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STUDIES ON TWO-DIMENSIONAL TRANSONIC FLOWS OF
COMPRESSIBLE FLUID.—PART I*

BY

S. TOMOTIKA and K. TAMADA
University of Kyoto, Japan

1. Introduction. It is well-known that when the flow is everywhere subsonic in a field
of flow, the nature of the two-dimensional isentropic flow of a compressible perfect
fluid differs only slightly from that of the corresponding flow of an incompressible perfect
fluid. Thus, in such a case, we can calculate the field of flow by any of the well-known
methods of approximation. On the other hand, if the flow is supersonic throughout the
field, we can determine the flow pattern by the method of characteristics.

Difficulty occurs, however, in the calculation of transonic flows which contain both
subsonic and supersonic regions. The difficulty arises from the fact that the fundamental
non-linear differential equation governing the field of flow changes from the elliptic type
in the subsonic region to the hyperbolic type in the supersonic region.

Up to the present time, several writers have succeeded in finding exact solutions of
the fundamental differential equation in certain particular cases, and they have thus
obtained exact flow patterns of the compressible perfect fluid which afford valuable
information on the complicated character of transonic flow. However, no exact solutions
have yet been found which may be used to represent the accelerated-decelerated flow
of gas through a nozzle.

In the present paper, an attempt is made to clarify some of the important features
of transonic flow. To do this, we introduce a hypothetical gas which approximates the
real gas, subject to the adiabatic law, in the vicinity of the critical state where the
fluid velocity becomes just equal to the velocity of sound. Then, starting from the
equations of motion (in two dimensions) of.a compressible perfect fluid, we derive a
partial differential equation for determining, in an exact manner, the flow of this hypo-
thetical gas. This differential equation assumes a rather simple form, but retains the
non-linearity of the original equations. Furthermore, it changes from the elliptic to the
hyperbolic type when the fluid velocity becomes greater than the speed of sound.

We find that our fundamental non-linear equation can be solved exactly in several
cases. Some of these solutions give us the flow through nozzles of various shapes. Here,
we thoroughly discuss two flow patterns. By close examination of these flow patterns,
we find some important and interesting features which are expected to be common to
other similar transonic flows.

In a subsequent paper, an alternative method of treatment will be developed on
the basis of the fundamental equations in the hodograph plane. Just as in the case of
the adiabatic flow of the real gas, the fundamental differential equation for determining
the flow of our hypothetical gas becomes linear in the hodograph plane. We have dis-
covered a group of interesting particular solutions of this linear differential equation,
which have points of singularity of various orders in the subsonic region of the hodo-
graph plane. Thus, by suitable linear combinations of these particular solutions we can
obtain various flow patterns with a uniform flow at infinity.

*Received Jan. 21, 1949. The investigations described in Parts I and II of the present paper were
accomplished in 1946, while the main part of Part III was worked out before the end of March, 1947.
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Although the hypothetical gas employed here has the advantage that the funda-
mental equations are simple and can be solved exactly, it can approximate the real gas
only for a limited range of speeds. Thus, this method has the disadvantage that it is
applicable only to nearly uniform transonic flows. In a subsequent paper, a theory is
developed which can be applied to flows containing limited supersonic regions in the
vicinity of an obstacle, as well as stagnation points. For this purpose, we introduce a
second hypothetical gas and then discuss the subsonic uniform flow past an obstacle,
making special reference to the so-called Taylor problem: Is there -any theoretical
possibility of a continuous potential flow past an obstacle such that it flows uniformly
at a great distance from the body and at the same time contains limited supersonic
regions in the neighborhood of the obstacle?

2. The fundamental equations. As is well-known, the two-dimensional steady irrota-
tional flow of a compressible perfect fluid is given by the following simultaneous differ-
ential equations:

ipx = u = q cos 9, <py = v = q sin 6,

<px = — pq sin 6, \py = pq cos d,

where (x, y) are the Cartesian coordinates in the plane of fluid motion, (u, v) are the
rectangular components of the velocity at any point in the field of flow, the angle 6
denotes the direction of the velocity vector, and <p and ip are the velocity potential and
the stream function, respectively. The velocity magnitude q and the density p are
normalized to equal unity for the critical velocity. Considering x and y as functions of
<p and yp, we then have

x, = - cos 6, Xj, = — sin 6,
9 pq

1 . „ 1
yv = - sm 6, y* = — cos 6.q > v* pq

On eliminating both x and y, the equations of motion in the (<p, \p)-plane become

