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4. In the process of numerical integration, to reach a point P3 from a knowledge
of the solution along the curve PiP2 (Fig. 1) one may use the set of equations (6) to
calculate x3, t3, u3, and p3 , since q* and A are supposed to be known functions. The

Fig. 1.

path line P0P3 can then be drawn in accordance with the second equation of (5); the
first equation of (5) will give the value of s3 . One can then calculate p3 from (4) and
obtain all of the dynamic and thermodynamic variables at P3 . Iteration processes can
be carried out in the usual manner.

A NEW SUPERPOSITION PRINCIPLE FOR
STEADY GAS FLOWS*

By R. C. PRIM** (Naval Ordnance Laboratory)

This paper is concerned with steady flows in the absence of extraneous fields of
force of a frictionless, thermally-nonconducting gas having a product equation of state,
i.e., an equation of state connecting density, pressure, and specific entropy in the form
P = P(p)S(s).

H. Poritsky [l]f has discussed the construction of steady, spatial gas flow solutions
from steady plane flow solutions by the superposition of a uniform velocity field normal
to the given plane flow field. In particular, he pointed out that if

Vp = iu(x, y) + )v(x, y) (1)

is a plane velocity field (referred to ordinary rectangular Cartesian coordinates x, y, z
with unit vectors i, j, k) satisfying the equations of steady-state gas dynamics, then
the spatial velocity field

V = V„ + k7„, (2)
where Vn is a constant, also satisfies those equations.
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The validity of this superposition principle follows at once from (Newtonian) rela-
tivity considerations. In reference to an observer having a uniform velocity — kVn
with respect to the flow field (1), this field has the velocity vector (2). It should be
noted that it is essential that the given field (1) not depend on z, otherwise the flow
field with respect to the moving observer will be unsteady.

The basic superposition method of deriving spatial flow fields from a given plane
flow solution will now be given a new order of power by making use of the Substitution
Principle for steady gas flow.

This Substitution Principle was first established by Munk and Prim [2] for the
case of gases having constant specific heats, and was extended by the present author [3]
to the broader class of gases having a product equation of state, p = P(p)S(s). It can
be stated briefly as follows. If V, p and p are, respectively, the velocity, density, and pressure
of a possible flow of a given gas, then mV, p/rn and p are the corresponding quantities of
another possible flow of the same gas, provided only that V • grad m = 0, that is, that m is
constant along each individual streamline.

The members of a family of flows related by this Substitution Principle clearly share
the same streamline pattern and pressure field and, as may easily be verified, they have
also a common reduced velocity field W. (W is defined as V/a, where a is the ultimate
velocity magnitude attainable on a given streamline by expansion to zero pressure,
«2 = V2 + 2h, with h the specific enthalpy.) In terms of a given reduced velocity field,
the Substitution Principle manifests itself in the arbitrary assignability of the ultimate
velocity a for each streamline. Hence, it is the reduced velocity field W rather than the
actual velocity field V which plays the basic role in the theory of rotational gas flows.
We, therefore, focus our attention on the problem of obtaining spatial reduced velocity
fields satisfying the equations of gas dynamics (see [4]) from plane fields that do so.

Specifically, we suppose given a plane flow field with reduced velocity W„ and inquire
what spatial reduced velocity fields W can be obtained by a combined application of
the Substitution Principle and the Newtonian relativity considerations discussed above.
We write W in the form

W = aW„ + kW„ . (3)

Denoting the ultimate velocity functions for the plane flow field and the spatial flow
field by av and a, respectively, we have:

V, = apWp, (4)

V = aW, (5)

and

Vn = aWn . (6)

The ultimate velocity functions av and a are defined by the following relations:

al= Vl + 2/ip , (7)

a2 = V2 + 2 h. (8)

Now the specific enthalpy of the plane flow is not affected by the superposition of a
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constant Vn . Hence hp = h. Furthermore, from (2), V2 = V\ + Vl . Equations (7)
and (8), therefore, yield the following relation between aP , a, and V„ :

whence, making use of (6),

and

From (2) and (5) we obtain
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Substitution of (4), (6), and (9) into (11) yields

W = (1 - Wl)1/2WV + k!F„ . (12)

Equation (12) is a formula for constructing spatial reduced velocity fields from a
given plane reduced velocity field and a function Wn . The nature of this function W„
is clarified by (10) and the Substitution Principle. Vn can be any (positive or negative)
constant, while, by the substitution principle, the reduced velocity function av can be
assigned any (positive) values constant along each individual streamline without
affecting W„ . Therefore, letting ipr,(x, y) be a streamfunction of the given plane field,
it is only required that in the spatial field the surfaces of constant coincide with the
surfaces of constant W„ and that Wn be of one sign throughout. That is,

wn = WAUx, y)}, (13)

where Wn is either a non-negative or a non-positive function everywhere. In vector
form, the restriction (13) can be written

W, • grad Wn — k ■ grad W„ = W • grad Wn = 0, (14)

or,

W„ • grad Wn = ^ = 0. (15)oz

Of course, physical meaningfulness requires also that W2 < 1.
In the formulas (12) and (13) or (12) and (15) we have a means for generating a

vast variety of spatial reduced velocity fields of possible gas flows from the reduced
velocity field of any given plane flow. The power of this generating method stems, of
course, from the essentially arbitrary nature of the function IFJi/'J.

One question that naturally presents itself is whether the generating formula (12)
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is rotation-preserving; that is, does curl Wp 5^ 0 imply curl W ^ 0? To answer this
question we compute from (12):

curl W = (1 - W2)1/2 curl W„ - S™d Wn X W„ + grad Wn X k. (16)

From (16) we find that

k X curl W = grad Wn,

from which it follows that curl W = 0 implies grad Wn = 0. But, together, curl W = 0
and grad Wn = 0 imply (from (16)) that curl W, = 0 (for W2„ < 1). Therefore, curl
W is zero if, and only if, both curl WP and grad W„ are zero. Hence rotational W fields
can be derived from irrotational W„ fields, but the converse is not possible.

