the standpoint of Fourier transforms in an earlier paper.1 The methods set forth
therein will be used to calculate the flow conditions far downstream from a lifting sur-
face. If x is the streamwise coordinate, cf. Fig. 1, the downstream plane x = <» is desig-
nated as the Trefftz plane.2

This same problem has been treated by Lagerstrom and Graham,3 who took ad-
vantage of the fact that the flow in the Trefftz plane satisfies Laplace's equation. These
same authors also made calculations in regions not infinitely removed from the wing
by making use of conical flow methods.

Statement of problem—The vector perturbation velocity due to the presence of the
lifting surface is given by

q(x, y,z) = UV 4>{x, y, z), (1)

where 4> satisfies the linearized equation

<t>xx = <t>vv + (2)

*Received Feb. 11, 1949.
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