(2.1)
q(i i\
p \c q

Here, we have replaced dp/dq, using Bernoulli's equation in differential form, namely,

dp _ pq
dq (2.2)

where c is the speed of sound normalized to unity for the critical state.
3. A theory of nearly-uniform transonic flow. In the following we shall develop a

theory of nearly-uniform transonic flow by considering a hypothetical gas which ap-
proximates the adiabatic behavior of the real gas in the vicinity of the critical state
(where the fluid velocity becomes just equal to the speed of sound).
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Now, let us introduce a new variable w, defined by

w= [ ~dq. (3.1)
J i q

Then the fundamental equations (2.1) can be put in the form

6V = ,

(3.2)
6$ = —Xwv ,

where

x = -C (\ - 4).P \q c /

If the usual isentropic law is assumed for the change of state of the gas, we have

7+1 _ 7 ~ 1
2 2

1/(7-1)

P= (

(3.3)
„ _ (y + 1 _ t - i A1/2

V 2 2 q) '

where y is the ratio of specific heats of the gas. By substituting Eqs. (3.3) into the ex-
pression for X and making use of Eq. (3.1), we can expand X(w) in powers of w:

X(w) = X(0) + [" (dXVdq
L\dq )\dw. w + 0(w2)

« = 1\dq

= -(7 + l)w + 0(w2). (3.4)

In the case of nearly-uniform transonic flow, the value of w is small. Consequently
the term 0(w2) on the right-hand side of Eq. (3.4) may be neglected, and the fundamental
equations (3.2) can be written as

0V = w# ,

V 4- 1 (3-5)
et = k(w2),, k = .

Elimination of 9 from these equations yields immediately the partial differential equation
for determining w, in the form

(kw)fj, = {(/ot)2}„„ . (3.6)

Equations (3.5) and (3.6) can only approximately represent the nearly-uniform
transonic flow of the real gas obeying the adiabatic law. But they may be taken as the
exact fundamental equations of motion for the flow of a hypothetical gas which obeys
an appropriate law of change of state. This method of approach to the problem is prefer-
able, because it is possible to discuss the field of flow with mathematical rigor.

Before proceeding further, we shall now investigate what sort of gas corresponds to
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the fundamental equations (3.5) or (3.6). Comparing Eqs. (3.5) with Eqs. (3.2), it is
readily found that the relation which specifies the hypothetical gas is given by

X = -2kw, k = .

Thus, taking Eqs. (3.1) and (2.2) into account, we obtain the characteristic equation
for our hypothetical gas in the form

2k - . (3.7)
1

If this equation be solved subject to the conditions (p)a-i = 1 and (p')a-i = —1, we

1.4
Fig. 1. Solid-line curves show the curves of w, c/q and p for the hypothetical gas used in the present
paper, and dotted-line curves show the curves of the corresponding quantities for the real gas

subject to the adiabatic law.
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obtain the curve of p(q) for our hypothetical gas, which coincides to the order of curva-
ture at the critical state q = 1 with the corresponding curve of p(q) for the real gas
subject to the adiabatic law. The curves of p(q), c{q), and w(q) for our hypothetical gas
when 7 = 1.4 are shown by solid-line curves in Fig. 1. The corresponding curves for
the real gas obeying the adiabatic law are shown by dotted-line curves, for the sake of
comparison.

4. Some exact solutions of the fundamental equation (3.6). The fundamental equa-
tion (3.6) for our hypothetical gas can be solved exactly by assuming kw in the following
forms:

(a) kw = f(<p + \<f), (X = a certain constant)

(b) kw = $(<?) + ¥(\p),

(c) kw = $(<

(d) kw = V0(\f) + ^i(il/)<p2,

(e) kw = Zip + tf) + 2\f/2,
where Z{<p + \p2) denotes a function of ip + \p2.

These solutions together with the corresponding flow patterns have been investigated
in detail by the junior writer in his doctoral thesis.1 Only a brief sketch of the results
obtained for the first three cases will be given here, however. The remaining two cases
will be discussed in some detail in the following sections.