Another class of spatial flow fields of particular interest are the "generalized Belt-
rami flows" investigated by Nemenyi and Prim [5, 6], These are the flow fields for
which

W X curl W = 0 (17)

throughout. For plane and axially-symmetric flow fields this condition is evidently
equivalent to the condition, curl W = 0; however, for more general spatial flows, the
class of flows satisfying (17) is much larger than that satisfying curl W = 0. Aside
from their interesting geometric and kinematic properties, these generalized Beltrami
flows have a special physical significance, shown by the relation

grad log H(p0) = 2 W , (18)

where H(p) = JJJ [1 /P(p)] dp and p0 denotes the stagnation pressure (pressure on a
given streamline for zero velocity). From (18) it is seen that (for W2 < 1) the class of
generalized Beltrami flows is identical with the class of flows having a uniform stagnation
pressure. The given general form of (18) is due to the present writer. The particular
form valid for gases having constant specific heats (and hence a constant adiabatic
exponent 7) was published earlier by B. Hicks and his colleagues [6]:

7—I , , W X curl W /iriN
—— grad log p0 = —x _ W2 ■ (19)

(For the case of gases having constant specific heats, the function P(p) can be taken
as p1/7 whence H{p) = f" p~1/y dp — 7/(7 — 1 )pl'y~1Wy.)

We shall now make use of this property of generalized Beltrami flows to establish
a method of generating them through the Superposition Principle of the present paper.
In addition, we shall need the following two relations:

H(p) = H(p0)( 1 - W2), (20)

and
(1 - w2) = (1 - TO( 1 - Wl). (21)

The latter follows at once from (12). The former is the general form (cf. [3]) for gases
with a product equation of state of the familiar formula

p = p0( 1 - W2yiy-" (22)
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assuming constant specific heats. Now the application of either the Substitution Principle
or the Newtonian Relativity Principle does not affect the pressure field of the given
plane flow field. Therefore, denoting the stagnation pressure of the given plane field
by Pov > we have from (20) that

H{p) = H(p0)(l - W2) = H{p0*)(1 - W2P);

making use of (21), we obtain

H(p0)(l - Wl) = H(p0p). (23)

(It should be remarked here that p0v , like W„ , is a function of \.) Now H(p0p) is a
known function of x and y once the plane field is given. It can be computed from a given
Wj, by integration from (18). Therefore, in order to obtain from (12) a spatial field
which is a generalized Beltrami field, it is only necessary to choose the function Wn so
that in (23) H(p0) is a constant. Since 0 < Wi < 1, the constant must be chosen so
that throughout the region of the given plane field considered

H(p0v) < H(p0). (24)

This implies that any curves in the plane flow field on which H(p0p) = °° must be ex-
cluded from the region considered.

We thus have a simple method of constructing a one-parameter family of generalized
Beltrami flow fields from any given plane flow field: H(p0) is simply assigned any con-
stant value satisfying (24), and the function Wn for use in (12) is then computed from

w--b~ Is1]"' <2s>
It should be noted that if curl Wv = 0, (18) implies that H(p0lt) is a constant, so that
(by (25)) setting II(p0) equal to a constant forces W„ to be constant also; hence by (16)
curl W = 0. Therefore, only rotational plane fields generate spatial fields for which
W X curl W = 0 while curl W^O.

This powerful method of generating generalized Beltrami flows produces, as quite
special cases, all previously known examples of such fields.

As an example of an application of this method producing new Beltrami fields we
consider the following one-parameter family of plane rotational flows, discovered by
the present writer [7], for gases having constant specific heats:

WE = ra sin r^- + O^o cos r 1- -0 (26)
AVo Al^o

where rx , 0! , Zx are unit vectors in an ordinary cylindrical coordinate system (r, d, Z),
^ — (y + 1)/(t — 1) and v0 is an arbitrary constant such that 0 < vl < 1. For this
set of fields we compute (from (19))

/ a \ (X+l) (»'o-l/X)/(l-»3o)

= (r cos> xj m

and obtain the two-parameter (v0, A) family of generalized Beltrami flows:
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g / g \ (»so-l/X)/(l-»3c.)

W - ri A sin -— (r cosx r—
\V0 \ A?V

+ (28)

[/ /, \2(rao-l/X)/(l-t.ao)~]l/2^V00**) J '
where A is a constant such that

/ n \-(®3o-l/X)/(l-»3o)

0 < A <(r cosx —J (29)

throughout the flow region considered. The lines in the r, 6 plane on which r cosx (9/\v0)
is equal to a constant (for fixed v0) are the streamlines of the field (26). Therefore, for
vl < 1/X the innermost streamline in the region considered fixes the upper bound on
A, and it is clear that the line 6 = \vair/2 must be excluded. For v\ > 1/X the point
r = ra is the critical one in bounding A; only a finite part of the plane can be taken as
the region considered.
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ON HEAT TRANSFER PROBLEMS IN VISCOUS FLOW*
By G. F. CARRIER and J. A. LEWIS (Brown University)

1. Summary. Many problems of physical interest which are associated with the
flow of a viscous fluid through a narrow channel require the determination of the tem-
perature distribution throughout the field of flow. In general, such problems may be
separated into one of three classifications. The first of these is characterized by the
existence of a thermal boundary layer, the second by a temperature distribution in-
dependent of the coordinate across the channel, and the third by an intermediate type
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