The first exact solution (a) gives the so-called spiral flow. Since an exact solution
giving the similar flow pattern for the fundamental equations of motion of the real gas
is well-known, we can compare the two solutions. It has been found that the flow of
our hypothetical gas approximates sufficiently accurately the flow of the real gas.

The second solution (b) represents the flow through a Laval nozzle (i.e., a converging
and diverging nozzle), which changes from the subsonic state to the supersonic one as
it passes through the narrowest cross section. The results have been compared with
those of the approximate calculation due to Meyer2 for the corresponding adiabatic
flow, and excellent agreement has been found.

The third solution (c) also gives the flow through a nozzle having a straight axis.
Detailed calculations have been carried out for the flow which contains both the curves
of singularity, J = 0 and J = °o, where

r = d(x, y) d(x, y) d(<p, j)
d(q, 6) d(V, i) d(q, 6) '

5. The flow through a nozzle with two contractions. Let us consider the fourth solu-
tion (d), of the form

kw = MM + (5.1)

XK. Tamada, Studies on the two-dimensional flow of gas, with special reference to the flow through various
nozzles, to be published.

2Th. Meyer, Vber zweidimensionale Bewegungsvorgdnge in einem Gas, das mit Uberschallgeschwindig-
keit stromt, Dissertation Goettingen, 1908.
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Substituting this into the fundamental equation (3.6), we obtain two differential equa-
tions for determining the functions and (yf). After considerable manipulation*,
the solution for can be shown to be

*i = X p(< + co2), t = (2X)1/V,

where A and oi2 are constants of integration, and g? is the^Weierstrass elliptic function.3
The quantity co2 is chosen to equal the real half-period jjf the ^-function so that the

Fig. 2. Case when g% = —1.

flow may be symmetrical about the central streamline \p = 0. With this result for ^ ,
the function >I>o becomes

or
dtJ

Sf'o = 24/3ap1/2 cos arctan ~\3 dtj
according as the invariant g3 of the ^-function is taken equal to —1 or +1.

*Since this flow will be of less technical interest than that of case (e), we omit the manipulative
details.

3For the Weierstrass elliptic function used here, see E. Jahnke and F. Emde, Funktiontafeln mit
Formeln und Kurven, Teubner, Leipzig and Berlin, 2nd ed., 1933, p. 166.
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Substituting the expression for w as given by (5.1) into the fundamental equations
(3.5) and carrying out a simple calculation, we obtain the result that

, #0 ,1 d* 1 3 ,, ^+ 3 (5'2)

where an additive constant of integration has been omitted since 9 is everywhere zero
along the streamline \p = 0.

-1.5 -1.0 -0.5 0 0.5 1-0 VSxV'
Fig. 3. Case when g3 = +1.

The curves of and are shown in Fig. 2 for the case g3 — — 1 and in Fig. 3 for
the case g3 = +1. From these figures, in conjunction with Eqs. (5.1) and (5.2), it will
be seen that the present solution gives different types of flow depending on the choice
of signs for the constants g3 and a.

Detailed numerical calculations have been carried out for the case g3 = —1, by
assuming a = 0.15, X = 0.5 and taking, as usual, y = 1.4 for air. Figure 4 shows the
flow pattern in the physical plane and Fig. 5, the corresponding flow pattern in the
hodograph plane. The correspondence between the physical and the hodograph planes
can be easily understood, if we regard the streamlines in the hodograph plane as a group
of contour lines forming twisted surfaces.

The flow pattern in the physical plane does not show any peculiarity, but, as is
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X 12

Fig. 4. Physical plane. Heavy solid-line curves and thin full-line curves represent streamlines and
equi-velocity lines, respectively, while dotted-line curves represent Mach waves.

Fig. 5. Hodograph plane. Heavy solid-line curves represent streamlines, while dotted-line curves
represent characteristics.
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clearly seen from the flow pattern in the hodograph plane, it contains the particular
Mach waves AB, A'B',CB and C'B' as the curves of singularity J = <».

6. Transition from the flow of Taylor's type to that of Meyer's in a given Laval
nozzle. As the last example, we shall consider the flow represented by the fifth solution
(e), of the form

kw — Z(u) + 2\p2, (6.1)
where

u = <p \p2.

Inserting this expression for w into the fundamental equation (3.6), we obtain the
following equation for determining the function Z(u):

~T~ ~ 2 = 0. (6.2)
au \ au/ au

This equation can be integrated once immediately, and we get

z|_z_2m-°, (8.3)

where a constant of integration has been included in u for the sake of convenience.
If we set dZ/du = x, it follows from Eq. (6.3) that

u = | (x - 1 )Z. (6.4)

Further, again taking into account that dZ/du = x and (fZ/du = xdx/dZ, we have
from Eq. (6.2) that

Zx% = _(x ~ 2)(x+ 1}'

which can be integrated immediately to give

Z = 22/3a(x - 2)"2/3(x + 1)"1/3, (6.5)

where 22/3a is a constant of integration. Eliminating x from Eqs. (6.4) and (6.5), we get
ultimately.

(Z - 2u)\Z + u) = 2a3. (6.6)

Next, inserting the expression (6.1) for w into Eqs. (3.5) and carrying out simple
integrations, we obtain the expression for d in the form

kd = 2i(z + 2^ + | ^2), (6.7)

where a trivial constant of integration has been neglected.
From Eqs. (6.1), (6.6), and (6.7) it is seen that the flow under consideration is

symmetrical about the straight streamline = 0. Therefore, replacing two streamlines
\p = \pQ and \p = by two solid walls, we obtain a Laval nozzle having the line ^ = 0
as its axis.

Now, it is well-known that there may be two different types of flow in a given Laval
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nozzle. In one type, the flow is subsonic on both sides of the throat of the nozzle but
contains limited supersonic regions in the neighborhood of the walls at the throat
(Fig. 6), while in the other the flow changes from a subsonic to a supersonic state as it
passes through the throat (Fig. 7). The former type of flow was first discussed by Taylor

/
-f—

i<C ciKC—t—  1>c ( 1<c-

\
\

Fig. 6. Flow of Taylor's type. Fig. 7. Flow of Meyer's type.

and therefore will be called "Taylor's type". On the other hand, the latter type of flow
was first investigated by Meyer in a paper already mentioned, and hence it may be
conveniently referred to as "Meyer's type".

It is expected that under certain circumstances the transition from Taylor's to
Meyer's type may occur in the flow through a Laval nozzle. The problem has already
been investigated to some extent by Taylor4, Gortler5 and others. Unfortunately, how-
ever, these authors have not been able to arrive at any definite conclusion, since they
have employed only approximate solutions in the form of series in x and y, which be-
come rapidly divergent when the transition state is approached. It will be seen subse-
quently that it is possible by our present solutions to discuss the problem of transition
from the flow of Taylor's type to that of Meyer's in a given Laval nozzle.

First, the values of the function Z(u) must be calculated by using Eq. (6.6) in the
cases a > 0 and a < 0. The curves of Z(u) plotted against u are shown in Fig. 8. These
curves represent the velocity distribution along the central axis ^ = 0 of the nozzle,
since the function w, which is connected with q as shown in Fig. 1, becomes equal to
Z when = 0. It can be seen from these figures that the case a < 0 is suitable for our
purpose of investigating the problem of transition of flow from Taylor's to Meyer's
type in the Laval nozzle. In the case a < 0, the curve of Z consists of two branches A
and B as indicated in Fig. 8. On the branch A, Z is always negative and becomes equal
to — oo as u —>± oo. Therefore, kw = Z + 2^2 is everywhere negative (subsonic) for
small values of | |, but it becomes partly positive (supersonic) in some limited portions
on those streamlines for which the values of 2\p2 are larger than | Z,m | = | a |. Thus,
the solution in this case would give a flow pattern of Taylor's type as shown in Fig. 6.

As for the branch B, we first consider the range in which Z < 0. Then, it is seen
from Fig. 8 that both Z and u increase as (p increases along any streamline ^ = const.,

4G. I. Taylor, The flow of air at high speeds past curved surfaces, British A. R. C. Reports and Memo-
randa, No. 1381, 1931.

6H. Gortler, Zum Ubergang von Unterschall- zu Uberschallgeschwindigkeit im Dilsen, Z. angew. Math.
Mech. 19, 325-337 (1939).
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0.2 U
Fig. 8.
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until the value of dZ/du becomes infinite at the point u = u0 , Z = 0. This means that
the flow has reached the curve of singularity J = 0; for we have

j i _ d(g, 6) _ d(q, 6) d{ip, j)
d(x, y) d{<p, if) d(x, y)

(? " ?)«'_
since qv and are proportional to wr and w# and hence contain dZ/du by Eqs. (3.1)
and (6.1). Therefore, the flow in this case would be as shown in Fig. 9(a).

(a) (b)
Fig. 9.

For the range Z > 0 of the same branch B, we obtain a flow pattern as shown in
Fig. 9(b), which is everywhere supersonic and has the curve of singularity / — 0 (the
shock line) in common with the preceding flow in Fig. 9(a).

In the case a = 0, the branch A coincides with the two asymptotes a0 and M). In
this case, the local speed of sound is attained at some point (which corresponds to the
point 0 in Fig. 8) on the axis of the nozzle; hence the upper and lower limited supersonic
regions come in contact with each other at that point. This may be considered as the
limiting case of the flow of Taylor's type. The flow pattern is as shown in Fig. 10(a).

In this case (a = 0), the branch B is also coincident with the asymptotes bO and
cO ( = aO) and hence the two branches A and B may be joined at O into one straight
line aOc. If this branch aOc is adopted as Z, our solution would obviously give a flow
pattern of Meyer's type as shown in Fig. 10(b), which has part of the flow pattern in
common with the preceding case in Fig. 10(a), corresponding to the half-branch aO
of Z. Figures 6 and 10 suggest a possible transition of flow from Taylor's to Meyer's
type in the Laval nozzle.
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Taylor and Gortler have treated the flow between two rigid circular walls symmetrical
with respect to the z-axis. The dimensions of their nozzle were determined to satisfy
the condition

R = 4/i (6.8)

at the throat of the nozzle, where R denotes the radius of curvature of the walls6 and
h is the half-breadth of the throat.

(a) (b)
Fig. 10.

For the sake of convenience, we shall use the same condition to specify the shape of
the nozzle.7 This condition determines the particular streamlines to be chosen as the
walls of the nozzle, for given values of the parameter a. As will be seen presently, these
streamlines are almost coincident over a considerably wide range of x, for the several
values of a. Thus, our nozzle retains approximately a fixed shape in spite of the change
of flow, and, therefore, we can discuss the problem of the transition from Taylor's to
Meyer's type of flow in a given Laval nozzle.

Now, at the point (<p0 , ipo) on the wall at the throat of the nozzle, d is obviously
zero and hence we have, from Eq. (6.7), that

Z = —2ip0 — | \pl . (6.9)

Remembering that y+ = cos 0/pq the half-breadth of the throat of the nozzle is given
by

h = [ (— cos d] dip. (6.10)
Jo \pqJ o \pq

Now, the radius of curvature R of any streamline is given by

„ ds ds dtp 1
dd d(p d6 q(dd/d<p)

6In Taylor's and Gortler's cases, R is the radius itself of each circular wall.
'It may be remarked here that unlike Taylor's and Gortler's cases, the walls of our nozzle do not

assume the exact circular shape.
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By Eqs. (6.7) and (6.3), we have

dO _ 2\[/ ( 2m\
d<p k \ + z )'

Therefore,

R = 2q\p(3Z + 2m) " (6-11^
Thus, taking into account Eq. (6.9) the radius of curvature at the point (<p0 , to)

on the wall is given by

R = fc(^° + fo) , (6.12)
12q0(p0\[/0

where q0 is the value of q at the point (<p0, to) ■ In the present case, if use is made of Eq.
(6.10), the condition (6.8) can be expressed in the form

fc(3<?o + to) =4 r (-l^QoPoto * o ^PQ
cos 61 d\//- (6.13)

If the two equations (6.9) and (6.13) are solved by the method of successive approxi-
mations, the values of <p0 and to for various values of a can be determined. We have

0.12

0.08

0.04

0.4 X/h 0.8

calculated the values of <p0 and to for three cases in which a = —0.10, a = —0.05 and
a — 0, respectively, obtaining the results as shown in Table I.

Table I

a -0.10 -0.05 0

<Po 0.05028 0.04665 0.04605

to 0.3620 0.3707 0.3717
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Figure 11 shows the shapes of the streamline ^ , which is to be replaced by
the wall of the nozzle, as calculated for these three cases, by taking x/h and y/h as
abscissa and ordinate, respectively, and choosing the point (<p0 , <Po) as the origin, the
ordinate being shown on an enlarged scale. From this figure it will be seen that there is
very satisfactory coincidence between these streamlines and, moreover, that if we make
adjustment by shifting slightly the respective origins for the cases a = —0.10 and a =
—0.05, almost perfect coincidence can be obtained within the range of x/h shown.

Now, as already mentioned, when a = 0 our solution gives two flow patterns, namely,
the limiting case of the flow of Taylor's type and the flow of Meyer's type, which in
the upstream subsonic region are exactly the same. The dotted-line curve in Fig. 11

-as -0.4 o 04 x/h 08

Physical plane. Hodograph plane.
Fig. 12. Heavy solid-line curves and thin solid-line curves represent streamlines and equi-velocity
lines respectively, while dotted-line curves represent Mach waves (characteristics): a = —0.10.

12

"08 -0.4 0 04 X/h 08

Physical plane. Hodograph plane.
Fig. 13. Heavy solid-line curves and thin solid-line curves represent streamlines and equi-velocity
lines respectively, while dotted-line curves represent Mach waves (characteristics): a — —0.05.

shows the shape of the corresponding streamline for the case of the flow of Meyer's
type. It is seen that the deviation of this curve from the group of curves corresponding
to the case of the flow of Taylor's type becomes rather conspicuous in the supersonic



396 S. TOMOTIKA AND K. TAMADA [Vol. VII, No. 4

region on the left-hand side of the throat. However, this fact seems to have little effect
on the discussion of the transition of flow, because in such a supersonic region, the wall
can be continuously deformed by a small amount without causing any appreciable
change in the upstream subsonic region.

X/h 0.8

Physical plane. Hodograph plane.
Fig. 14. Heavy solid-line curves and thin solid-line curves represent streamlines and equi-velocity

lines respectively, while dotted-line curves represent Mach waves (characteristics): a = 0.

We have calculated the flow patterns in the physical plane as well as in the hodo-
graph plane, for the three above-mentioned cases, namely, a = —0.10, a = —0.05,
and a = 0. The results are shown in Figs. 12-15. Also, the velocity distributions along
the axis of the nozzle are shown in Fig. 16.

q, 1.4

-08 -0.4 0 0.4 X/h 0.8

Physical plane. Hodograph plane.
Fig. 15. Heavy solid-line curves and thin solid-line curves represent streamlines and equi-velocity

lines respectively, while dotted-line curves represent Mach waves (characteristics): a = 0.

Comparing these figures we can explain the possible transition of flow from Taylor's
to Meyer's type in a given Laval nozzle in the following way. As the rate of flow in-
creases, the curve of velocity distribution along a streamline becomes steeper until, in
the limiting case of the flow of Taylor's type, it reaches an infinite curvature on a partic-
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ular Mach wave AB (the curve of singularity J = <») as shown in Fig. 14. In this stage,
the local speed of sound is first attained at some point A on the axis of the nozzle. At
the same time the streamlines in the hodograph plane come in contact with a particular
characteristic curve AB which corresponds to the Mach wave AB in the physical plane.

In the next stage, if the conditions governing the flow (such as the pressure at the
outlet of the nozzle) be changed sufficiently, the flow changes abruptly to that of Meyer's
type in the downstream region, having the Mach wave AB as the natural boundary of

the unchanged upstream region. Such an abrupt change seems to be inherent in the
flow, since the condition that the streamlines be in contact with some particular char-
acteristic curve in the hodograph plane, in conjunction with the fixed shape of the
wall of the nozzle, seems to determine the unique and isolated solution for the flow of
Meyer's type. Moreover, the flow of Meyer's type cannot be approached in a continuous
manner from the group of solutions for the flow of Taylor's type.

If the change of conditions controlling the flow is not sufficient for the occurrence
of such an abrupt change of state, then intermediate stages occur in which the flow
forms shock waves in the downstream side so as to fit the conditions at the outlet of
the nozzle. At the beginning of these intermediate stages a slight shock wave first
appears along the particular Mach wave AB (the curve of singularity J = co).


